• This record comes from PubMed

Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects

. 2024 Jun ; 69 (3) : 465-489. [epub] 20240223

Language English Country United States Media print-electronic

Document type Journal Article, Review

Links

PubMed 38393576
DOI 10.1007/s12223-024-01146-3
PII: 10.1007/s12223-024-01146-3
Knihovny.cz E-resources

Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.

See more in PubMed

Abd El Aty AA, Zohair MM (2020) Green-synthesis and optimization of an eco-friendly nanobiofungicide from Bacillus amyloliquefaciens MH046937 with antimicrobial potential against phytopathogens. Environ Nanotechnol Monit Manag 14:100309. https://doi.org/10.1016/j.enmm.2020.100309 DOI

Abe Sato ST, Marques JM, da Luz de Freitas A, Sanches Progênio RC, Nunes MRT, Mota de Vasconcelos Massafra J, Gomes Moura F, Rogez H, (2021) Isolation and genetic identification of endophytic lactic acid bacteria from the Amazonian açai fruits: probiotics features of selected strains and their potential to inhibit pathogens. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.610524 DOI

Abhyankar PS, Gunjal AB, Kapadnis BP, Ambade SV (2022) ​Potential of lactic acid bacteria in plant growth promotion. Indian J Agric Res 36:326–329. https://doi.org/10.18805/bkap374 DOI

Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754. https://doi.org/10.1016/S0141-0229(00)00295-7 PubMed DOI

Ahlberg SH, Joutsjoki V, Korhonen HJ (2015) Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol 207:87–102. https://doi.org/10.1016/j.ijfoodmicro.2015.04.042 PubMed DOI

Ahmadsah LSF, Kim E, Jung YS, Kim HY (2018) Identification of LAB and fungi in Laru, a fermentation starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS. J Microbiol Biotechnol 28:32–39. https://doi.org/10.4014/jmb.1705.05044 PubMed DOI

Alawamleh A, ðurović G, Maddalena G, Guzzon R, Ganassi S, Hashmi MM, Wäckers F, Anfora G, De Cristofaro A (2021) Selection of lactic acid bacteria species and strains for efficient trapping of Drosophila suzukii. J inSects 12:1–13. https://doi.org/10.3390/insects12020153 DOI

Alicja Niewiadomska JK, Niewiadomska A, Klama J (2005) Bacteriological urinalysis in patients after renal transplantation. Pol J Microbiol 54:43–48 PubMed

Alizadeh M, Vasebi Y, Safaie N (2020) Microbial antagonists against plant pathogens in Iran: a review. Open Agric J 5:404–440. https://doi.org/10.1515/opag-2020-0031 DOI

Álvarez A, Manjarres JJ, Ramírez C, Bolívar G (2021) Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. Lwt-Food Sci Technol 151:112225. https://doi.org/10.1016/j.lwt.2021.112225 DOI

Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-019-57210-3 DOI

Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 475–486

Andreote FD, Pereira e Silva M de C (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34. https://doi.org/10.1016/j.mib.2017.03.011 PubMed DOI

Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48. https://doi.org/10.1007/s00253-012-4282-y PubMed DOI

Baniyah L, Nur Jannah S, Rukmi I, Sugiharto (2018) Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation. J Phys: Conf Ser 1025:012070. https://doi.org/10.1088/1742-6596/1025/1/012049 DOI

Baptista RC, Horita CN, Sant’Ana AS (2020) Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Int Food Res J 127:108762. https://doi.org/10.1016/j.foodres.2019.108762 DOI

Barrios-Roblero C, Rosas-Quijano R, Salvador-Figueroa M, Gálvez-López D, Vázquez-Ovando A (2019) Antifungal lactic acid bacteria isolated from fermented beverages with activity against Colletotrichum gloeosporioides. Food Biosci 29:47–54. https://doi.org/10.1016/j.fbio.2019.03.008 DOI

Bazireh H, Shariati P, Azimzadeh Jamalkandi S, Ahmadi A, Boroumand MA (2020) Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.597946 DOI

Ben AK, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216. https://doi.org/10.1128/AEM.68.11.5209-5216.2002 DOI

Ben AK, Vaughan EE, De Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. JN or J Nutr 137:741–747. https://doi.org/10.1093/jn/137.3.741s DOI

Bensch G, Rüger M, Wassermann M, Weinholz S, Reichl U, Cordes C (2014) Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Appl Microbiol Biotechnol 98:4897–4909. https://doi.org/10.1007/s00253-014-5592-z PubMed DOI

Bertani G, Savo Sardaro ML, Neviani E, Lazzi C (2019) AFLP protocol comparison for microbial diversity fingerprinting. J Appl Genet 60:217–223. https://doi.org/10.1007/s13353-019-00492-0 PubMed DOI

Bohn J, Yüksel-Dadak A, Dröge S, König H (2017) Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 244:4–15. https://doi.org/10.1016/j.jbiotec.2016.12.015 PubMed DOI

Bojanic Rasovic M, Mayrhofer S, Ochome MAA, Ajanovic E, Zunabovic M, Martinovic A, Domig KJ (2018) Diversity of lactic acid bacteria isolated from traditional Montenegrin dairy products. Genetika 50:465–482. https://doi.org/10.2298/GENSR1802465B DOI

Bokulich NA, Mills DA (2012) Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol 31:126–132. https://doi.org/10.1016/j.fm.2012.02.007 PubMed DOI

Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees - Struct Funct 26:215–226. https://doi.org/10.1007/s00468-011-0626-y DOI

Bottari B, Agrimonti C, Gatti M, Neviani E, Marmiroli N (2013) Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int J Food Microbiol 160:290–297. https://doi.org/10.1016/j.ijfoodmicro.2012.10.011 PubMed DOI

Bove CG, Lazzi C, Bernini V, Bottari B, Neviani E, Gatti M (2011) cDNA-amplified fragment length polymorphism to study the transcriptional. J Appl Microbiol 111:855–864 PubMed DOI

Busconi M, Reggi S, Fogher C (2008) Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts. Anton Leeuw Int J G 94:145–155. https://doi.org/10.1007/s10482-008-9220-8 DOI

Cai W, Tang F, Zhao X, Guo Z, Zhang Z, Dong Y, Shan C (2019) Different lactic acid bacteria strains affecting the flavor profile of fermented jujube juice. J Food Process Preserv 43:1–14. https://doi.org/10.1111/jfpp.14095 DOI

Çakır E, Arıcı M, Durak MZ (2020) Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 130:450–456. https://doi.org/10.1016/j.jbiosc.2020.05.002 PubMed DOI

Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40:170–179. https://doi.org/10.1007/s12033-008-9073-4 PubMed DOI

Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D (2020) Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins. Front Microbiol 10:2909. https://doi.org/10.3389/fmicb.2019.02909 PubMed DOI PMC

Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo G (2017) Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 5:38. https://doi.org/10.3390/microorganisms5030038 PubMed DOI PMC

Ceapa C, Lambert J, van Limpt K, Wels M, Smokvina T, Knol J, Kleerebezem M (2015) Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Appl Environ Microbiol 81:5458–5470. https://doi.org/10.1128/AEM.00851-15 PubMed DOI PMC

Chen C, Cao Z, Li J, Tao C, Feng Y, Han Y (2020) A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol Control 148:104306. https://doi.org/10.1016/j.biocontrol.2020.104306 DOI

Chen J (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Bangkok, pp 1-11

Chen YS, Yanagida F, Shinohara I (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200. https://doi.org/10.1111/j.1472-765X.2005.01653.x PubMed DOI

Cho KM, Math RK, Islam SMA, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882–1889. https://doi.org/10.1021/jf803649z PubMed DOI

Cóndor-Golec AF, Pérez PG, Lokare C (2007) Effective microorganisms: myth or reality? Rev Peru Biol 14:315–319. https://doi.org/10.15381/rpb.v14i2.1837 DOI

Dar A, Zahir ZA, Iqbal M, Mehmood A, Javed A, Hussain A, Bushra AM (2021) Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environ Monit Assess 193:1–15. https://doi.org/10.1007/s10661-021-09286-6 DOI

Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174:92–105. https://doi.org/10.1111/aab.12476 PubMed DOI

Dayana M, Taha M, Fahrulazri M, Jaini M, Saidi NB, Rahim RA, Kalsom U, Shah M, Mohd A, Id H (2019) Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE 14:e0224431. https://doi.org/10.1371/journal.pone.0224431 DOI

de Melo PGV, Beux M, Pagnoncelli MGB, Soccol VT, Rodrigues C, Soccol CR (2016) Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Lett Appl Microbiol 62:96–101. https://doi.org/10.1111/lam.12520 DOI

De Simone N, Capozzi V, de Chiara MLV, Amodio ML, Brahimi S, Colelli G, Drider D, Spano G, Russo P (2021) Screening of lactic acid bacteria for the bio-control of botrytis cinerea and the potential of lactiplantibacillus plantarum for eco-friendly preservation of fresh-cut kiwifruit. Microorganisms 9:773. https://doi.org/10.3390/microorganisms9040773 PubMed DOI PMC

Dean WR, Scott HM (2005) Antagonistic synergy: process and paradox in the development of new agricultural antimicrobial regulations. Agric Human Values 22:479–489. https://doi.org/10.1007/s10460-005-3403-y DOI

Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, Gobbetti M (2010) Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol 27:381–389. https://doi.org/10.1016/j.fm.2009.11.012 PubMed DOI

Díaz M, Herrero M, García LA, Quirós C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48:385–407. https://doi.org/10.1016/j.bej.2009.07.013 DOI

Duthoit F, Godon JJ, Montel MC (2003) Bacterial community dynamics during production of registered designation of origin salers cheese as evaluated by 16S rRNA gene single-strand conformation polymorphism analysis. Appl Environ Microbiol 69:3840–3848. https://doi.org/10.1128/AEM.69.7.3840-3848.2003 PubMed DOI PMC

Duthoit F, Callon C, Tessier L, Montel MC (2005) Relationships between sensorial characteristics and microbial dynamics in “Registered Designation of Origin” Salers cheese. Int J Food Microbiol 103:259–270. https://doi.org/10.1016/j.ijfoodmicro.2004.11.040 PubMed DOI

Dziuba B, Nalepa B (2012) Identification of lactic acid bacteria and propionic acid bacteria using FTIR spectroscopy and artificial neural networks. Food Technol Biotechnol 50:399–405

Dziuba B, Babuchowski A, Nałecz D, Niklewicz M (2007) Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. Int Dairy J 17:183–189. https://doi.org/10.1016/j.idairyj.2006.02.013 DOI

Endo A, Futagawa-Endo Y, Dicks LMT (2011a) Influence of carbohydrates on the isolation of lactic acid bacteria. J Appl Microbiol 110:1085–1092. https://doi.org/10.1111/j.1365-2672.2011.04966.x PubMed DOI

Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LMT (2011b) Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 61:898–902. https://doi.org/10.1099/ijs.0.023838-0 PubMed DOI

Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M, Dicks L, Salminen S (2018) Fructophilic lactic acid bacteria, a unique group of fructose- fermenting microbes. Appl Environ Microbiol 84:1–14 DOI

Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314. https://doi.org/10.1016/j.mimet.2003.11.006 PubMed DOI

Fagbemigun O, Cho GS, Rösch N, Brinks E, Schrader K, Bockelmann W, Oguntoyinbo FA, Franz CMAP (2021) Isolation and characterization of potential starter cultures from the Nigerian fermented milk product nono. Microorganisms 9:1–20. https://doi.org/10.3390/microorganisms9030640 DOI

Fan X, Li X, Zhang T, Xu J, Shi Z, Wu Z, Wu J, Pan D, Du L (2021) A novel qpcr method for the detection of lactic acid bacteria in fermented milk. Foods 10:3066. https://doi.org/10.3390/foods10123066 PubMed DOI PMC

Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. https://doi.org/10.1016/j.soilbio.2004.10.021 DOI

Feucht A, Kwak HS (2013) Microencapsulation of lactic acid bacteria (LAB). Korean J Food Sci Anim Resour 33:229–238. https://doi.org/10.5851/kosfa.2013.33.2.229 DOI

Fguiri I, Atigui M, Ziadi M, Arroum S, Khorchani T (2015) Biochemical and molecular identification of lactic acid bacteria isolated from camel milk in Tunisia. Emir J Food Agric 27:716–720. https://doi.org/10.9755/ejfa.2015.04.114 DOI

Filannino P, Di Cagno R, Gobbetti M (2018) Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol 49:64–72. https://doi.org/10.1016/j.copbio.2017.07.016 PubMed DOI

Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220. https://doi.org/10.1016/j.mib.2004.04.015 PubMed DOI

Friedrich U, Lenke J (2006) Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fleorescence in situ hybridization. Appl Environ Microbiol 72:4163–4171. https://doi.org/10.1128/AEM.02283-05 PubMed DOI PMC

Gajbhiye M, Prakash D, Jagdale S, Ahiwale S, Patil N, Kapadnis B (2012) Pomegranate borne fungicidal lactic acid bacteria and their biodiversity. Proceedings of the National Academy of Sciences India Section B Biol Sci 82:413–419. https://doi.org/10.1007/s40011-012-0055-8 DOI

Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Sci Technol 26:1451–1470. https://doi.org/10.1080/09583157.2016.1213793 DOI

Galanis A, Kourkoutas Y, Tassou CC, Chorianopoulos N (2015) Detection and identification of probiotic Lactobacillus plantarum strains by multiplex PCR using RAPD-derived primers. Int J Mol Sci 16:25141–25153. https://doi.org/10.3390/ijms161025141 PubMed DOI PMC

Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M (2018) Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors 11:1–13. https://doi.org/10.1186/s13071-018-2859-8 DOI

Gänzle MG (2015) Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2:106–117. https://doi.org/10.1016/j.cofs.2015.03.001 DOI

Gao Z, Daliri EBM, Wang JUN, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot 82:441–453. https://doi.org/10.4315/0362-028X.JFP-18-303 PubMed DOI

Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10:1–21. https://doi.org/10.1080/19490976.2018.1455790 PubMed DOI

Garofalo C, Osimani A, Milanović V, Aquilanti L, De Filippis F, Stellato G, Di Mauro S, Turchetti B, Buzzini P, Ercolini D, Clementi F (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133. https://doi.org/10.1016/j.fm.2015.01.017 PubMed DOI

Garzón K, Ortega C, Tenea GN (2017) Characterization of bacteriocin-producing lactic acid bacteria isolated from native fruits of ecuadorian Amazon. Pol J Microbiol 66:473–481. https://doi.org/10.5604/01.3001.0010.7037 PubMed DOI

George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-Junelles AM, Borges F, Foligné B (2018) Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: a multifaceted functional health perspective. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.02899 DOI

Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36. https://doi.org/10.1016/S0378-1097(01)00439-6 PubMed DOI

Ghosh R, Barman S, Mukhopadhyay A, Mandal NC (2015) Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biol Control 83:29–36. https://doi.org/10.1016/j.biocontrol.2014.12.020 DOI

Gomaa EZ, Abdelall MF, El-Mahdy OM (2018) Detoxification of aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei. Isolated from Dairy Products Probiotics Antimicrob 10:201–209. https://doi.org/10.1007/s12602-017-9350-2 DOI

Gómez NC, Ramiro JMP, Quecan BXV, de Melo Franco BDG (2016) Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Front Microbiol 7:1–15. https://doi.org/10.3389/fmicb.2016.00863 DOI

Gonçalves BL, Muaz K, Coppa CFSC, Rosim RE, Kamimura ES, Oliveira CAF, Corassin CH (2020) Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Int Food Res J 136:109604. https://doi.org/10.1016/j.foodres.2020.109604 DOI

González-Arenzana L, López R, Santamaría P, López-Alfaro I (2013) Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods. Appl Microbiol Biotechnol 97:6931–6941. https://doi.org/10.1007/s00253-013-4974-y PubMed DOI

Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575. https://doi.org/10.1016/j.soilbio.2007.05.011 DOI

Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 76:298–304. https://doi.org/10.1016/j.colsurfb.2009.11.008 DOI

Guerrieri E, de Niederhäusern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M (2009) Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control 20:861–865. https://doi.org/10.1016/j.foodcont.2008.11.001 DOI

Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35. https://doi.org/10.1016/j.ijfoodmicro.2006.10.040 PubMed DOI

Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center Atami

Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WOC (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5:e8578. https://doi.org/10.1371/journal.pone.0008578 PubMed DOI PMC

Hong Y, Yang HS, Li J, Han SK, Chang HC, Kim HY (2014) Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. J Sci Food Agric 94:296–300. https://doi.org/10.1002/jsfa.6257 PubMed DOI

Hong SW, Choi YJ, Lee HW, Yang JH, Lee MA (2016) Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. J Microbiol Biotechnol 26:1057–1062. https://doi.org/10.4014/jmb.1512.12035 PubMed DOI

How YH, Foo WL, Yap WS, Pui LP (2021) Isolation and characterization of lactic acid bacteria from sugarcane waste. Malays J Microbiol 9:166–175. https://doi.org/10.1017/CBO9781107415324.004 DOI

Hurtado A, Reguant C, Bordons A, Rozès N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol 31:1–8. https://doi.org/10.1016/j.fm.2012.01.006 PubMed DOI

Hwanhlem N, Buradaleng S, Wattanachant S, Benjakul S, Tani A, Maneerat S (2011) Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control 22:401–407. https://doi.org/10.1016/j.foodcont.2010.09.010 DOI

ILabaca C, Jara C, Romero J, (2014) The rapid identification of lactic acid bacteria present in Chilean winemaking processes using culture-independent analysis. Ann Microbiol 64:1857–1859. https://doi.org/10.1007/s13213-014-0810-6 PubMed DOI

Ilha EC, Scariot MC, Treml D, Pereira TP, Sant′Anna ES, Prudêncio ES, Arisi ACM (2016) Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Ann Microbiol 66:597–606. https://doi.org/10.1007/s13213-015-1137-7 DOI

Jara S, Sánchez M, Vera R, Cofré J, Castro E (2011) The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe 17:474–477. https://doi.org/10.1016/j.anaerobe.2011.07.008 PubMed DOI

Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica. https://doi.org/10.1155/2016/1598325 PubMed DOI PMC

Jin H, Jeong Y, Yoo SH, Johnston TV, Ku S, Ji GE (2019) Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces. Microb Cell Factories 18:1–13. https://doi.org/10.1186/s12934-019-1158-1 DOI

Kaliyappan K, Palanisamy M, Govindarajan R, Duraiyan J (2012) Microarray and its applications. J Pharm Bioallied Sci 4:310. https://doi.org/10.4103/0975-7406.100283 DOI

Kanauchi M (2019). Lactic Acid Bacteria Methods and Protocols. https://doi.org/10.1007/978-1-4939-8907-2 DOI

Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151. https://doi.org/10.3389/fpls.2015.00151 PubMed DOI PMC

Kántor A, Kačániová M, Petrová J, Medo J, Hleba L, Rovná K, Attila M (2014) Identification of lactic acid bacteria isolated from red wine samples by RT-qPCR. J Microbiol Biotechnol Food Sci 3:235–237

Karakas-Sen A, Karakas E (2018) Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. J Biosci 34:985–999. https://doi.org/10.14393/bj-v34n2a2018-34517 DOI

Karthika S, Varghese S, Jisha MS (2020) Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. Biotech 10:1–17. https://doi.org/10.1007/s13205-020-02306-1 DOI

Karyawati AT, Nuraida L, Lestari Y, Meryandini A (2020) Isolation and identification of lactic acid bacteria in hive of Apis dorsata from semi-arid tropical climate in Benu village, East Nusa Tenggara. IOP Conf Ser Earth Environ Sci 457. https://doi.org/10.1088/1755-1315/457/1/012024 DOI

Kaur J, Lee S, Sharma A, Park YS (2017) DNA profiling of Leuconostoc mesenteroides strains isolated from fermented foods and farm produce in Korea by repetitive-element PCR. Food Sci Biotechnol 26:1667–1673. https://doi.org/10.1007/s10068-017-0189-9 PubMed DOI PMC

Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY (2021) Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol 94:103641. https://doi.org/10.1016/j.fm.2020.103641 PubMed DOI

Kivanç M, Yilmaz M, Çakir E (2011) Isolation and identification of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turk J Biol 35:313–324. https://doi.org/10.3906/biy-0906-67 DOI

Konig H, Unden G, Frohlich J (2017) Biology of microorganisms on grapes, in must and in wine. DOI. https://doi.org/10.1007/978-3-319-60021-5 DOI

Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597. https://doi.org/10.1016/j.fm.2009.04.001 PubMed DOI

Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 102:1599–1615. https://doi.org/10.1007/s00253-018-8743-9 PubMed DOI

Lähteinen T, Malinen E, Koort JMK, Mertaniemi-Hannus U, Hankimo T, Karikoski N, Pakkanen S, Laine H, Sillanpää H, Söderholm H, Palva A (2010) Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 16:293–300. https://doi.org/10.1016/j.anaerobe.2009.08.002 PubMed DOI

Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL (2017) From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem 111:1–9. https://doi.org/10.1016/j.soilbio.2017.03.015 DOI

Lazzi C, Bove CG, Sgarbi E, Monica G, La Gioia F, Sandra T, Neviani E (2009) Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. J Microbiol Methods 79:48–54. https://doi.org/10.1016/j.mimet.2009.07.021 PubMed DOI

Lazzi C, Povolo M, Locci F, Bernini V, Neviani E, Gatti M (2016) Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano. Int J Food Microbiol 233:20–28. https://doi.org/10.1016/j.ijfoodmicro.2016.06.009 PubMed DOI

Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22:143–149. https://doi.org/10.1016/j.copbio.2010.12.001 PubMed DOI

Lee CM, Sieo CC, Cheah YK, Abdullah N, Ho YW (2012) Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting. J Sci Food Agric 92:660–666. https://doi.org/10.1002/jsfa.4627 PubMed DOI

Lee MH, Lee J, Do NY, Lee JS, Seo MJ, Yi SH (2016) Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. Int J Food Microbiol 221:12–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.010 PubMed DOI

León Peláez AM, Serna Cataño CA, Quintero Yepes EA, Gamba Villarroel RR, De Antoni GL, Giannuzzi L (2012) Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 24:177–183. https://doi.org/10.1016/j.foodcont.2011.09.024 DOI

Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916. https://doi.org/10.1111/j.1574-6976.2009.00182.x PubMed DOI

Li Y, Zheng X-W, Chen JY, Liang JF, Yu SZ, Han BZ (2015) Lactic acid bacteria diversity of fresh rice noodles during the fermentation process, revealed by culture-dependent and culture-independent methods. Biotechnol Biotechnol Equip 29:915–920. https://doi.org/10.1080/13102818.2015.1051494 DOI

Limanska N, Ivanytsia T, Basiul O, Krylova K, Biscola V, Chobert JM, Ivanytsia V, Haertlé T (2013) Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiol Plant 35:1587–1595. https://doi.org/10.1007/s11738-012-1200-y DOI

Lin D, Cao H, Zhong Y, Huang Y, Zou J, He Q, Ji R, Qin T, Chen Y, Wang D, Wu Z, Qin W, Wu D, Chen H, Zhang Q (2019a) Screening and identification of lactic acid bacteria from Ya’an pickle water to effectively remove Pb 2+. AMB Express 9:1–11. https://doi.org/10.1186/s13568-018-0724-y DOI

Lin D, Ji R, Wang D, Xiao M, Zhao J, Zou J, Li Y, Qin T, Xing B, Chen Y, Liu P, Wu Z, Wang L, Zhang Q, Chen H, Qin W, Wu D, Liu Y, Liu Y, Li S (2019b) The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): a review. Crit Rev Food Sci Nutr 59:395–410. https://doi.org/10.1080/10408398.2017.1374241 PubMed DOI

Lin YC, Chung KR, Huang JW (2020) A synergistic effect of chitosan and lactic acid bacteria on the control of cruciferous vegetable diseases. Plant Pathol J 36:157–169. https://doi.org/10.5423/PPJ.OA.01.2020.0004 PubMed DOI PMC

Linares-Morales JR, Cuellar-Nevárez GE, Rivera-Chavira BE, Gutiérrez-Méndez N, Pérez-Vega SB, Nevárez-Moorillón GV (2020) Selection of lactic acid bacteria isolated from fresh fruits and vegetables based on their antimicrobial and enzymatic activities. Foods 9:1399. https://doi.org/10.3390/foods9101399 PubMed DOI PMC

Liu R, Kim AH, Kwak MK, Kang SO (2017) Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-Ko6 have activities against multidrug-resistant bacteria. Front Microbiol 8:1–15. https://doi.org/10.3389/fmicb.2017.00761 DOI

Liu Z, Li J, Wei B, Huang T, Xiao Y, Peng Z, Xie M, Xiong T (2019) Bacterial community and composition in Jiang-shui and Suan-cai revealed by high-throughput sequencing of 16S rRNA. Int J Food Microbiol 306:108271. https://doi.org/10.1016/j.ijfoodmicro.2019.108271 PubMed DOI

Londoño-Zapata AF, Durango-Zuleta MM, Sepúlveda-Valencia JU, Moreno Herrera CX (2017) Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: double cream cheese. LWT - Food Sci Technol 82:39–48. https://doi.org/10.1016/j.lwt.2017.03.058 DOI

Ma J, Hong Y, Deng L, Yi L, Zeng K (2019) Screening and characterization of lactic acid bacteria with antifungal activity against Penicillium digitatum on citrus. Biol Control 138:104044. https://doi.org/10.1016/j.biocontrol.2019.104044 DOI

Machado A, Almeida C, Carvalho A, Boyen F, Haesebrouck F, Rodrigues L, Cerca N, Azevedo NF (2013) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 162:64–70. https://doi.org/10.1016/j.ijfoodmicro.2012.09.024 PubMed DOI

Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380. https://doi.org/10.1039/c1np00021g PubMed DOI

Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736. https://doi.org/10.1038/nrmicro3093.MLST PubMed DOI PMC

Maleki Kakelar H, Barzegari A, Hanifian S, Barar J, Omidi Y (2019) Isolation and molecular identification of Lactobacillus with probiotic potential from abomasums driven rennet. Food Chem 272:709–714. https://doi.org/10.1016/j.foodchem.2018.08.081 PubMed DOI

Malusá E, Sas-Paszt L (2012) Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. https://doi.org/10.1100/2012/491206 DOI

Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721. https://doi.org/10.1016/j.foodres.2011.04.043 DOI

Mari M, Bertolini P, Pratella GC (2003) Non-conventional methods for the control of post-harvest pear diseases. J Appl Microbiol 94:761–766. https://doi.org/10.1046/j.1365-2672.2003.01920.x PubMed DOI

Matevosyan LA, Bazukyan IL, Trchounian AH (2020) Antifungal activity of lactic acid bacteria isolates and their associations: the effects of Ca and Mg divalent cations. Curr Microbiol 77:959–966. https://doi.org/10.1007/s00284-020-01897-5 PubMed DOI

McAuliffe O (2018) Symposium review: Lactococcus lactis from nondairy sources: their genetic and metabolic diversity and potential applications in cheese. J Dairy Sci 101:3597–3610. https://doi.org/10.3168/jds.2017-13331 PubMed DOI

Meneghel J, Passot S, Jamme F, Lefrançois S, Lieben P, Dumas P, Fonseca F (2020) FTIR micro-spectroscopy using synchrotron-based and thermal source-based radiation for probing live bacteria. Anal Bioanal Chem 412:7049–7061. https://doi.org/10.1007/s00216-020-02835-x PubMed DOI

Merabti R, Bekhouche F, Chuat V, Madec MN, Maillard MB, Bailly S, Thierry A, Valence F (2015) A large diversity of lactic acid bacteria species is involved in the fermentation of wheat used for the manufacture of lemzeiet. Eur Food Res Technol 241:137–149. https://doi.org/10.1007/s00217-015-2442-x DOI

Miescher Schwenninger S, Freimüller Leischtfeld S, Gantenbein-Demarchi C (2016) High-throughput identification of the microbial biodiversity of cocoa bean fermentation by MALDI-TOF MS. Lett Appl Microbiol 63:347–355. https://doi.org/10.1111/lam.12621 PubMed DOI

Moe NKT, Thwe SM, Shirai T, Terahara T, Imada C, Kobayashi T (2015) Characterization of lactic acid bacteria distributed in small fish fermented with boiled rice in Myanmar. Fish Sci 81:373–381. https://doi.org/10.1007/s12562-014-0843-6 DOI

Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255 PubMed DOI PMC

Moldes AB, Torrado AM, Barral MT, Domínguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486. https://doi.org/10.1021/jf063075g PubMed DOI

Nacef M, CHevalier M, Chollet S, Drider D, Flahaut C (2017) MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int J Food Microbiol 247:2–8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005 PubMed DOI

Nagarajan K, Loh KC (2014) Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 98:6907–6919. https://doi.org/10.1007/s00253-014-5870-9 PubMed DOI

Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK (2019) Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agric Biotechnol 21:101326. https://doi.org/10.1016/j.bcab.2019.101326 DOI

Naik K, Mishra S, Srichandan H, Singh PK, Choudhary A (2020) Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustain Environ Res 30:1–18. https://doi.org/10.1186/s42834-020-00051-x DOI

Nami Y, Haghshenas B, Khosroushahi AY (2018) Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from human vaginal microbiota. Adv. Pharm. Bull. 8(1):683–695. https://doi.org/10.15171/apb.2018.077 PubMed DOI PMC

Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177. https://doi.org/10.1038/sj.jim.7000090 PubMed DOI

Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022. https://doi.org/10.1002/jobm.201800309 PubMed DOI

Ncube L (2008) Evaluation of effective micro-organisms (EM) on soil chemical properties and yield of selected vegetables in the Eastern Cape, South Africa. Thesis, University of Fort Hare, MSc, p 175

Ngoi ST, Ju Teh CS, Chai LC, Thong KL (2015) Overview of molecular typing tools for the characterization of Salmonella enterica in Malaysia. Biomed Environ Sci 28:751–764. https://doi.org/10.3967/bes2015.105 PubMed DOI

Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Binh Thanh L, Vandamme P (2013) A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol 163:19–27. https://doi.org/10.1016/j.ijfoodmicro.2013.01.024 PubMed DOI

Olle M, Williams IH (2013) Effective microorganisms and their influence on vegetable production - a review. J Hortic Sci Biotechnol 88:380–386. https://doi.org/10.1080/14620316.2013.11512979 DOI

Olszewska MA, Kocot AM, Nynca A, Łaniewska-Trokenheim Ł (2016) Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge. Microbiol Res 192:239–246. https://doi.org/10.1016/j.micres.2016.07.011 PubMed DOI

Orlova TN, Dorofeev RV, Irkitova AN, Funk IA, Grebenshchikova AV (2019) Biological features of lactic acid bacteria in distinct ecological niches. Ukr J Ecol 9:384–388. https://doi.org/10.15421/2019_112 DOI

Öz E, Kaban G, Barış Ö, Kaya M (2017) Isolation and identification of lactic acid bacteria from pastırma. Food Control 77:158–162. https://doi.org/10.1016/j.foodcont.2017.02.017 DOI

Öztürk M, Meterelliyöz M (2015) Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use. Mol Biol Rep 42:1323–1332. https://doi.org/10.1007/s11033-015-3877-7 PubMed DOI

Ozturk G, Young GM (2017) Food evolution: the impact of society and science on the fermentation of cocoa beans. Compr Rev Food Sci Food Saf 16:431–455. https://doi.org/10.1111/1541-4337.12264 PubMed DOI

Pal P (2015) RAPD-PCR as a molecular discriminative technique for human pathogenic bacteria – a review. Int Lett Nat Sci 42:13–17. https://doi.org/10.18052/www.scipress.com/ilns.42.13 DOI

Palla M, Cristani C, Giovannetti M, Agnolucci M (2017) Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. Int J Food Microbiol 250:19–26. https://doi.org/10.1016/j.ijfoodmicro.2017.03.015 PubMed DOI

Parente E, Guidone A, Matera A, De Filippis F, Mauriello G, Ricciardi A (2016) Microbial community dynamics in thermophilic undefined milk starter cultures. Int J Food Microbiol 217:59–67. https://doi.org/10.1016/j.ijfoodmicro.2015.10.014 PubMed DOI

Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A (2007) The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89:500–507. https://doi.org/10.1016/j.biochi.2006.12.005 PubMed DOI

Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 3:37–58. https://doi.org/10.1146/annurev-food-022811-101255 PubMed DOI

Pega J, Rizzo S, Pérez CD, Rossetti L, Díaz G, Ruzal SM, Nanni M, Descalzo AM (2016) Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR. Int J Food Microbiol 232:117–125. https://doi.org/10.1016/j.ijfoodmicro.2016.06.003 PubMed DOI

Pellegrini M, Pagnani G, Bernardi M, Mattedi A, Spera DM, Del Gallo M (2020) Cell-free supernatants of plant growth-promoting bacteria: a review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability (switzerland) 12:1–22. https://doi.org/10.3390/su12239917 DOI

Perin LM, Savo Sardaro ML, Nero LA, Neviani E, Gatti M (2017) Bacterial ecology of artisanal Minas cheeses assessed by culture-dependent and -independent methods. Food Microbiol 65:160–169. https://doi.org/10.1016/j.fm.2017.02.005 PubMed DOI

Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54. https://doi.org/10.1016/j.fm.2012.08.011 PubMed DOI

Peyer LC, Axel C, Lynch KM, Zannini E, Jacob F, Arendt EK (2016) Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control 69:227–236. https://doi.org/10.1016/j.foodcont.2016.05.010 DOI

Pogačić T, Kelava N, Zamberlin Š, Dolenčić-Špehar I, Samaržija D (2010) Methods for culture-independent identification of lactic acid bacteria in dairy products. Food Technol Biotechnol 48:3–10

Pogačić T, Mancini A, Santarelli M, Bottari B, Lazzi C, Neviani E, Gatti M (2013) Diversity and dynamic of lactic acid bacteria strains during aging of along ripened hard cheese produced from raw milk and undefined natural starter. Food Microbiol 36:207–215. https://doi.org/10.1016/j.fm.2013.05.009 PubMed DOI

Poh Wah Goh L, Marshall Molujin A, Muthu K, Abdulla R, Khalizan Sabullah M, Azifa Mohd Faik A, Azlan Gansau J, Jawan R, Wah Goh P (2021) Isolation and characterization of lactic acid bacteria from Sabah (North Borneo) stingless bees for probiotic and food applications. Int J Food Prop 24:564–578. https://doi.org/10.1080/10942912.2021.1900238 DOI

Prakash O, Pandey PK, Kulkarni GJ, Mahale KN, Shouche YS (2014) Technicalities and glitches of terminal restriction fragment length polymorphism (T-RFLP). Indian J Microbiol 54:255–261. https://doi.org/10.1007/s12088-014-0461-0 PubMed DOI PMC

Quattrini M, Bernardi C, Stuknytė M, Masotti F, Passera A, Ricci G, Vallone L, De Noni I, Brasca M, Fortina MG (2018) Functional characterization of Lactobacillus plantarum ITEM 17215: a potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Res Int 106:936–944. https://doi.org/10.1016/j.foodres.2018.01.074 PubMed DOI

Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion process: employing potential of enhanced reaction rates. Microb Cell Factories 4:1–21. https://doi.org/10.1186/1475-2859-4-24 DOI

Ranjbar R, Karami A, Farshad S, Giammanco GM (2014) Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol 37:1–15 PubMed

Reale A, Di Renzo T, Boscaino F, Nazzaro F, Fratianni F, Aponte M (2019) Lactic acid bacteria biota and aroma profile of italian traditional sourdoughs from the irpinian area in Italy. Front Microbiol 10:1621. https://doi.org/10.3389/fmicb.2019.01621 PubMed DOI PMC

Renouf V, Claisse O, Miot-Sertier C, Lonvaud-Funel A (2006) Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol 23:136–145. https://doi.org/10.1016/j.fm.2005.01.019 PubMed DOI

Rezaei Z, Khanzadi S, Salari A (2021) Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express 11:1–7. https://doi.org/10.1186/s13568-021-01320-7 DOI

Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS (2017) Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA†. EFSA J 15:e04664. https://doi.org/10.2903/j.efsa.2017.4664 PubMed DOI PMC

Riseh RS, Skorik YA, Thakur VK, Pour MM, Tamanadar E, Noghabi SS (2021) Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci 22:11165. https://doi.org/10.3390/ijms222011165 DOI

Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. https://doi.org/10.1093/jac/dkl024 PubMed DOI

Roselló-Soto E, Barba-Orellana S, Barba FJ, Quilez F, Roohinejad S, Koubaa M (2018) New trends in molecular techniques to identify Microorganisms in dairy products. Mol Nutr Food Res 309–322. https://doi.org/10.1002/9781119374633.ch13 DOI

Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F (2019) Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. Front Microbiol 10:1091. https://doi.org/10.3389/fmicb.2019.01091 PubMed DOI PMC

Russo R, Valletta M, Rega C, Marasco R, Muscariello L, Pedone PV, Sacco M, Chambery A (2019) Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 285:111–118. https://doi.org/10.1016/j.foodchem.2019.01.127 PubMed DOI

Sánchez-Juanes F, Teixeira-Martín V, González-Buitrago J, Velázquez E, Flores-Félix J (2020) Identification of species and subspecies of lactic acid bacteria present in Spanish cheeses type “ Torta ” by MALDI-TOF MS and pheS gene analyses. Microorganisms 8:1–19. https://doi.org/10.3390/microorganisms8020301 DOI

Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, Mone NS, Patil RH, Cameotra SS (2016) Biosurfactant/s from Lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol 56:1140–1158. https://doi.org/10.1002/jobm.201600143 PubMed DOI

Schleifer KH, Ehrmann M, Beimfohr C, Brockmann E, Ludwig W, Amann R (1995) Application of molecular methods for the classification and identification of lactic acid bacteria. Int Dairy J 5:1081–1094. https://doi.org/10.1016/0958-6946(95)00047-X DOI

Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221. https://doi.org/10.1080/10408690490464104 PubMed DOI

Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35. https://doi.org/10.1016/j.btre.2016.05.001 DOI

Sharma A, Kaur J, Lee S, Park YS (2016) RAPD typing of Lactobacillus brevis isolated from various food products from Korea. Food Sci Biotechnol 25:1651–1655. https://doi.org/10.1007/s10068-016-0254-9 PubMed DOI PMC

Sharma A, Kaur J, Lee S, Park YS (2020a) Tracking of intentionally inoculated lactic acid bacteria strains in yogurt and probiotic powder. Microorganisms 8:1–15. https://doi.org/10.3390/microorganisms8010005 DOI

Sharma A, Lee S, Park YS (2020b) Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 29:1301–1318. https://doi.org/10.1007/s10068-020-00802-x PubMed DOI PMC

Shi Z, Li X, Fan X, Xu J, Liu Q, Wu Z, Pan D (2022) PMA-qPCR method for the selective quantitation of viable lactic acid bacteria in fermented milk. Front Microbiol 13:1–11. https://doi.org/10.3389/fmicb.2022.984506 DOI

Shrestha A, Kim BS, Park DH (2014) Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci Technol 24:763–779. https://doi.org/10.1080/09583157.2014.894495 DOI

Siedler S, Balti R, Neves AR (2019) Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 56:138–146. https://doi.org/10.1016/j.copbio.2018.11.015 PubMed DOI

Silva Dias BH, Jung SH, de Castro Oliveira JV, Ryu CM (2021) C4 bacterial volatiles improve plant health. Pathogens 10:1–21. https://doi.org/10.3390/pathogens10060682 DOI

Singh S, Goswami P, Singh R, Heller KJ (2009) Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. Lwt-Food Sci Technol 42:448–457. https://doi.org/10.1016/j.lwt.2008.05.019 DOI

Sirichokchatchawan W, Tanasupawat S, Niyomtham W, Prapasarakul N (2017) Identification and antimicrobial susceptibility of lactic acid bacteria from fecal samples of indigenous and commercial pigs. Thai J Vet Med 47:329–338 DOI

Sofu A, Ekinci FY (2016) Bacterial diversity dynamics of traditional Turkish Ezine Cheese as evaluated by PCR-DGGE and SSCP analysis. Int J Dairy Technol 69:592–600. https://doi.org/10.1111/1471-0307.12311 DOI

Sofu A, Sayilgan E, Guney G (2015) Experimental design for removal of Fe(II) and Zn(II) ions by different lactic acid bacteria biomasses. Int J Environ Res 9:93–100. https://doi.org/10.22059/ijer.2015.878 DOI

Speranza B, Sinigaglia M, Corbo MR (2009) Non starter lactic acid bacteria biofilms: a means to control the growth of Listeria monocytogenes in soft cheese. Food Control 20:1063–1067. https://doi.org/10.1016/j.foodcont.2009.01.006 DOI

Spigaglia P, Mastrantonio P (2003) Evaluation of repetitive element sequence-based PCR as a molecular typing method for Clostridium difficile. J Clin Microbiol 41:2454–2457. https://doi.org/10.1128/JCM.41.6.2454-2457.2003 PubMed DOI PMC

Stefanis C, Mantzourani I, Plessas S, Alexopoulos A, Galanis A, Bezirtzoglou E, Kandylis P, Varzakas T (2016) Reviewing classical and molecular techniques regarding profiling of probiotic character of microorganisms. Curr Res Nutr Food Sci 4:27–47. https://doi.org/10.12944/CRNFSJ.4.1.05 DOI

Stenico V, Michelini S, Modesto M, Baffoni L, Mattarelli P, Biavati B (2014) Identification of Bifidobacterium spp. using hsp60 PCR-RFLP analysis: an update. Anaerobe 26:36–40. https://doi.org/10.1016/j.anaerobe.2013.12.004 PubMed DOI

Strafella S, Simpson DJ, Khanghahi MY, De AM, Gänzle M, Minervini F, Crecchio C (2021) Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms 9:1–18. https://doi.org/10.3390/microorganisms9010078 DOI

Suproniene S, Semaskiene R, Juodeikiene G, Mankeviciene A, Cizeikiene D, Vidmantiene D, Basinskiene L, Sakalauskas S (2015) Seed treatment with lactic acid bacteria against seed-borne pathogens of spring wheat. Biocontrol Sci Technol 25:144–154. https://doi.org/10.1080/09583157.2014.964661 DOI

Syed Yaacob SN, Huyop F, Kamarulzaman Raja Ibrahim R, Wahab RA (2018) Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. J Apic Res 57:395–405. https://doi.org/10.1080/00218839.2018.1428047 DOI

Syed-Ab-Rahman SF, Carvalhais LC, Chua ET, Chung FY, Moyle PM, Eltanahy EG, Schenk PM (2019) Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci Total Environ 692:267–280. https://doi.org/10.1016/j.scitotenv.2019.07.061 PubMed DOI

Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117. https://doi.org/10.1016/j.apsoil.2017.09.030 DOI

Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295. https://doi.org/10.1007/s10725-014-9952-6 DOI

Terzić-Vidojević A, Tonković K, Leboš Pavunc A, Beganović J, Strahinić I, Kojić M, Veljović K, Golić N, Kos B, Čadež N, Gregurek L, Šušković J, Raspor P, Topisirović L (2015) Evaluation of autochthonous lactic acid bacteria as starter cultures for production of white pickled and fresh soft cheeses. Lwt-Food Sci Technol 63:298–306. https://doi.org/10.1016/j.lwt.2015.03.050 DOI

Treguier S, Couderc C, Tormo H, Kleiber D, Levasseur-Garcia C (2019) Identification of lactic acid bacteria Enterococcus and Lactococcus by near-infrared spectroscopy and multivariate classification. J Microbiol Methods 165:105693. https://doi.org/10.1016/j.mimet.2019.105693 PubMed DOI

Tsuda K, Tsuji G, Higashiyama M, Ogiyama H, Umemura K, Mitomi M, Kubo Y, Kosaka Y (2016) Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol Control 100:63–69. https://doi.org/10.1016/j.biocontrol.2016.05.010 DOI

Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11:479–487. https://doi.org/10.1016/j.tim.2003.08.006 PubMed DOI

Valletta M, Campolattano N, De Chiara I, Marasco R, Singh VP, Muscariello L, Pedone PV, Chambery A, Russo R (2023) A robust nanoLC high-resolution mass spectrometry methodology for the comprehensive profiling of lactic acid bacteria in milk kefir. Food Res Int 173:113298. https://doi.org/10.1016/j.foodres.2023.113298 PubMed DOI

Vaneechoutte M (2017) The human vaginal microbial community. Res Microbiol 168:811–825. https://doi.org/10.1016/j.resmic.2017.08.001 PubMed DOI

Vasiee AR, Mortazavi A, Tabatabaei-Yazdi F, Dovom MRE (2018) Detection, identification and phylogenetic analysis of lactic acid bacteria isolated from Tarkhineh, Iranian fermented cereal product, by amplifying the 16s rRNA gene with universal primers and differentiation using rep-PCR. Int Food Res J 25:423–432

Vincent P, Morero R (2009) The structure and biological aspects of peptide antibiotic microcin J25. Curr Med Chem 16:538–549. https://doi.org/10.2174/092986709787458461 PubMed DOI

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. https://doi.org/10.1023/B:COGE.0000014055.95035.cd PubMed DOI PMC

Wang L, Yue T, Yuan Y, Wang Z, Ye M, Cai R (2015) A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 50:104–110. https://doi.org/10.1016/j.foodcont.2014.08.041 DOI

Wang C, Cui Y, Qu X (2018a) Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol 200:195–201. https://doi.org/10.1007/s00203-017-1446-2 PubMed DOI

Wang X, Xiao J, Jia Y, Pan Y, Wang Y (2018b) Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon 4:e00649. https://doi.org/10.1016/j.heliyon.2018.e00649 PubMed DOI PMC

Wang Y, Wei Y, Shang N, Li P (2022) Synergistic inhibition of plantaricin E/F and lactic acid against Aeromonas hydrophila LPL-1 reveals the novel potential of class IIb bacteriocin. Front Microbiol 13:1–16. https://doi.org/10.3389/fmicb.2022.774184 DOI

Watanabe S, Kanauchi M, Kakuta T, Koizumi T (2007) Isolation and characteristics of lactic acid bacteria in Japanese spirit awamori mash. J Am Soc Brew Chem 65:197–201. https://doi.org/10.1094/ASBCJ-2007-0916-01 DOI

Weckx S, Van Der Meulen R, Allemeersch J, Huys G, Vandamme P, Van Hummelen P, De Vuyst L (2010) Community dynamics of bacteria in sourdough fermentations as revealed by their metatranscriptome. Appl Environ Microbiol 76:5402–5408. https://doi.org/10.1128/AEM.00570-10 PubMed DOI PMC

Wiedemann I, Böttiger T, Bonelli RR, Schneider T, Sahl HG, Martínez B (2006) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72:2809–2814. https://doi.org/10.1128/AEM.72.4.2809-2814.2006 PubMed DOI PMC

Wu J, Du R, ping, Gao M, Sui Y qiang, Wang X (2014) Identification and characterization of lactic acid bacteria isolated from tomato pomace. Ann Microbiol 64:1849–1855. https://doi.org/10.1007/s13213-013-0798-3 DOI

Wu C, Huang J, Zhou R (2017) Genomics of lactic acid bacteria: current status and potential applications. Crit Rev Microbiol 43:393–404. https://doi.org/10.1080/1040841X.2016.1179623 PubMed DOI

Yadav S, Maitra SS, Pal S, Singh N, Gupta SK, Ghosh SK, Sreekishnan TR (2014) Accumulation of lactic acid during biodigestion of municipal solid waste leachate and identification of indigenous lactic acid bacteria in leachate. J Hazard Toxic Radioact Waste 18:04014021. https://doi.org/10.1061/(asce)hz.2153-5515.0000218 DOI

Yanagida F, Chen YS, Yasaki M (2007) Isolation and characterization of lactic acid bacteria from lakes. J Basic Microbiol 47:184–190. https://doi.org/10.1002/jobm.200610237 PubMed DOI

Yu D, Shi K, Wen X, Xie F, Wang T, Liu S, He L (2018) Evidence of the genetic diversity and clonal population structure of Oenococcus oeni strains isolated from different wine-making regions of China. J Microbiol 56:556–564. https://doi.org/10.1007/s12275-018-7568-7 PubMed DOI

Yu AO, Leveau JHJ, Marco ML (2020) Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ Microbiol Rep 12:16–29. https://doi.org/10.1111/1758-2229.12794 PubMed DOI

Zhang Y, Li Y (2013) Engineering the antioxidative properties of lactic acid bacteria for improving its robustness. Curr Opin Biotechnol 24:142–147. https://doi.org/10.1016/j.copbio.2012.08.013 PubMed DOI

Zhao YW, Wu ZF, Shen XQ, Weng PF, Chen JJ (2014) Bacteria community analysis by quantitative real-time pcr of fermenting wax gourd and its changes of organic acids. J Food Process Preserv 38:1653–1659. https://doi.org/10.1111/jfpp.12127 DOI

Zhao X, Wang Y, Cai W, Yang M, Zhong X, Guo Z, Shan C (2020) High-throughput sequencing-based analysis of microbial diversity in rice wine koji from different areas. Curr Microbiol 77:882–889. https://doi.org/10.1007/s00284-020-01877-9 PubMed DOI

Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, Noskova S (2020) Overview of global trends in classification, methods of preparation and application of bacteriocins. J Antibiot 9:1–21. https://doi.org/10.3390/antibiotics9090553 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...