Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects
Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
38393576
DOI
10.1007/s12223-024-01146-3
PII: 10.1007/s12223-024-01146-3
Knihovny.cz E-resources
- Keywords
- Agriculture, Biocontrol agent, Effective microorganisms, Lactic acid bacteria, Phytopathogens, Plant growth promotion,
- MeSH
- Biodegradation, Environmental MeSH
- Lactobacillales * metabolism growth & development MeSH
- Soil Microbiology MeSH
- Plants microbiology MeSH
- Plant Development * MeSH
- Agriculture methods MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
See more in PubMed
Abd El Aty AA, Zohair MM (2020) Green-synthesis and optimization of an eco-friendly nanobiofungicide from Bacillus amyloliquefaciens MH046937 with antimicrobial potential against phytopathogens. Environ Nanotechnol Monit Manag 14:100309. https://doi.org/10.1016/j.enmm.2020.100309 DOI
Abe Sato ST, Marques JM, da Luz de Freitas A, Sanches Progênio RC, Nunes MRT, Mota de Vasconcelos Massafra J, Gomes Moura F, Rogez H, (2021) Isolation and genetic identification of endophytic lactic acid bacteria from the Amazonian açai fruits: probiotics features of selected strains and their potential to inhibit pathogens. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.610524 DOI
Abhyankar PS, Gunjal AB, Kapadnis BP, Ambade SV (2022) Potential of lactic acid bacteria in plant growth promotion. Indian J Agric Res 36:326–329. https://doi.org/10.18805/bkap374 DOI
Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754. https://doi.org/10.1016/S0141-0229(00)00295-7 PubMed DOI
Ahlberg SH, Joutsjoki V, Korhonen HJ (2015) Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol 207:87–102. https://doi.org/10.1016/j.ijfoodmicro.2015.04.042 PubMed DOI
Ahmadsah LSF, Kim E, Jung YS, Kim HY (2018) Identification of LAB and fungi in Laru, a fermentation starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS. J Microbiol Biotechnol 28:32–39. https://doi.org/10.4014/jmb.1705.05044 PubMed DOI
Alawamleh A, ðurović G, Maddalena G, Guzzon R, Ganassi S, Hashmi MM, Wäckers F, Anfora G, De Cristofaro A (2021) Selection of lactic acid bacteria species and strains for efficient trapping of Drosophila suzukii. J inSects 12:1–13. https://doi.org/10.3390/insects12020153 DOI
Alicja Niewiadomska JK, Niewiadomska A, Klama J (2005) Bacteriological urinalysis in patients after renal transplantation. Pol J Microbiol 54:43–48 PubMed
Alizadeh M, Vasebi Y, Safaie N (2020) Microbial antagonists against plant pathogens in Iran: a review. Open Agric J 5:404–440. https://doi.org/10.1515/opag-2020-0031 DOI
Álvarez A, Manjarres JJ, Ramírez C, Bolívar G (2021) Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. Lwt-Food Sci Technol 151:112225. https://doi.org/10.1016/j.lwt.2021.112225 DOI
Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-019-57210-3 DOI
Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 475–486
Andreote FD, Pereira e Silva M de C (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34. https://doi.org/10.1016/j.mib.2017.03.011 PubMed DOI
Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48. https://doi.org/10.1007/s00253-012-4282-y PubMed DOI
Baniyah L, Nur Jannah S, Rukmi I, Sugiharto (2018) Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation. J Phys: Conf Ser 1025:012070. https://doi.org/10.1088/1742-6596/1025/1/012049 DOI
Baptista RC, Horita CN, Sant’Ana AS (2020) Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Int Food Res J 127:108762. https://doi.org/10.1016/j.foodres.2019.108762 DOI
Barrios-Roblero C, Rosas-Quijano R, Salvador-Figueroa M, Gálvez-López D, Vázquez-Ovando A (2019) Antifungal lactic acid bacteria isolated from fermented beverages with activity against Colletotrichum gloeosporioides. Food Biosci 29:47–54. https://doi.org/10.1016/j.fbio.2019.03.008 DOI
Bazireh H, Shariati P, Azimzadeh Jamalkandi S, Ahmadi A, Boroumand MA (2020) Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.597946 DOI
Ben AK, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216. https://doi.org/10.1128/AEM.68.11.5209-5216.2002 DOI
Ben AK, Vaughan EE, De Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. JN or J Nutr 137:741–747. https://doi.org/10.1093/jn/137.3.741s DOI
Bensch G, Rüger M, Wassermann M, Weinholz S, Reichl U, Cordes C (2014) Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Appl Microbiol Biotechnol 98:4897–4909. https://doi.org/10.1007/s00253-014-5592-z PubMed DOI
Bertani G, Savo Sardaro ML, Neviani E, Lazzi C (2019) AFLP protocol comparison for microbial diversity fingerprinting. J Appl Genet 60:217–223. https://doi.org/10.1007/s13353-019-00492-0 PubMed DOI
Bohn J, Yüksel-Dadak A, Dröge S, König H (2017) Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 244:4–15. https://doi.org/10.1016/j.jbiotec.2016.12.015 PubMed DOI
Bojanic Rasovic M, Mayrhofer S, Ochome MAA, Ajanovic E, Zunabovic M, Martinovic A, Domig KJ (2018) Diversity of lactic acid bacteria isolated from traditional Montenegrin dairy products. Genetika 50:465–482. https://doi.org/10.2298/GENSR1802465B DOI
Bokulich NA, Mills DA (2012) Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol 31:126–132. https://doi.org/10.1016/j.fm.2012.02.007 PubMed DOI
Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees - Struct Funct 26:215–226. https://doi.org/10.1007/s00468-011-0626-y DOI
Bottari B, Agrimonti C, Gatti M, Neviani E, Marmiroli N (2013) Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int J Food Microbiol 160:290–297. https://doi.org/10.1016/j.ijfoodmicro.2012.10.011 PubMed DOI
Bove CG, Lazzi C, Bernini V, Bottari B, Neviani E, Gatti M (2011) cDNA-amplified fragment length polymorphism to study the transcriptional. J Appl Microbiol 111:855–864 PubMed DOI
Busconi M, Reggi S, Fogher C (2008) Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts. Anton Leeuw Int J G 94:145–155. https://doi.org/10.1007/s10482-008-9220-8 DOI
Cai W, Tang F, Zhao X, Guo Z, Zhang Z, Dong Y, Shan C (2019) Different lactic acid bacteria strains affecting the flavor profile of fermented jujube juice. J Food Process Preserv 43:1–14. https://doi.org/10.1111/jfpp.14095 DOI
Çakır E, Arıcı M, Durak MZ (2020) Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 130:450–456. https://doi.org/10.1016/j.jbiosc.2020.05.002 PubMed DOI
Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40:170–179. https://doi.org/10.1007/s12033-008-9073-4 PubMed DOI
Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D (2020) Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins. Front Microbiol 10:2909. https://doi.org/10.3389/fmicb.2019.02909 PubMed DOI PMC
Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo G (2017) Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 5:38. https://doi.org/10.3390/microorganisms5030038 PubMed DOI PMC
Ceapa C, Lambert J, van Limpt K, Wels M, Smokvina T, Knol J, Kleerebezem M (2015) Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Appl Environ Microbiol 81:5458–5470. https://doi.org/10.1128/AEM.00851-15 PubMed DOI PMC
Chen C, Cao Z, Li J, Tao C, Feng Y, Han Y (2020) A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol Control 148:104306. https://doi.org/10.1016/j.biocontrol.2020.104306 DOI
Chen J (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Bangkok, pp 1-11
Chen YS, Yanagida F, Shinohara I (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200. https://doi.org/10.1111/j.1472-765X.2005.01653.x PubMed DOI
Cho KM, Math RK, Islam SMA, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882–1889. https://doi.org/10.1021/jf803649z PubMed DOI
Cóndor-Golec AF, Pérez PG, Lokare C (2007) Effective microorganisms: myth or reality? Rev Peru Biol 14:315–319. https://doi.org/10.15381/rpb.v14i2.1837 DOI
Dar A, Zahir ZA, Iqbal M, Mehmood A, Javed A, Hussain A, Bushra AM (2021) Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environ Monit Assess 193:1–15. https://doi.org/10.1007/s10661-021-09286-6 DOI
Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174:92–105. https://doi.org/10.1111/aab.12476 PubMed DOI
Dayana M, Taha M, Fahrulazri M, Jaini M, Saidi NB, Rahim RA, Kalsom U, Shah M, Mohd A, Id H (2019) Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE 14:e0224431. https://doi.org/10.1371/journal.pone.0224431 DOI
de Melo PGV, Beux M, Pagnoncelli MGB, Soccol VT, Rodrigues C, Soccol CR (2016) Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Lett Appl Microbiol 62:96–101. https://doi.org/10.1111/lam.12520 DOI
De Simone N, Capozzi V, de Chiara MLV, Amodio ML, Brahimi S, Colelli G, Drider D, Spano G, Russo P (2021) Screening of lactic acid bacteria for the bio-control of botrytis cinerea and the potential of lactiplantibacillus plantarum for eco-friendly preservation of fresh-cut kiwifruit. Microorganisms 9:773. https://doi.org/10.3390/microorganisms9040773 PubMed DOI PMC
Dean WR, Scott HM (2005) Antagonistic synergy: process and paradox in the development of new agricultural antimicrobial regulations. Agric Human Values 22:479–489. https://doi.org/10.1007/s10460-005-3403-y DOI
Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, Gobbetti M (2010) Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol 27:381–389. https://doi.org/10.1016/j.fm.2009.11.012 PubMed DOI
Díaz M, Herrero M, García LA, Quirós C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48:385–407. https://doi.org/10.1016/j.bej.2009.07.013 DOI
Duthoit F, Godon JJ, Montel MC (2003) Bacterial community dynamics during production of registered designation of origin salers cheese as evaluated by 16S rRNA gene single-strand conformation polymorphism analysis. Appl Environ Microbiol 69:3840–3848. https://doi.org/10.1128/AEM.69.7.3840-3848.2003 PubMed DOI PMC
Duthoit F, Callon C, Tessier L, Montel MC (2005) Relationships between sensorial characteristics and microbial dynamics in “Registered Designation of Origin” Salers cheese. Int J Food Microbiol 103:259–270. https://doi.org/10.1016/j.ijfoodmicro.2004.11.040 PubMed DOI
Dziuba B, Nalepa B (2012) Identification of lactic acid bacteria and propionic acid bacteria using FTIR spectroscopy and artificial neural networks. Food Technol Biotechnol 50:399–405
Dziuba B, Babuchowski A, Nałecz D, Niklewicz M (2007) Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. Int Dairy J 17:183–189. https://doi.org/10.1016/j.idairyj.2006.02.013 DOI
Endo A, Futagawa-Endo Y, Dicks LMT (2011a) Influence of carbohydrates on the isolation of lactic acid bacteria. J Appl Microbiol 110:1085–1092. https://doi.org/10.1111/j.1365-2672.2011.04966.x PubMed DOI
Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LMT (2011b) Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 61:898–902. https://doi.org/10.1099/ijs.0.023838-0 PubMed DOI
Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M, Dicks L, Salminen S (2018) Fructophilic lactic acid bacteria, a unique group of fructose- fermenting microbes. Appl Environ Microbiol 84:1–14 DOI
Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314. https://doi.org/10.1016/j.mimet.2003.11.006 PubMed DOI
Fagbemigun O, Cho GS, Rösch N, Brinks E, Schrader K, Bockelmann W, Oguntoyinbo FA, Franz CMAP (2021) Isolation and characterization of potential starter cultures from the Nigerian fermented milk product nono. Microorganisms 9:1–20. https://doi.org/10.3390/microorganisms9030640 DOI
Fan X, Li X, Zhang T, Xu J, Shi Z, Wu Z, Wu J, Pan D, Du L (2021) A novel qpcr method for the detection of lactic acid bacteria in fermented milk. Foods 10:3066. https://doi.org/10.3390/foods10123066 PubMed DOI PMC
Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. https://doi.org/10.1016/j.soilbio.2004.10.021 DOI
Feucht A, Kwak HS (2013) Microencapsulation of lactic acid bacteria (LAB). Korean J Food Sci Anim Resour 33:229–238. https://doi.org/10.5851/kosfa.2013.33.2.229 DOI
Fguiri I, Atigui M, Ziadi M, Arroum S, Khorchani T (2015) Biochemical and molecular identification of lactic acid bacteria isolated from camel milk in Tunisia. Emir J Food Agric 27:716–720. https://doi.org/10.9755/ejfa.2015.04.114 DOI
Filannino P, Di Cagno R, Gobbetti M (2018) Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol 49:64–72. https://doi.org/10.1016/j.copbio.2017.07.016 PubMed DOI
Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220. https://doi.org/10.1016/j.mib.2004.04.015 PubMed DOI
Friedrich U, Lenke J (2006) Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fleorescence in situ hybridization. Appl Environ Microbiol 72:4163–4171. https://doi.org/10.1128/AEM.02283-05 PubMed DOI PMC
Gajbhiye M, Prakash D, Jagdale S, Ahiwale S, Patil N, Kapadnis B (2012) Pomegranate borne fungicidal lactic acid bacteria and their biodiversity. Proceedings of the National Academy of Sciences India Section B Biol Sci 82:413–419. https://doi.org/10.1007/s40011-012-0055-8 DOI
Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Sci Technol 26:1451–1470. https://doi.org/10.1080/09583157.2016.1213793 DOI
Galanis A, Kourkoutas Y, Tassou CC, Chorianopoulos N (2015) Detection and identification of probiotic Lactobacillus plantarum strains by multiplex PCR using RAPD-derived primers. Int J Mol Sci 16:25141–25153. https://doi.org/10.3390/ijms161025141 PubMed DOI PMC
Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M (2018) Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors 11:1–13. https://doi.org/10.1186/s13071-018-2859-8 DOI
Gänzle MG (2015) Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2:106–117. https://doi.org/10.1016/j.cofs.2015.03.001 DOI
Gao Z, Daliri EBM, Wang JUN, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot 82:441–453. https://doi.org/10.4315/0362-028X.JFP-18-303 PubMed DOI
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10:1–21. https://doi.org/10.1080/19490976.2018.1455790 PubMed DOI
Garofalo C, Osimani A, Milanović V, Aquilanti L, De Filippis F, Stellato G, Di Mauro S, Turchetti B, Buzzini P, Ercolini D, Clementi F (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133. https://doi.org/10.1016/j.fm.2015.01.017 PubMed DOI
Garzón K, Ortega C, Tenea GN (2017) Characterization of bacteriocin-producing lactic acid bacteria isolated from native fruits of ecuadorian Amazon. Pol J Microbiol 66:473–481. https://doi.org/10.5604/01.3001.0010.7037 PubMed DOI
George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-Junelles AM, Borges F, Foligné B (2018) Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: a multifaceted functional health perspective. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.02899 DOI
Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36. https://doi.org/10.1016/S0378-1097(01)00439-6 PubMed DOI
Ghosh R, Barman S, Mukhopadhyay A, Mandal NC (2015) Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biol Control 83:29–36. https://doi.org/10.1016/j.biocontrol.2014.12.020 DOI
Gomaa EZ, Abdelall MF, El-Mahdy OM (2018) Detoxification of aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei. Isolated from Dairy Products Probiotics Antimicrob 10:201–209. https://doi.org/10.1007/s12602-017-9350-2 DOI
Gómez NC, Ramiro JMP, Quecan BXV, de Melo Franco BDG (2016) Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Front Microbiol 7:1–15. https://doi.org/10.3389/fmicb.2016.00863 DOI
Gonçalves BL, Muaz K, Coppa CFSC, Rosim RE, Kamimura ES, Oliveira CAF, Corassin CH (2020) Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Int Food Res J 136:109604. https://doi.org/10.1016/j.foodres.2020.109604 DOI
González-Arenzana L, López R, Santamaría P, López-Alfaro I (2013) Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods. Appl Microbiol Biotechnol 97:6931–6941. https://doi.org/10.1007/s00253-013-4974-y PubMed DOI
Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575. https://doi.org/10.1016/j.soilbio.2007.05.011 DOI
Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 76:298–304. https://doi.org/10.1016/j.colsurfb.2009.11.008 DOI
Guerrieri E, de Niederhäusern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M (2009) Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control 20:861–865. https://doi.org/10.1016/j.foodcont.2008.11.001 DOI
Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35. https://doi.org/10.1016/j.ijfoodmicro.2006.10.040 PubMed DOI
Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center Atami
Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WOC (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5:e8578. https://doi.org/10.1371/journal.pone.0008578 PubMed DOI PMC
Hong Y, Yang HS, Li J, Han SK, Chang HC, Kim HY (2014) Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. J Sci Food Agric 94:296–300. https://doi.org/10.1002/jsfa.6257 PubMed DOI
Hong SW, Choi YJ, Lee HW, Yang JH, Lee MA (2016) Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. J Microbiol Biotechnol 26:1057–1062. https://doi.org/10.4014/jmb.1512.12035 PubMed DOI
How YH, Foo WL, Yap WS, Pui LP (2021) Isolation and characterization of lactic acid bacteria from sugarcane waste. Malays J Microbiol 9:166–175. https://doi.org/10.1017/CBO9781107415324.004 DOI
Hurtado A, Reguant C, Bordons A, Rozès N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol 31:1–8. https://doi.org/10.1016/j.fm.2012.01.006 PubMed DOI
Hwanhlem N, Buradaleng S, Wattanachant S, Benjakul S, Tani A, Maneerat S (2011) Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control 22:401–407. https://doi.org/10.1016/j.foodcont.2010.09.010 DOI
ILabaca C, Jara C, Romero J, (2014) The rapid identification of lactic acid bacteria present in Chilean winemaking processes using culture-independent analysis. Ann Microbiol 64:1857–1859. https://doi.org/10.1007/s13213-014-0810-6 PubMed DOI
Ilha EC, Scariot MC, Treml D, Pereira TP, Sant′Anna ES, Prudêncio ES, Arisi ACM (2016) Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Ann Microbiol 66:597–606. https://doi.org/10.1007/s13213-015-1137-7 DOI
Jara S, Sánchez M, Vera R, Cofré J, Castro E (2011) The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe 17:474–477. https://doi.org/10.1016/j.anaerobe.2011.07.008 PubMed DOI
Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica. https://doi.org/10.1155/2016/1598325 PubMed DOI PMC
Jin H, Jeong Y, Yoo SH, Johnston TV, Ku S, Ji GE (2019) Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces. Microb Cell Factories 18:1–13. https://doi.org/10.1186/s12934-019-1158-1 DOI
Kaliyappan K, Palanisamy M, Govindarajan R, Duraiyan J (2012) Microarray and its applications. J Pharm Bioallied Sci 4:310. https://doi.org/10.4103/0975-7406.100283 DOI
Kanauchi M (2019). Lactic Acid Bacteria Methods and Protocols. https://doi.org/10.1007/978-1-4939-8907-2 DOI
Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151. https://doi.org/10.3389/fpls.2015.00151 PubMed DOI PMC
Kántor A, Kačániová M, Petrová J, Medo J, Hleba L, Rovná K, Attila M (2014) Identification of lactic acid bacteria isolated from red wine samples by RT-qPCR. J Microbiol Biotechnol Food Sci 3:235–237
Karakas-Sen A, Karakas E (2018) Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. J Biosci 34:985–999. https://doi.org/10.14393/bj-v34n2a2018-34517 DOI
Karthika S, Varghese S, Jisha MS (2020) Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. Biotech 10:1–17. https://doi.org/10.1007/s13205-020-02306-1 DOI
Karyawati AT, Nuraida L, Lestari Y, Meryandini A (2020) Isolation and identification of lactic acid bacteria in hive of Apis dorsata from semi-arid tropical climate in Benu village, East Nusa Tenggara. IOP Conf Ser Earth Environ Sci 457. https://doi.org/10.1088/1755-1315/457/1/012024 DOI
Kaur J, Lee S, Sharma A, Park YS (2017) DNA profiling of Leuconostoc mesenteroides strains isolated from fermented foods and farm produce in Korea by repetitive-element PCR. Food Sci Biotechnol 26:1667–1673. https://doi.org/10.1007/s10068-017-0189-9 PubMed DOI PMC
Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY (2021) Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol 94:103641. https://doi.org/10.1016/j.fm.2020.103641 PubMed DOI
Kivanç M, Yilmaz M, Çakir E (2011) Isolation and identification of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turk J Biol 35:313–324. https://doi.org/10.3906/biy-0906-67 DOI
Konig H, Unden G, Frohlich J (2017) Biology of microorganisms on grapes, in must and in wine. DOI. https://doi.org/10.1007/978-3-319-60021-5 DOI
Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597. https://doi.org/10.1016/j.fm.2009.04.001 PubMed DOI
Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 102:1599–1615. https://doi.org/10.1007/s00253-018-8743-9 PubMed DOI
Lähteinen T, Malinen E, Koort JMK, Mertaniemi-Hannus U, Hankimo T, Karikoski N, Pakkanen S, Laine H, Sillanpää H, Söderholm H, Palva A (2010) Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 16:293–300. https://doi.org/10.1016/j.anaerobe.2009.08.002 PubMed DOI
Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL (2017) From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem 111:1–9. https://doi.org/10.1016/j.soilbio.2017.03.015 DOI
Lazzi C, Bove CG, Sgarbi E, Monica G, La Gioia F, Sandra T, Neviani E (2009) Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. J Microbiol Methods 79:48–54. https://doi.org/10.1016/j.mimet.2009.07.021 PubMed DOI
Lazzi C, Povolo M, Locci F, Bernini V, Neviani E, Gatti M (2016) Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano. Int J Food Microbiol 233:20–28. https://doi.org/10.1016/j.ijfoodmicro.2016.06.009 PubMed DOI
Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22:143–149. https://doi.org/10.1016/j.copbio.2010.12.001 PubMed DOI
Lee CM, Sieo CC, Cheah YK, Abdullah N, Ho YW (2012) Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting. J Sci Food Agric 92:660–666. https://doi.org/10.1002/jsfa.4627 PubMed DOI
Lee MH, Lee J, Do NY, Lee JS, Seo MJ, Yi SH (2016) Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. Int J Food Microbiol 221:12–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.010 PubMed DOI
León Peláez AM, Serna Cataño CA, Quintero Yepes EA, Gamba Villarroel RR, De Antoni GL, Giannuzzi L (2012) Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 24:177–183. https://doi.org/10.1016/j.foodcont.2011.09.024 DOI
Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916. https://doi.org/10.1111/j.1574-6976.2009.00182.x PubMed DOI
Li Y, Zheng X-W, Chen JY, Liang JF, Yu SZ, Han BZ (2015) Lactic acid bacteria diversity of fresh rice noodles during the fermentation process, revealed by culture-dependent and culture-independent methods. Biotechnol Biotechnol Equip 29:915–920. https://doi.org/10.1080/13102818.2015.1051494 DOI
Limanska N, Ivanytsia T, Basiul O, Krylova K, Biscola V, Chobert JM, Ivanytsia V, Haertlé T (2013) Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiol Plant 35:1587–1595. https://doi.org/10.1007/s11738-012-1200-y DOI
Lin D, Cao H, Zhong Y, Huang Y, Zou J, He Q, Ji R, Qin T, Chen Y, Wang D, Wu Z, Qin W, Wu D, Chen H, Zhang Q (2019a) Screening and identification of lactic acid bacteria from Ya’an pickle water to effectively remove Pb 2+. AMB Express 9:1–11. https://doi.org/10.1186/s13568-018-0724-y DOI
Lin D, Ji R, Wang D, Xiao M, Zhao J, Zou J, Li Y, Qin T, Xing B, Chen Y, Liu P, Wu Z, Wang L, Zhang Q, Chen H, Qin W, Wu D, Liu Y, Liu Y, Li S (2019b) The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): a review. Crit Rev Food Sci Nutr 59:395–410. https://doi.org/10.1080/10408398.2017.1374241 PubMed DOI
Lin YC, Chung KR, Huang JW (2020) A synergistic effect of chitosan and lactic acid bacteria on the control of cruciferous vegetable diseases. Plant Pathol J 36:157–169. https://doi.org/10.5423/PPJ.OA.01.2020.0004 PubMed DOI PMC
Linares-Morales JR, Cuellar-Nevárez GE, Rivera-Chavira BE, Gutiérrez-Méndez N, Pérez-Vega SB, Nevárez-Moorillón GV (2020) Selection of lactic acid bacteria isolated from fresh fruits and vegetables based on their antimicrobial and enzymatic activities. Foods 9:1399. https://doi.org/10.3390/foods9101399 PubMed DOI PMC
Liu R, Kim AH, Kwak MK, Kang SO (2017) Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-Ko6 have activities against multidrug-resistant bacteria. Front Microbiol 8:1–15. https://doi.org/10.3389/fmicb.2017.00761 DOI
Liu Z, Li J, Wei B, Huang T, Xiao Y, Peng Z, Xie M, Xiong T (2019) Bacterial community and composition in Jiang-shui and Suan-cai revealed by high-throughput sequencing of 16S rRNA. Int J Food Microbiol 306:108271. https://doi.org/10.1016/j.ijfoodmicro.2019.108271 PubMed DOI
Londoño-Zapata AF, Durango-Zuleta MM, Sepúlveda-Valencia JU, Moreno Herrera CX (2017) Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: double cream cheese. LWT - Food Sci Technol 82:39–48. https://doi.org/10.1016/j.lwt.2017.03.058 DOI
Ma J, Hong Y, Deng L, Yi L, Zeng K (2019) Screening and characterization of lactic acid bacteria with antifungal activity against Penicillium digitatum on citrus. Biol Control 138:104044. https://doi.org/10.1016/j.biocontrol.2019.104044 DOI
Machado A, Almeida C, Carvalho A, Boyen F, Haesebrouck F, Rodrigues L, Cerca N, Azevedo NF (2013) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 162:64–70. https://doi.org/10.1016/j.ijfoodmicro.2012.09.024 PubMed DOI
Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380. https://doi.org/10.1039/c1np00021g PubMed DOI
Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736. https://doi.org/10.1038/nrmicro3093.MLST PubMed DOI PMC
Maleki Kakelar H, Barzegari A, Hanifian S, Barar J, Omidi Y (2019) Isolation and molecular identification of Lactobacillus with probiotic potential from abomasums driven rennet. Food Chem 272:709–714. https://doi.org/10.1016/j.foodchem.2018.08.081 PubMed DOI
Malusá E, Sas-Paszt L (2012) Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. https://doi.org/10.1100/2012/491206 DOI
Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721. https://doi.org/10.1016/j.foodres.2011.04.043 DOI
Mari M, Bertolini P, Pratella GC (2003) Non-conventional methods for the control of post-harvest pear diseases. J Appl Microbiol 94:761–766. https://doi.org/10.1046/j.1365-2672.2003.01920.x PubMed DOI
Matevosyan LA, Bazukyan IL, Trchounian AH (2020) Antifungal activity of lactic acid bacteria isolates and their associations: the effects of Ca and Mg divalent cations. Curr Microbiol 77:959–966. https://doi.org/10.1007/s00284-020-01897-5 PubMed DOI
McAuliffe O (2018) Symposium review: Lactococcus lactis from nondairy sources: their genetic and metabolic diversity and potential applications in cheese. J Dairy Sci 101:3597–3610. https://doi.org/10.3168/jds.2017-13331 PubMed DOI
Meneghel J, Passot S, Jamme F, Lefrançois S, Lieben P, Dumas P, Fonseca F (2020) FTIR micro-spectroscopy using synchrotron-based and thermal source-based radiation for probing live bacteria. Anal Bioanal Chem 412:7049–7061. https://doi.org/10.1007/s00216-020-02835-x PubMed DOI
Merabti R, Bekhouche F, Chuat V, Madec MN, Maillard MB, Bailly S, Thierry A, Valence F (2015) A large diversity of lactic acid bacteria species is involved in the fermentation of wheat used for the manufacture of lemzeiet. Eur Food Res Technol 241:137–149. https://doi.org/10.1007/s00217-015-2442-x DOI
Miescher Schwenninger S, Freimüller Leischtfeld S, Gantenbein-Demarchi C (2016) High-throughput identification of the microbial biodiversity of cocoa bean fermentation by MALDI-TOF MS. Lett Appl Microbiol 63:347–355. https://doi.org/10.1111/lam.12621 PubMed DOI
Moe NKT, Thwe SM, Shirai T, Terahara T, Imada C, Kobayashi T (2015) Characterization of lactic acid bacteria distributed in small fish fermented with boiled rice in Myanmar. Fish Sci 81:373–381. https://doi.org/10.1007/s12562-014-0843-6 DOI
Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255 PubMed DOI PMC
Moldes AB, Torrado AM, Barral MT, Domínguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486. https://doi.org/10.1021/jf063075g PubMed DOI
Nacef M, CHevalier M, Chollet S, Drider D, Flahaut C (2017) MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int J Food Microbiol 247:2–8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005 PubMed DOI
Nagarajan K, Loh KC (2014) Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 98:6907–6919. https://doi.org/10.1007/s00253-014-5870-9 PubMed DOI
Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK (2019) Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agric Biotechnol 21:101326. https://doi.org/10.1016/j.bcab.2019.101326 DOI
Naik K, Mishra S, Srichandan H, Singh PK, Choudhary A (2020) Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustain Environ Res 30:1–18. https://doi.org/10.1186/s42834-020-00051-x DOI
Nami Y, Haghshenas B, Khosroushahi AY (2018) Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from human vaginal microbiota. Adv. Pharm. Bull. 8(1):683–695. https://doi.org/10.15171/apb.2018.077 PubMed DOI PMC
Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177. https://doi.org/10.1038/sj.jim.7000090 PubMed DOI
Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022. https://doi.org/10.1002/jobm.201800309 PubMed DOI
Ncube L (2008) Evaluation of effective micro-organisms (EM) on soil chemical properties and yield of selected vegetables in the Eastern Cape, South Africa. Thesis, University of Fort Hare, MSc, p 175
Ngoi ST, Ju Teh CS, Chai LC, Thong KL (2015) Overview of molecular typing tools for the characterization of Salmonella enterica in Malaysia. Biomed Environ Sci 28:751–764. https://doi.org/10.3967/bes2015.105 PubMed DOI
Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Binh Thanh L, Vandamme P (2013) A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol 163:19–27. https://doi.org/10.1016/j.ijfoodmicro.2013.01.024 PubMed DOI
Olle M, Williams IH (2013) Effective microorganisms and their influence on vegetable production - a review. J Hortic Sci Biotechnol 88:380–386. https://doi.org/10.1080/14620316.2013.11512979 DOI
Olszewska MA, Kocot AM, Nynca A, Łaniewska-Trokenheim Ł (2016) Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge. Microbiol Res 192:239–246. https://doi.org/10.1016/j.micres.2016.07.011 PubMed DOI
Orlova TN, Dorofeev RV, Irkitova AN, Funk IA, Grebenshchikova AV (2019) Biological features of lactic acid bacteria in distinct ecological niches. Ukr J Ecol 9:384–388. https://doi.org/10.15421/2019_112 DOI
Öz E, Kaban G, Barış Ö, Kaya M (2017) Isolation and identification of lactic acid bacteria from pastırma. Food Control 77:158–162. https://doi.org/10.1016/j.foodcont.2017.02.017 DOI
Öztürk M, Meterelliyöz M (2015) Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use. Mol Biol Rep 42:1323–1332. https://doi.org/10.1007/s11033-015-3877-7 PubMed DOI
Ozturk G, Young GM (2017) Food evolution: the impact of society and science on the fermentation of cocoa beans. Compr Rev Food Sci Food Saf 16:431–455. https://doi.org/10.1111/1541-4337.12264 PubMed DOI
Pal P (2015) RAPD-PCR as a molecular discriminative technique for human pathogenic bacteria – a review. Int Lett Nat Sci 42:13–17. https://doi.org/10.18052/www.scipress.com/ilns.42.13 DOI
Palla M, Cristani C, Giovannetti M, Agnolucci M (2017) Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. Int J Food Microbiol 250:19–26. https://doi.org/10.1016/j.ijfoodmicro.2017.03.015 PubMed DOI
Parente E, Guidone A, Matera A, De Filippis F, Mauriello G, Ricciardi A (2016) Microbial community dynamics in thermophilic undefined milk starter cultures. Int J Food Microbiol 217:59–67. https://doi.org/10.1016/j.ijfoodmicro.2015.10.014 PubMed DOI
Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A (2007) The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89:500–507. https://doi.org/10.1016/j.biochi.2006.12.005 PubMed DOI
Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 3:37–58. https://doi.org/10.1146/annurev-food-022811-101255 PubMed DOI
Pega J, Rizzo S, Pérez CD, Rossetti L, Díaz G, Ruzal SM, Nanni M, Descalzo AM (2016) Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR. Int J Food Microbiol 232:117–125. https://doi.org/10.1016/j.ijfoodmicro.2016.06.003 PubMed DOI
Pellegrini M, Pagnani G, Bernardi M, Mattedi A, Spera DM, Del Gallo M (2020) Cell-free supernatants of plant growth-promoting bacteria: a review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability (switzerland) 12:1–22. https://doi.org/10.3390/su12239917 DOI
Perin LM, Savo Sardaro ML, Nero LA, Neviani E, Gatti M (2017) Bacterial ecology of artisanal Minas cheeses assessed by culture-dependent and -independent methods. Food Microbiol 65:160–169. https://doi.org/10.1016/j.fm.2017.02.005 PubMed DOI
Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54. https://doi.org/10.1016/j.fm.2012.08.011 PubMed DOI
Peyer LC, Axel C, Lynch KM, Zannini E, Jacob F, Arendt EK (2016) Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control 69:227–236. https://doi.org/10.1016/j.foodcont.2016.05.010 DOI
Pogačić T, Kelava N, Zamberlin Š, Dolenčić-Špehar I, Samaržija D (2010) Methods for culture-independent identification of lactic acid bacteria in dairy products. Food Technol Biotechnol 48:3–10
Pogačić T, Mancini A, Santarelli M, Bottari B, Lazzi C, Neviani E, Gatti M (2013) Diversity and dynamic of lactic acid bacteria strains during aging of along ripened hard cheese produced from raw milk and undefined natural starter. Food Microbiol 36:207–215. https://doi.org/10.1016/j.fm.2013.05.009 PubMed DOI
Poh Wah Goh L, Marshall Molujin A, Muthu K, Abdulla R, Khalizan Sabullah M, Azifa Mohd Faik A, Azlan Gansau J, Jawan R, Wah Goh P (2021) Isolation and characterization of lactic acid bacteria from Sabah (North Borneo) stingless bees for probiotic and food applications. Int J Food Prop 24:564–578. https://doi.org/10.1080/10942912.2021.1900238 DOI
Prakash O, Pandey PK, Kulkarni GJ, Mahale KN, Shouche YS (2014) Technicalities and glitches of terminal restriction fragment length polymorphism (T-RFLP). Indian J Microbiol 54:255–261. https://doi.org/10.1007/s12088-014-0461-0 PubMed DOI PMC
Quattrini M, Bernardi C, Stuknytė M, Masotti F, Passera A, Ricci G, Vallone L, De Noni I, Brasca M, Fortina MG (2018) Functional characterization of Lactobacillus plantarum ITEM 17215: a potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Res Int 106:936–944. https://doi.org/10.1016/j.foodres.2018.01.074 PubMed DOI
Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion process: employing potential of enhanced reaction rates. Microb Cell Factories 4:1–21. https://doi.org/10.1186/1475-2859-4-24 DOI
Ranjbar R, Karami A, Farshad S, Giammanco GM (2014) Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol 37:1–15 PubMed
Reale A, Di Renzo T, Boscaino F, Nazzaro F, Fratianni F, Aponte M (2019) Lactic acid bacteria biota and aroma profile of italian traditional sourdoughs from the irpinian area in Italy. Front Microbiol 10:1621. https://doi.org/10.3389/fmicb.2019.01621 PubMed DOI PMC
Renouf V, Claisse O, Miot-Sertier C, Lonvaud-Funel A (2006) Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol 23:136–145. https://doi.org/10.1016/j.fm.2005.01.019 PubMed DOI
Rezaei Z, Khanzadi S, Salari A (2021) Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express 11:1–7. https://doi.org/10.1186/s13568-021-01320-7 DOI
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS (2017) Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA†. EFSA J 15:e04664. https://doi.org/10.2903/j.efsa.2017.4664 PubMed DOI PMC
Riseh RS, Skorik YA, Thakur VK, Pour MM, Tamanadar E, Noghabi SS (2021) Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci 22:11165. https://doi.org/10.3390/ijms222011165 DOI
Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. https://doi.org/10.1093/jac/dkl024 PubMed DOI
Roselló-Soto E, Barba-Orellana S, Barba FJ, Quilez F, Roohinejad S, Koubaa M (2018) New trends in molecular techniques to identify Microorganisms in dairy products. Mol Nutr Food Res 309–322. https://doi.org/10.1002/9781119374633.ch13 DOI
Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F (2019) Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. Front Microbiol 10:1091. https://doi.org/10.3389/fmicb.2019.01091 PubMed DOI PMC
Russo R, Valletta M, Rega C, Marasco R, Muscariello L, Pedone PV, Sacco M, Chambery A (2019) Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 285:111–118. https://doi.org/10.1016/j.foodchem.2019.01.127 PubMed DOI
Sánchez-Juanes F, Teixeira-Martín V, González-Buitrago J, Velázquez E, Flores-Félix J (2020) Identification of species and subspecies of lactic acid bacteria present in Spanish cheeses type “ Torta ” by MALDI-TOF MS and pheS gene analyses. Microorganisms 8:1–19. https://doi.org/10.3390/microorganisms8020301 DOI
Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, Mone NS, Patil RH, Cameotra SS (2016) Biosurfactant/s from Lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol 56:1140–1158. https://doi.org/10.1002/jobm.201600143 PubMed DOI
Schleifer KH, Ehrmann M, Beimfohr C, Brockmann E, Ludwig W, Amann R (1995) Application of molecular methods for the classification and identification of lactic acid bacteria. Int Dairy J 5:1081–1094. https://doi.org/10.1016/0958-6946(95)00047-X DOI
Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221. https://doi.org/10.1080/10408690490464104 PubMed DOI
Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35. https://doi.org/10.1016/j.btre.2016.05.001 DOI
Sharma A, Kaur J, Lee S, Park YS (2016) RAPD typing of Lactobacillus brevis isolated from various food products from Korea. Food Sci Biotechnol 25:1651–1655. https://doi.org/10.1007/s10068-016-0254-9 PubMed DOI PMC
Sharma A, Kaur J, Lee S, Park YS (2020a) Tracking of intentionally inoculated lactic acid bacteria strains in yogurt and probiotic powder. Microorganisms 8:1–15. https://doi.org/10.3390/microorganisms8010005 DOI
Sharma A, Lee S, Park YS (2020b) Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 29:1301–1318. https://doi.org/10.1007/s10068-020-00802-x PubMed DOI PMC
Shi Z, Li X, Fan X, Xu J, Liu Q, Wu Z, Pan D (2022) PMA-qPCR method for the selective quantitation of viable lactic acid bacteria in fermented milk. Front Microbiol 13:1–11. https://doi.org/10.3389/fmicb.2022.984506 DOI
Shrestha A, Kim BS, Park DH (2014) Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci Technol 24:763–779. https://doi.org/10.1080/09583157.2014.894495 DOI
Siedler S, Balti R, Neves AR (2019) Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 56:138–146. https://doi.org/10.1016/j.copbio.2018.11.015 PubMed DOI
Silva Dias BH, Jung SH, de Castro Oliveira JV, Ryu CM (2021) C4 bacterial volatiles improve plant health. Pathogens 10:1–21. https://doi.org/10.3390/pathogens10060682 DOI
Singh S, Goswami P, Singh R, Heller KJ (2009) Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. Lwt-Food Sci Technol 42:448–457. https://doi.org/10.1016/j.lwt.2008.05.019 DOI
Sirichokchatchawan W, Tanasupawat S, Niyomtham W, Prapasarakul N (2017) Identification and antimicrobial susceptibility of lactic acid bacteria from fecal samples of indigenous and commercial pigs. Thai J Vet Med 47:329–338 DOI
Sofu A, Ekinci FY (2016) Bacterial diversity dynamics of traditional Turkish Ezine Cheese as evaluated by PCR-DGGE and SSCP analysis. Int J Dairy Technol 69:592–600. https://doi.org/10.1111/1471-0307.12311 DOI
Sofu A, Sayilgan E, Guney G (2015) Experimental design for removal of Fe(II) and Zn(II) ions by different lactic acid bacteria biomasses. Int J Environ Res 9:93–100. https://doi.org/10.22059/ijer.2015.878 DOI
Speranza B, Sinigaglia M, Corbo MR (2009) Non starter lactic acid bacteria biofilms: a means to control the growth of Listeria monocytogenes in soft cheese. Food Control 20:1063–1067. https://doi.org/10.1016/j.foodcont.2009.01.006 DOI
Spigaglia P, Mastrantonio P (2003) Evaluation of repetitive element sequence-based PCR as a molecular typing method for Clostridium difficile. J Clin Microbiol 41:2454–2457. https://doi.org/10.1128/JCM.41.6.2454-2457.2003 PubMed DOI PMC
Stefanis C, Mantzourani I, Plessas S, Alexopoulos A, Galanis A, Bezirtzoglou E, Kandylis P, Varzakas T (2016) Reviewing classical and molecular techniques regarding profiling of probiotic character of microorganisms. Curr Res Nutr Food Sci 4:27–47. https://doi.org/10.12944/CRNFSJ.4.1.05 DOI
Stenico V, Michelini S, Modesto M, Baffoni L, Mattarelli P, Biavati B (2014) Identification of Bifidobacterium spp. using hsp60 PCR-RFLP analysis: an update. Anaerobe 26:36–40. https://doi.org/10.1016/j.anaerobe.2013.12.004 PubMed DOI
Strafella S, Simpson DJ, Khanghahi MY, De AM, Gänzle M, Minervini F, Crecchio C (2021) Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms 9:1–18. https://doi.org/10.3390/microorganisms9010078 DOI
Suproniene S, Semaskiene R, Juodeikiene G, Mankeviciene A, Cizeikiene D, Vidmantiene D, Basinskiene L, Sakalauskas S (2015) Seed treatment with lactic acid bacteria against seed-borne pathogens of spring wheat. Biocontrol Sci Technol 25:144–154. https://doi.org/10.1080/09583157.2014.964661 DOI
Syed Yaacob SN, Huyop F, Kamarulzaman Raja Ibrahim R, Wahab RA (2018) Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. J Apic Res 57:395–405. https://doi.org/10.1080/00218839.2018.1428047 DOI
Syed-Ab-Rahman SF, Carvalhais LC, Chua ET, Chung FY, Moyle PM, Eltanahy EG, Schenk PM (2019) Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci Total Environ 692:267–280. https://doi.org/10.1016/j.scitotenv.2019.07.061 PubMed DOI
Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117. https://doi.org/10.1016/j.apsoil.2017.09.030 DOI
Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295. https://doi.org/10.1007/s10725-014-9952-6 DOI
Terzić-Vidojević A, Tonković K, Leboš Pavunc A, Beganović J, Strahinić I, Kojić M, Veljović K, Golić N, Kos B, Čadež N, Gregurek L, Šušković J, Raspor P, Topisirović L (2015) Evaluation of autochthonous lactic acid bacteria as starter cultures for production of white pickled and fresh soft cheeses. Lwt-Food Sci Technol 63:298–306. https://doi.org/10.1016/j.lwt.2015.03.050 DOI
Treguier S, Couderc C, Tormo H, Kleiber D, Levasseur-Garcia C (2019) Identification of lactic acid bacteria Enterococcus and Lactococcus by near-infrared spectroscopy and multivariate classification. J Microbiol Methods 165:105693. https://doi.org/10.1016/j.mimet.2019.105693 PubMed DOI
Tsuda K, Tsuji G, Higashiyama M, Ogiyama H, Umemura K, Mitomi M, Kubo Y, Kosaka Y (2016) Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol Control 100:63–69. https://doi.org/10.1016/j.biocontrol.2016.05.010 DOI
Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11:479–487. https://doi.org/10.1016/j.tim.2003.08.006 PubMed DOI
Valletta M, Campolattano N, De Chiara I, Marasco R, Singh VP, Muscariello L, Pedone PV, Chambery A, Russo R (2023) A robust nanoLC high-resolution mass spectrometry methodology for the comprehensive profiling of lactic acid bacteria in milk kefir. Food Res Int 173:113298. https://doi.org/10.1016/j.foodres.2023.113298 PubMed DOI
Vaneechoutte M (2017) The human vaginal microbial community. Res Microbiol 168:811–825. https://doi.org/10.1016/j.resmic.2017.08.001 PubMed DOI
Vasiee AR, Mortazavi A, Tabatabaei-Yazdi F, Dovom MRE (2018) Detection, identification and phylogenetic analysis of lactic acid bacteria isolated from Tarkhineh, Iranian fermented cereal product, by amplifying the 16s rRNA gene with universal primers and differentiation using rep-PCR. Int Food Res J 25:423–432
Vincent P, Morero R (2009) The structure and biological aspects of peptide antibiotic microcin J25. Curr Med Chem 16:538–549. https://doi.org/10.2174/092986709787458461 PubMed DOI
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. https://doi.org/10.1023/B:COGE.0000014055.95035.cd PubMed DOI PMC
Wang L, Yue T, Yuan Y, Wang Z, Ye M, Cai R (2015) A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 50:104–110. https://doi.org/10.1016/j.foodcont.2014.08.041 DOI
Wang C, Cui Y, Qu X (2018a) Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol 200:195–201. https://doi.org/10.1007/s00203-017-1446-2 PubMed DOI
Wang X, Xiao J, Jia Y, Pan Y, Wang Y (2018b) Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon 4:e00649. https://doi.org/10.1016/j.heliyon.2018.e00649 PubMed DOI PMC
Wang Y, Wei Y, Shang N, Li P (2022) Synergistic inhibition of plantaricin E/F and lactic acid against Aeromonas hydrophila LPL-1 reveals the novel potential of class IIb bacteriocin. Front Microbiol 13:1–16. https://doi.org/10.3389/fmicb.2022.774184 DOI
Watanabe S, Kanauchi M, Kakuta T, Koizumi T (2007) Isolation and characteristics of lactic acid bacteria in Japanese spirit awamori mash. J Am Soc Brew Chem 65:197–201. https://doi.org/10.1094/ASBCJ-2007-0916-01 DOI
Weckx S, Van Der Meulen R, Allemeersch J, Huys G, Vandamme P, Van Hummelen P, De Vuyst L (2010) Community dynamics of bacteria in sourdough fermentations as revealed by their metatranscriptome. Appl Environ Microbiol 76:5402–5408. https://doi.org/10.1128/AEM.00570-10 PubMed DOI PMC
Wiedemann I, Böttiger T, Bonelli RR, Schneider T, Sahl HG, Martínez B (2006) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72:2809–2814. https://doi.org/10.1128/AEM.72.4.2809-2814.2006 PubMed DOI PMC
Wu J, Du R, ping, Gao M, Sui Y qiang, Wang X (2014) Identification and characterization of lactic acid bacteria isolated from tomato pomace. Ann Microbiol 64:1849–1855. https://doi.org/10.1007/s13213-013-0798-3 DOI
Wu C, Huang J, Zhou R (2017) Genomics of lactic acid bacteria: current status and potential applications. Crit Rev Microbiol 43:393–404. https://doi.org/10.1080/1040841X.2016.1179623 PubMed DOI
Yadav S, Maitra SS, Pal S, Singh N, Gupta SK, Ghosh SK, Sreekishnan TR (2014) Accumulation of lactic acid during biodigestion of municipal solid waste leachate and identification of indigenous lactic acid bacteria in leachate. J Hazard Toxic Radioact Waste 18:04014021. https://doi.org/10.1061/(asce)hz.2153-5515.0000218 DOI
Yanagida F, Chen YS, Yasaki M (2007) Isolation and characterization of lactic acid bacteria from lakes. J Basic Microbiol 47:184–190. https://doi.org/10.1002/jobm.200610237 PubMed DOI
Yu D, Shi K, Wen X, Xie F, Wang T, Liu S, He L (2018) Evidence of the genetic diversity and clonal population structure of Oenococcus oeni strains isolated from different wine-making regions of China. J Microbiol 56:556–564. https://doi.org/10.1007/s12275-018-7568-7 PubMed DOI
Yu AO, Leveau JHJ, Marco ML (2020) Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ Microbiol Rep 12:16–29. https://doi.org/10.1111/1758-2229.12794 PubMed DOI
Zhang Y, Li Y (2013) Engineering the antioxidative properties of lactic acid bacteria for improving its robustness. Curr Opin Biotechnol 24:142–147. https://doi.org/10.1016/j.copbio.2012.08.013 PubMed DOI
Zhao YW, Wu ZF, Shen XQ, Weng PF, Chen JJ (2014) Bacteria community analysis by quantitative real-time pcr of fermenting wax gourd and its changes of organic acids. J Food Process Preserv 38:1653–1659. https://doi.org/10.1111/jfpp.12127 DOI
Zhao X, Wang Y, Cai W, Yang M, Zhong X, Guo Z, Shan C (2020) High-throughput sequencing-based analysis of microbial diversity in rice wine koji from different areas. Curr Microbiol 77:882–889. https://doi.org/10.1007/s00284-020-01877-9 PubMed DOI
Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, Noskova S (2020) Overview of global trends in classification, methods of preparation and application of bacteriocins. J Antibiot 9:1–21. https://doi.org/10.3390/antibiotics9090553 DOI