Spatial arrangements of cyclodextrin host-guest complexes in solution studied by 13C NMR and molecular modelling
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38410781
PubMed Central
PMC10896224
DOI
10.3762/bjoc.20.33
Knihovny.cz E-zdroje
- Klíčová slova
- 13C NMR, anisotropy, cyclodextrin, host–guest complexes,
- Publikační typ
- časopisecké články MeSH
13C NMR spectroscopic analyses of Cs symmetric guest molecules in the cyclodextrin host cavity, combined with molecular modelling and solid-state X-ray analysis, provides a detailed description of the spatial arrangement of cyclodextrin host-guest complexes in solution. The chiral cavity of the cyclodextrin molecule creates an anisotropic environment for the guest molecule resulting in a splitting of its prochiral carbon signals in 13C NMR spectra. This signal split can be correlated to the distance of the guest atoms from the wall of the host cavity and to the spatial separation of binding sites preferred by pairs of prochiral carbon atoms. These measurements complement traditional solid-state analyses, which rely on the crystallization of host-guest complexes and their crystallographic analysis.
Zobrazit více v PubMed
Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Challa R, Ahuja A, Ali J, Khar R K. AAPS PharmSciTech. 2005;6:E329–E357. doi: 10.1208/pt060243. PubMed DOI PMC
Zhang J, Ma P X. Adv Drug Delivery Rev. 2013;65:1215–1233. doi: 10.1016/j.addr.2013.05.001. PubMed DOI PMC
Wankar J, Kotla N G, Gera S, Rasala S, Pandit A, Rochev Y A. Adv Funct Mater. 2020;30:1909049. doi: 10.1002/adfm.201909049. DOI
Szente L, Szemán J. Anal Chem (Washington, DC, U S) 2013;85(17):8024–8030. doi: 10.1021/ac400639y. PubMed DOI
Ogoshi T, Harada A. Sensors. 2008;8:4961–4982. doi: 10.3390/s8084961. PubMed DOI PMC
Mako T L, Racicot J M, Levine M. Chem Rev. 2019;119:322–477. doi: 10.1021/acs.chemrev.8b00260. PubMed DOI
Rekharsky M V, Inoue Y. Chem Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI
Mura P. J Pharm Biomed Anal. 2015;113:226–238. doi: 10.1016/j.jpba.2015.01.058. PubMed DOI
Mura P. J Pharm Biomed Anal. 2014;101:238–250. doi: 10.1016/j.jpba.2014.02.022. PubMed DOI
Schneider H-J, Hacket F, Rüdiger V, Ikeda H. Chem Rev. 1998;98(5):1755–1786. doi: 10.1021/cr970019t. PubMed DOI
Fielding L. Tetrahedron. 2000;56:6151–6170. doi: 10.1016/s0040-4020(00)00492-0. DOI
Bouchemal K, Mazzaferro S. Drug Discovery Today. 2012;17:623–629. doi: 10.1016/j.drudis.2012.01.023. PubMed DOI
Lindner K, Saenger W. Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem. 1982;38:203–210. doi: 10.1107/s0567740882002386. DOI
Groom C R, Bruno I J, Lightfoot M P, Ward S C. Acta Crystallogr, Sect B: Struct Sci, Cryst Eng Mater. 2016;72:171–179. doi: 10.1107/s2052520616003954. PubMed DOI PMC
Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N. J Phys Chem B. 2018;122:1608–1626. doi: 10.1021/acs.jpcb.7b11808. PubMed DOI
Schönbeck C. J Phys Chem B. 2018;122:4821–4827. doi: 10.1021/acs.jpcb.8b02579. PubMed DOI
Shundo A, Labuta J, Hill J P, Ishihara S, Ariga K. J Am Chem Soc. 2009;131:9494–9495. doi: 10.1021/ja903371d. PubMed DOI
Labuta J, Ishihara S, Šikorský T, Futera Z, Shundo A, Hanyková L, Burda J V, Ariga K, Hill J P. Nat Commun. 2013;4:2188. doi: 10.1038/ncomms3188. PubMed DOI PMC
Dodziuk H, Koźmiński W, Ejchart A. Chirality. 2004;16(2):90–105. doi: 10.1002/chir.10304. PubMed DOI
Hrdina R, Holovko-Kamoshenkova O M, Císařová I, Koucký F, Machalický O. RSC Adv. 2022;12:31056–31060. doi: 10.1039/d2ra06402b. PubMed DOI PMC
Torres E, Fernández R, Miquet S, Font-Bardia M, Vanderlinden E, Naesens L, Vázquez S. ACS Med Chem Lett. 2012;3:1065–1069. doi: 10.1021/ml300279b. PubMed DOI PMC