Annulated carbamates are precursors for the ring contraction of the adamantane framework
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
36349043
PubMed Central
PMC9620499
DOI
10.1039/d2ra06402b
PII: d2ra06402b
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We report a protocol for the one-pot two-step synthesis of noradamantane methylene amines. The first step is the triflic acid-promoted decarboxylation of adamantane carbamates, which causes rearrangement of the adamantane framework to form noradamantane iminium salts, which are reduced to amines in the second separate step.
University of Pardubice Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
Uzhhorod National University Narodna Ploshcha 3 88000 Uzhhorod Ukraine
See more in PubMed
Torres E. Fernandez R. Miquet S. Font-Bardia M. Vanderlinden E. Naesens L. Vazquez S. ACS Med. Chem. Lett. 2012;3:1065–1069. PubMed PMC
Codony S. Valverde E. Leiva R. Brea J. Loza M. I. Morisseau C. Hammock B. D. Vázquez S. Bioorg. Med. Chem. 2019;27:115078. PubMed PMC
Chan C.-M. Xing Q. Chow Y.-C. Hung S.-F. Yu W.-Y. Org. Lett. 2019;21:8037–8043. PubMed
Li F. Ma C. DeGrado W. F. Wang J. J. Med. Chem. 2016;59:1207–1216. PubMed PMC
Jin S. Haug G. C. Nguyen V. T. Flores-Hansen C. Arman H. D. Larionov O. V. ACS Catal. 2019;9:9764–9774. PubMed PMC
Wang L. Guillen V. S. Sharma N. Flessa K. Min J. Carlson K. E. Toy W. Braqi S. Katzenellenbogen B. S. Katzenellenbogen J. A. Chandarlapaty S. Sharma A. ACS Med. Chem. Lett. 2018;9:803–808. PubMed PMC
Liang Y. Zhang X. MacMillan D. W. C. Nature. 2018;559:83–88. PubMed PMC
Zhu G.-T. Liu F. He S. He X.-M. Zhu S.-K. Feng Y.-Q. RSC Adv. 2018;8:19486–19493. PubMed PMC
Moss R. A. Zheng F. Fedé J.-M. Johnson L. A. Sauers R. R. J. Am. Chem. Soc. 2004;126:12421–12431. PubMed
Takeuchi K. i. Kitagawa I. Akiyama F. Shibata T. Kato M. Okamoto K. Synthesis. 1987:612–615.
Likhotvorik I. R. Tae E. L. Ventre C. Platz M. S. Tetrahedron Lett. 2000;41:795–796.
Fort R. C. Schleyer P. v. R. Chem. Rev. 1964;64:277–300.
Yasue R. Yoshida K. Adv. Synth. Catal. 2021;363:1662–1671.
Hrdina R. Synthesis. 2019;51:629–642.
Wanka L. Iqbal K. Schreiner P. R. Chem. Rev. 2013;113:3516–3604. PubMed PMC
De Clercq E. Nat. Rev. Drug Discovery. 2006;5:1015–1025. PubMed PMC
Tzitzoglaki C. McGuire K. Lagarias P. Konstantinidi A. Hoffmann A. Fokina N. A. Ma C. Papanastasiou I. P. Schreiner P. R. Vázquez S. Schmidtke M. Wang J. Busath D. D. Kolocouris A. ACS Chem. Biol. 2020;15:2331–2337. PubMed PMC
Hrdina R. Metz F. M. Larrosa M. Berndt J. P. Zhygadlo Y. Y. Becker S. Becker J. Eur. J. Org. Chem. 2015;2015:6231–6236.
Bakhonsky V. V. Pashenko A. A. Becker J. Hausmann H. De Groot H. J. Overkleeft H. S. Fokin A. A. Schreiner P. R. Dalton Trans. 2020;49:14009–14016. PubMed
Agnew-Francis K. A. Williams C. M. Adv. Synth. Catal. 2016;358:675–700.
Berndt J.-P. Radchenko Y. Becker J. Logemann C. Bhandari D. R. Hrdina R. Schreiner P. R. Chem. Sci. 2019;10:3324–3329. PubMed PMC
Zapf A. Ehrentraut A. Beller M. Angew. Chem., Int. Ed. 2000;39:4153–4155. PubMed
Nasrallah H. Hierso J.-C. Chem. Mater. 2019;31:619–642.
Ma R. Ma Z. Wang X. Si Z. Duan Q. Shao S. Chem. Eng. J. 2022;47:137517.
Belz J. Haust J. Müller M. J. Eberheim K. Schwan S. Gowrisankar S. Hüppe F. Beyer A. Schreiner P. R. Mollenhauer D. Sanna S. Chatterjee S. Volz K. J. Phys. Chem. C. 2022;126(23):9843–9854.
Zonker B. Duman E. Hausmann H. Becker J. Hrdina R. Org. Biomol. Chem. 2020;18:4941–4945. PubMed
Zoidis G. Kolocouris N. Naesens L. De Clercq E. Bioorg. Med. Chem. 2009;17:1534–1541. PubMed
Camps P. Duque M. D. Vázquez S. Naesens L. DeClercq E. Suredac F. X. López-Querol M. Camins A. Pallàs M. Prathalingam S. R. Kelly J. M. Romero V. Ivorra D. Cortés D. Bioorg. Med. Chem. 2008;16:9925–9936. PubMed PMC
Takahashi N. and Mochizuki D., Daisuke, Preparation and formulation of azepine derivatives as central nervous system agents,WO Patent WO9406773, 1994
Gopalan B. Ponpandian T. Kachhadia V. Bharathimohan K. Vignesh R. Sivasudar V. Narayanan S. Mandar B. Praveen R. Saranya N. Rajagopal S. Rajagopal S. Bioorg. Med. Chem. Lett. 2013;23:2532–2537. PubMed
Wishnok J. S. Schleyer P. v. R. Funke E. Pandit G. D. Williams R. O. Nickon A. J. Org. Chem. 1973;38:539.
Majerski Z. Šarac-Arneri R. Škare D. Lončar B. Synthesis. 1980:74.
Eakin M. Martin J. Parker W. Chem. Commun. 1965:206.
Black R. M. Gill G. B. Chem. Commun. 1970:972.
Zonker B. Becker J. Hrdina R. Org. Biomol. Chem. 2021;19:4027–4031. PubMed
Romanov-Michailidis F. Guénée L. Alexakis A. Angew. Chem., Int. Ed. 2013;52:9266–9270. PubMed
Cram D. J. J. Am. Chem. Soc. 1949;71:3863–3870.
Pakulski Z. Cmoch P. Korda A. Luboradzki R. Gwardiak K. Karczewski R. J. Org. Chem. 2021;86:1084–1095. PubMed
Shadrikova V. A. Golovin E. V. Rybakov V. B. Klimochkin Y. N. Chem. Heterocycl. Compd. 2020;56:898–908.
Sharma H. A. Mennie K. M. Kwan E. E. Jacobsen E. N. J. Am. Chem. Soc. 2020;142:16090–16096. PubMed PMC
Liu Y.-Y. Ao Z. Xue G.-M. Wang X.-B. Luo J.-G. Kong L.-Y. Org. Lett. 2018;20:7953–7956. PubMed
Kohlbacher S. M. Ionasz V.-S. Ielo L. Pace V. Monatsh. Chem. 2019:1–9.
Ma D. Miao C.-B. Sun J. J. Am. Chem. Soc. 2019;141:13783–13787. PubMed
Hrdina R. Müller C. E. Wende R. C. Lippert K. M. Benassi M. Spengler B. Schreiner P. R. J. Am. Chem. Soc. 2011;133:7624–7627. PubMed
Wang B. Tu Y. Q. Acc. Chem. Res. 2011;44:1207–1222. PubMed
Weissberger A. Bach H. Ber. Dtsch. Chem. Ges. B. 1931;64B:1095–1108.
Kharasch M. S. Priestley H. M. J. Am. Chem. Soc. 1939;61:3425–3431.
Hrdina R. Larrosa M. Logemann C. J. Org. Chem. 2017;82:4891–4899. PubMed
Horvat M. Uzelac L. Marjanovic M. Cindro N. Frankovic O. Mlinaric-Majerski K. Kralj M. Basaric N. Chem. Biol. Drug Des. 2012;79:497–506. PubMed
Müller J. Kirschner R. A. Berndt J. P. Wulsdorf T. Metz A. Hrdina R. Schreiner P. R. Geyer A. Klebe G. ChemMedChem. 2019;14:663–672. PubMed
Stoelting D. T. Shiner Jr V. J. J. Am. Chem. Soc. 1993;115:1695–1705.
Synthesis of 1,2-Disubstituted Adamantane Derivatives by Construction of the Adamantane Framework