Synthesis of 1,2-Disubstituted Adamantane Derivatives by Construction of the Adamantane Framework

. 2023 Nov 16 ; 28 (22) : . [epub] 20231116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38005358

This review summarizes achievements in the synthesis of 1,2-disubstituted adamantane derivatives by the construction of the tricyclic framework either by total synthesis or by ring expansion/contraction reactions of corresponding adamantane homologues. It is intended to complement reviews focusing on the preparation of 1,2-disubstituted derivatives by C-H functionalization methods.

Zobrazit více v PubMed

Landa S., Macháček V. Sur l’adamantane, Nouvel Hydrocarbure Extrait du Naphte. Collect. Czech. Chem. Commun. 1933;5:1–5. doi: 10.1135/cccc19330001. DOI

Fort R.C., Schleyer P.v.R. Adamantane: Consequences of the Diamondoid Structure. Chem. Rev. 1964;64:277–300. doi: 10.1021/cr60229a004. DOI

Prelog V., Seiwerth R. Über die Synthese des Adamantans. Ber. Dtsch. Chem. Ges. 1941;74:1644–1648. doi: 10.1002/cber.19410741004. DOI

Schleyer P.v.R. A Simple Preparation of Adamantane. J. Am. Chem. Soc. 1957;79:3292. doi: 10.1021/ja01569a086. DOI

Červinka O., Fábryová A., Hájíček J. Absolute Configuration of (S)-(+)-3-Ethyl-5-methyladamantane-1-carboxylic Acid and (S)-(+)-1-Amino-3-ethyl-5-methyladamantane. Collect. Czech. Chem. Commun. 1974;39:1582–1588. doi: 10.1135/cccc19741582. DOI

Fokin A.A., Schreiner P.R. Chapter 12—Selective Alkane CH Bond Substitutions: Strategies for the Preparation of Functionalized Diamondoids (Nanodiamonds) In: Harmata M., editor. Strategies and Tactics in Organic Synthesis. Volume 8. Academic Press; Cambridge, MA, USA: 2012. pp. 317–350. DOI

Wanka L., Iqbal K., Schreiner P.R. The Lipophilic Bulslet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chem. Rev. 2013;113:3516–3604. doi: 10.1021/cr100264t. PubMed DOI PMC

Liu J., Obando D., Liao V., Lifa T., Codd R. The Many Faces of the Adamantyl Group in Drug Design. Eur. J. Med. Chem. 2011;46:1949–1963. doi: 10.1016/j.ejmech.2011.01.047. PubMed DOI

De Clercq E. Antiviral Agents Active against Influenza A Viruses. Nat. Rev. Drug Discov. 2006;5:1015–1025. doi: 10.1038/nrd2175. PubMed DOI PMC

Stockdale T.P., Williams C.M. Pharmaceuticals That Contain Polycyclic Hydrocarbon Scaffolds. Chem. Soc. Rev. 2015;44:7737–7763. doi: 10.1039/C4CS00477A. PubMed DOI

Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane—A Lead Structure for Drugs in Clinical Practice. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI

Štimac A., Šekutor M., Mlinarić-Majerski K., Frkanec L., Frkanec R. Adamantane in Drug Delivery Systems and Surface Recognition. Molecules. 2017;22:297. doi: 10.3390/molecules22020297. PubMed DOI PMC

Agnew-Francis K.A., Williams C.M. Catalysts Containing the Adamantane Scaffold. Adv. Synth. Catal. 2016;358:675–700. doi: 10.1002/adsc.201500949. DOI

Muller T., Bräse S. Tetrahedral Organic Molecules as Components in Supramolecular Architectures and in Covalent Assemblies, Networks and Polymers. RSC Adv. 2014;4:6886–6907. doi: 10.1039/c3ra46951d. DOI

Nasrallah H., Hierso J.-C. Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts. Chem. Mater. 2019;31:619–642. doi: 10.1021/acs.chemmater.8b04508. DOI

Liangjun L., Deng J., Guo J., Yue H. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane. Prog. Chem. 2020;32:190–203. doi: 10.7536/PC190613. DOI

Mohamadhoseini M., Mohamadnia Z. Supramolecular Self-Healing Materials via Host-Guest Strategy between Cyclodextrin and Specific Types of Guest Molecules. Coord. Chem. Rev. 2021;432:213711. doi: 10.1016/j.ccr.2020.213711. DOI

Gunawan M.A., Hierso J.-C., Poinsot D., Fokin A.A., Fokina N.A., Tkachenko B.A., Schreiner P.R. Diamondoids: Functionalization and Subsequent Applications of Perfectly Defined Molecular Cage Hydrocarbons. New J. Chem. 2013;38:28–41. doi: 10.1039/C3NJ00535F. DOI

Yeung K.-W., Dong Y., Chen L., Tang C.-Y., Law W.-C., Tsui G.C.-P. Nanotechnology of Diamondoids for the Fabrication of Nanostructured Systems. Nanotechnol. Rev. 2020;9:650–669. doi: 10.1515/ntrev-2020-0051. DOI

de Araujo P.L.B., Mansoori G.A., de Araujo E.S. Diamondoids: Occurrence in Fossil Fuels, Applications in Petroleum Exploration and Fouling in Petroleum Production. A Review Paper. Int. J. Oil Gas Coal Technol. 2012;5:316–367. doi: 10.1504/IJOGCT.2012.048981. DOI

Gund T., Thielecke W., Schleyer P.v.R. Diamantane: Pentacyclo [7.3. 1.14, 12. 02, 7. 06, 11] Tetradecane (3, 5, 1, 7-[1, 2, 3, 4]-Butanetetraylnaphthalene, Decahydro) Org. Synth. 1973;53:30–34.

Schwertfeger H., Fokin A.A., Schreiner P.R. Diamonds Are a Chemist’s Best Friend: Diamondoid Chemistry Beyond Adamantane. Angew. Chem. Int. Ed. 2008;47:1022–1036. doi: 10.1002/anie.200701684. PubMed DOI

Grover N., Senge M.O. Synthetic Advances in the C–H Activation of Rigid Scaffold Molecules. Synthesis. 2020;52:3295–3325. doi: 10.1055/s-0040-1707884. DOI

Fokin A.A., Schreiner P.R. Metal-Free, Selective Alkane Functionalizations. Adv. Synth. Catal. 2003;345:1035–1052. doi: 10.1002/adsc.200303049. DOI

Weigel W.K., Dang H.T., Feceu A., Martin D.B.C. Direct Radical Functionalization Methods to Access Substituted Adamantanes and Diamondoids. Org. Biomol. Chem. 2022;20:10–36. doi: 10.1039/D1OB01916C. PubMed DOI PMC

Bagrii E.I., Nekhaev A.I., Maksimov A.L. Oxidative Functionalization of Adamantanes (Review) Pet. Chem. 2017;57:183–197. doi: 10.1134/S0965544117020128. DOI

Hrdina R. Directed C–H Functionalization of the Adamantane Framework. Synthesis. 2019;51:629–642. doi: 10.1055/s-0037-1610321. DOI

Zhou Y., Brittain A.D., Kong D., Xiao M., Meng Y., Sun L. Derivatization of Diamondoids for Functional Applications. J. Mater. Chem. C. 2015;3:6947–6961. doi: 10.1039/C5TC01377A. DOI

Man’kova P.A., Shiryaev V.A., Shmel’kova Y.D., Moiseev A.V., Reznikov A.N., Klimochkin Y.N. Synthesis of 1,2-Diaminoadamantane and Chiral Ligands Derived from It. Russ. Chem. Bull. 2023;72:1791–1801. doi: 10.1007/s11172-023-3961-4. DOI

Müller C.E., Wanka L., Jewell K., Schreiner P.R. Enantioselective Kinetic Resolution of Trans-Cycloalkane-1,2-Diols. Angew. Chem. Int. Ed. 2008;47:6180–6183. doi: 10.1002/anie.200800641. PubMed DOI

Hrdina R., Müller C.E., Schreiner P.R. Kinetic Resolution of Trans-Cycloalkane-1,2-Diols via Steglich Esterification. Chem. Commun. 2010;46:2689–2690. doi: 10.1039/c001075h. PubMed DOI

Berndt J.-P., Radchenko Y., Becker J., Logemann C., Bhandari D.R., Hrdina R., Schreiner P.R. Site-Selective Nitrenoid Insertions Utilizing Postfunctionalized Bifunctional Rhodium(II) Catalysts. Chem. Sci. 2019;10:3324–3329. doi: 10.1039/C8SC05733H. PubMed DOI PMC

Hrdina R., Larrosa M., Logemann C. Triflic Acid Promoted Decarboxylation of Adamantane-Oxazolidine-2-One: Access to Chiral Amines and Heterocycles. J. Org. Chem. 2017;82:4891–4899. doi: 10.1021/acs.joc.7b00711. PubMed DOI

Yasue R., Yoshida K. Enantioselective Desymmetrization of 1,3-Disubstituted Adamantane Derivatives via Rhodium-Catalyzed C−H Bond Amination: Access to Optically Active Amino Acids Containing Adamantane Core. Adv. Synth. Catal. 2021;363:1662–1671. doi: 10.1002/adsc.202001419. DOI

Wen Q., di Gregorio M.C., Shimon L.J.W., Pinkas I., Malik N., Kossoy A., Alexandrov E.V., Proserpio D.M., Lahav M., van der Boom M.E. Chiral Motifs in Highly Interpenetrated Metal–Organic Frameworks Formed from Achiral Tetrahedral Ligands. Chem. Eur. J. 2022;28:e202201108. doi: 10.1002/chem.202201108. PubMed DOI PMC

Ou G.-C., Chen H.-Y., Wang Q., Zhou Q., Zeng F. Structure and Absolute Configuration of Liquid Molecules Based on Adamantane Derivative Cocrystallization. RSC Adv. 2022;12:6459–6462. doi: 10.1039/D1RA09284G. PubMed DOI PMC

Yang C., Chen W., Zhu X., Song X., Liu M. Self-Assembly and Circularly Polarized Luminescence from Achiral Pyrene-Adamantane Conjugates by Selective Inclusion with Cyclodextrins. J. Phys. Chem. Lett. 2021;12:7491–7496. doi: 10.1021/acs.jpclett.1c02013. PubMed DOI

Müller J., Kirschner R.A., Berndt J.-P., Wulsdorf T., Metz A., Hrdina R., Schreiner P.R., Geyer A., Klebe G. Diamondoid Amino Acid-Based Peptide Kinase A Inhibitor Analogues. ChemMedChem. 2019;14:663–672. doi: 10.1002/cmdc.201800779. PubMed DOI

Hrdina R., Metz F.M., Larrosa M., Berndt J.-P., Zhygadlo Y.Y., Becker S., Becker J. Intramolecular C–H Amination Reaction Provides Direct Access to 1,2-Disubstituted Diamondoids. Eur. J. Org. Chem. 2015;2015:6231–6236. doi: 10.1002/ejoc.201500691. DOI

Weigel W.K., Dang H.T., Yang H.-B., Martin D.B.C. Synthesis of Amino-Diamondoid Pharmacophores via Photocatalytic C–H Aminoalkylation. Chem. Commun. 2020;56:9699–9702. doi: 10.1039/D0CC02804E. PubMed DOI PMC

Martella D.J., Jones M., Jr., Schleyer P.V.R. Adamantene by Ring Enlargement of 3-Noradamantylcarbene. J. Am. Chem. Soc. 1978;100:2896–2897. doi: 10.1021/ja00477a057. DOI

Conlin R.T., Miller R.D., Michl J. Adamantene. J. Am. Chem. Soc. 1979;101:7637–7638. doi: 10.1021/ja00519a039. DOI

Bian N., Jones M. More on Adamantene. J. Am. Chem. Soc. 1995;117:8957–8961. doi: 10.1021/ja00140a009. DOI

Prelog V., Seiwerth R. Über eine Neue, Ergiebigere Darstellung des Adamantans. Ber. Dtsch. Chem. Ges. 1941;74:1769–1772. doi: 10.1002/cber.19410741109. DOI

Stetter H., Thomas H.G. A New Synthesis of the Adamantane Ring System. Angew. Chem. Int. Ed. 1967;6:554–555. doi: 10.1002/anie.196705541. DOI

Hickmott P.W., Suschitzky H., Urbani R. Enamine Chemistry. Part XVIII. Reaction of Crotonoyl and Methacryloyl Chlorides with Dialkyl 4-(pyrrolidin-1-yl)cyclohex-3-ene-1,1-dicarboxylates. One-Step Synthesis of Adamantanes. J. Chem. Soc. Perkin Trans. 1. 1973:2063–2064. doi: 10.1039/p19730002063. DOI

Asghari Ahmed S., Hickmott P.W. Enamine Chemistry. Part 26. Preparation of Substituted Adamantane-2,4-diones and Bicyclo[2.2.2]octan-2-ones. J. Chem. Soc. Perkin Trans. 1. 1979:2180–2183. doi: 10.1039/p19790002180. DOI

Hickmott P.W., Kapon M. Enamine Chemistry. Part 29.’ Synthesis of Adamantane Derivatives from α,β-Unsaturated Acid Chlorides and 4,4-Disubstituted Cyclohexanone Enamines. Multiple [3,3]Sigmatropic Rearrangement Transition State Stereochemistry. X-ray Analysis. J. Chem. Soc. Perkin Trans. 1. 1985;1:2559–2571. doi: 10.1039/P19850002559. DOI

Ahmed M.G., Ahmed S.A., Akhter K., Moeiz S.M.I., Tsuda Y., Kiuchi F., Hossain M.M., Forsterling F.H. Synthesis of Some Substituted Adamantane-2,4-diones from 4, 4-Disubstituted Cyclohexanone Enamines and Methacryloyl Chloride. J. Chem. Res. 2005;2005:293–298. doi: 10.3184/0308234054323904. DOI

Atkinson R.S., Miller J.E. Adamantanoid Dienones from Intramolecular Ar 1 6-Participation. J. Chem. Soc. Perkin Trans. 1. 1979:3017–3021. doi: 10.1039/p19790003017. DOI

Takagi R., Miwa Y., Matsumura S., Ohkata K. One-Pot Synthesis of Adamantane Derivatives by Domino Michael Reactions from Ethyl 2,4-Dioxocyclohexanecarboxylate. J. Org. Chem. 2005;70:8587–8589. doi: 10.1021/jo051163e. PubMed DOI

Takagi R., Inoue Y., Ohkata K. Construction of the Adamantane Core of Plukenetione-Type Polycyclic Polyprenylated Acylphloroglucinols. J. Org. Chem. 2008;73:9320–9325. doi: 10.1021/jo801595y. PubMed DOI

Zhang Q., Mitasev B., Qi J., Porco J.A., Jr. Total Synthesis of Plukenetione A. J. Am. Chem. Soc. 2010;132:14212–14215. doi: 10.1021/ja105784s. PubMed DOI PMC

Muraoka O., Wang Y., Okumura M., Nishiura S., Tanabe G., Momose T. A Facile Synthesis of 7-Methylenebicyclo-[3.3.1]Nonan-3-One and Its Transformation Leading to the Novel Tricyclic System, Protoadamantane. Synth. Commun. 1996;26:1555–1562. doi: 10.1080/00397919608003522. DOI

Gagneux A.R., Meier R. 1-Substituted 2-Heteroadamantanes. Tetrahedron Lett. 1969;10:1365–1368. doi: 10.1016/S0040-4039(01)87887-4. PubMed DOI

Krasutskii P.A., Khotkevich A.B., Serguchev Y.A., Yurchenko A.G. Mechanism of Transannular Bromination Reactions of Diolefins of the Bicyclo[3.3.1]nonane Series. Theor. Exp. Chem. 1985;21:48–52. doi: 10.1007/BF00524310. DOI

Serguchev Y.A., Krasutskii P.A., Khotkevich A.B., Yurchenko A.G. Mechanism of Transannular Iodination of 3,7-Dimethylenebicyclo[3.3.1]nonane Derivatives. Theor. Exp. Chem. 1987;22:712–715. doi: 10.1007/BF00524071. DOI

Sohár P., Kuszmann J., Néder Á. Synthesis and NMR Study of Adamantane Derivatives. Tetrahedron. 1986;42:2523–2532. doi: 10.1016/0040-4020(86)80017-5. DOI

Bishop R., Craig D.C., Rae A.D., Scudder M.L. Ritter Reactions. Part 4.’Rearrangement of 3,3,7,7-Tetramethyl-2,6-Dimethylenebicyclo[3.3.1] Inonane and Crystal Structure of 1-Acetamido-2,2,5,6,6-pentamethyladamantane. J. Chem. Soc. Perkin Trans. 1. 1989;4:733–737. doi: 10.1039/P19890000733. DOI

Skomorokhov M.Y., Klimochkin Y.N. Halogen Addition to Esters of 7-Methylenebicyclo[3.3.1]non-2-en-3-ol. Russ. J. Org. Chem. 2001;37:1188–1189. doi: 10.1023/A:1013165003385. DOI

Serguchev Y.A., Ponomarenko M.V., Lourie L.F., Chernega A.N. Synthesis of Halo-Fluoro-Substituted Adamantanes by Electrophilic Transannular Cyclization of Bicyclo[3.3.1]nonane Dienes. J. Fluor. Chem. 2003;123:207–215. doi: 10.1016/S0022-1139(03)00135-0. DOI

Ponomarenko M.V., Serguchev Y.A., Hirschberg M.E., Röschenthaler G.-V., Fokin A.A. Elemental F2 with Transannular Dienes: Regioselectivities and Mechanisms. Chem. Eur. J. 2014;20:10383–10391. doi: 10.1002/chem.201402640. PubMed DOI

Serguchev Y.A., Ponomarenko M.V., Lourie L.F., Fokin A.A. Transannular Additions of Selectfluor and Xenon Difluoride: Regioselectivity and Mechanism. J. Phys. Org. Chem. 2011;24:407–413. doi: 10.1002/poc.1770. DOI

Funk R.L., Bolton G.L., Daggett J.U., Hansen M.M., Horcher L.H.M. Intramolecular Cycloaddition Reactions of Exocyclic Nitrones: Application in the Total Synthesis of Terpenes. Tetrahedron. 1985;41:3479–3495. doi: 10.1016/S0040-4020(01)96702-X. DOI

Marchand A.P., Rajapaksa D. Synthesis of Substituted Hexacyclo[5.4.1.02,6.03,10.05,9.08,11]Dodecanes. A Novel Method for Bridging Across the 8,11-Positions of Pentacyclo[5.4.0.02,6.03,10.05,9]Undecane-8,11-Dione and Related Diketones. Tetrahedron Lett. 1993;34:1463–1466. doi: 10.1016/S0040-4039(00)60319-2. DOI

Camps P., El Achab R., Görbig D.M., Morral J., Muñoz-Torrero D., Badia A., Baños J.E., Vivas N.M., Barril X., Orozco M., et al. Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrine−Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer’s Disease. J. Med. Chem. 1999;42:3227–3242. doi: 10.1021/jm980620z. PubMed DOI

Djaidi D., Leung I.S.H., Bishop R., Craig D.C., Scudder M.L. Ritter Reactions. Part 14. Rearrangement of 3,3,7,7-Tetramethyl-6-methylidenebicyclo[3.3.1]nonan-2-one. J. Chem. Soc. Perkin Trans. 1. 2000;13:2037–2042. doi: 10.1039/b002544p. DOI

Shibuya M., Taniguchi T., Takahashi M., Ogasawara K. Chiral Modification of Adamantane. Tetrahedron Lett. 2002;43:4145–4147. doi: 10.1016/S0040-4039(02)00752-9. DOI

Kuga T., Sasano Y., Tomizawa M., Shibuya M., Iwabuchi Y. Expedient Entry to 1-Aminoadamantane Derivatives via Aza-Prins Cyclization of 7-Methylenebicyclo[3.3.1]nonan-3-one Oximes. Synthesis. 2018;50:1820–1826. doi: 10.1055/s-0036-1591920. DOI

Peters J.A., Van Der Toorn J.M., Van Bekkum H. 3,7-Disubstituted Bicyclo[3.3.1]Nonanes—III: Synthesis and Conformation of Bicyclo[3.3.1]nonane-3α,7α-dicarboxylic Acid, Its Dimethyl Ester and Some Other 3,7-Disubstituted Bicyclo[3.3.1]nonanes; Adamantane as an Integrated Holding System. Tetrahedron. 1975;31:2273–2281. doi: 10.1016/0040-4020(75)80226-2. DOI

Tkachenko I.M., Rybakov V.B., Klimochkin Y.N. Convenient Synthesis of Ethyl 5-Oxohomoadamantane-4-carboxylate: A Useful Precursor of Polyfunctional Homoadamantanes. Synthesis. 2019;51:1482–1490. doi: 10.1055/s-0037-1610312. DOI

Lightner D.A., Van Toan V. The Octant Rule. XX: Synthesis and Circular Dichroism of (1s,5s)-Dimethyladamantan-2-one—Predicted to Have Zero Cotton Effect. Tetrahedron. 1987;43:4905–4916. doi: 10.1016/S0040-4020(01)87672-9. DOI

Denmark S.E., Henke B.R. Investigations on Transition-State Geometry in the Aldol Condensation. J. Am. Chem. Soc. 1989;111:8032–8034. doi: 10.1021/ja00202a064. DOI

Whitlock H.W., Siefken M.W. Tricyclo[4.4.0.03,8]decane to Adamantane Rearrangement. J. Am. Chem. Soc. 1968;90:4929–4939. doi: 10.1021/ja01020a028. DOI

Janjatovic J., Majerski Z. Synthesis of Adamantanoid Ketones from Bridgehead Alcohols by the Hypoiodite Thermolysis-Cyclization Sequence. J. Org. Chem. 1980;45:4892–4898. doi: 10.1021/jo01312a015. DOI

Kolocouris N., Zoidis G., Fytas C. Facile Synthetic Routes to 2-Oxo-1-adamantanalkanoic Acids. Synlett. 2007;2007:1063–1066. doi: 10.1055/s-2007-973899. DOI

Hrdina R., Holovko-Kamoshenkova O.M., Císařová I., Koucký F., Machalický O. Annulated Carbamates Are Precursors for the Ring Contraction of the Adamantane Framework. RSC Adv. 2022;12:31056–31060. doi: 10.1039/D2RA06402B. PubMed DOI PMC

Zonker B., Becker J., Hrdina R. Synthesis of Noradamantane Derivatives by Ring-Contraction of the Adamantane Framework. Org. Biomol. Chem. 2021;19:4027–4031. doi: 10.1039/D1OB00471A. PubMed DOI

Lenoir D., Schleyer P.V.R. Chemistry of 4-Protoadamantyl Derivatives. J. Chem. Soc. D. 1970;15:941–942. doi: 10.1039/c29700000941. DOI

Lenoir D., Hall R.E., Schleyer P.v.R. Chemistry of Protoadamantane. IV. Preparation and Solvolysis of Secondary 4-Protoadamantyl Esters. Relation to the Solvolysis of 2-Adamantyl Derivatives. J. Am. Chem. Soc. 1974;96:2138–2148. doi: 10.1021/ja00814a025. DOI

Schleyer P.v.R., Lenoir D., Glaser R., Mison P. Synthesis of 1,2- and 2,4-Disubstituted Adamantanes. The Protoadamantane Route. J. Org. Chem. 1971;36:1821–1826. doi: 10.1021/jo00812a022. DOI

Lenoir D., Raber D.J., Schleyer P.V.R. Chemistry of Protoadamantane. V. Solvolysis of 4-Methyl-4-protoadamantyl and Related 1-Methyl-2-adamantyl Derivatives. J. Am. Chem. Soc. 1974;96:2149–2156. doi: 10.1021/ja00814a026. DOI

Herpers E., Kirmse W. The 4-Protoadamantyl → 2-Adamantyl Rearrangement; Chirality of the 2-Adamantyl Cation. J. Chem. Soc. Chem. Commun. 1993;2:160–161. doi: 10.1039/c39930000160. DOI

Cuddy B.D., Grant D., McKervey M.A. The Protoadamantane Route to 1,2- and 2,4-Disubstituted Adamantanes. J. Chem. Soc. C. 1971:3173–3179. doi: 10.1039/j39710003173. DOI

Chakrabarti J.K., Hotten T.M., Tupper D.E. Chemistry of Adamantane. VIII. Synthesis of 1,2-Difunctional Adamantanes Using Protoadamantane-4-Spiroöxirane as a Novel Intermediate. Tetrahedron Lett. 1975;16:2241–2244. doi: 10.1016/S0040-4039(00)75090-8. DOI

Chakrabarti J.K., Hotten T.M., Rackham D.M., Tupper D.E. Chemistry of Adamantane. Part IX. 1,2-Difunctional Adamantanes; Synthesis and Reactions of Protoadamantane-4-spiro-oxiran. J. Chem. Soc. Perkin Trans. 1. 1976;17:1893–1900. doi: 10.1039/p19760001893. DOI

Chakrabarti J.K., Hotten T.M., Sutton S., Tupper D.E. Adamantane and Protoadamantanealkanamines as Potential Anti-Parkinson Agents. 10. J. Med. Chem. 1976;19:967–969. doi: 10.1021/jm00229a022. PubMed DOI

Abdel-Sayed A.N., Bauer L. Syntheses of 1,2-Distributed Adamantanes. Tetrahedron. 1988;44:1873–1882. doi: 10.1016/S0040-4020(01)90330-8. DOI

Chyi Tseng C., Handa I., Abdel-Sayed A.N., Bauer L. N-[(Aryl Substitute Adamantane)Alkyl] 2-Mercaptoacetamidines, Their Corresponding Disulfides and 5-Phosphorothioates. Tetrahedron. 1988;44:1893–1904. doi: 10.1016/S0040-4020(01)90332-1. DOI

Mlinarić-Majerski K., Veljković J., Kaselj M., Marchand A.P. Dihaloadamantanes: Ring Closure versus Rearrangement or Halogen-Displacement Reactions. Eur. J. Org. Chem. 2004;2004:2923–2927. doi: 10.1002/ejoc.200400121. DOI

Mlinaric-Majerski K., Kaselj M. 1,2-Methanoadamantane: A Molecule with a Twist Bent. Sigma. Bond. J. Org. Chem. 1994;59:4362–4363. doi: 10.1021/jo00095a004. DOI

Mlinarić-Majerski K., Kragol G., Ramljak T.Š. Transannular Cyclization with Grignard Reagents: Facile Synthetic Routes to Oxaadamantane and Protoadamantane Derivatives. Synlett. 2008;2008:405–409. doi: 10.1055/s-2008-1032054. DOI

Cindro N., Antol I., Mlinarić-Majerski K., Halasz I., Wan P., Basarić N. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives. J. Org. Chem. 2015;80:12420–12430. doi: 10.1021/acs.joc.5b02297. PubMed DOI

Wang X., Dong Y., Ezell E.L., Garrison J.C., Wood J.K., Hagen J.P., Vennerstrom J.L. Semipinacol and Protoadamantane-adamantane Rearrangements of 5,6-Dibromoadamantan-2-one and -2-ol. Tetrahedron. 2017;73:2972–2976. doi: 10.1016/j.tet.2017.04.006. DOI

Yoshihara T., Shudo H., Yagi A., Itami K. Adamantane Annulation to Arenes: A Strategy for Property Modulation of Aromatic π-Systems. J. Am. Chem. Soc. 2023;145:11754–11763. doi: 10.1021/jacs.3c02788. PubMed DOI

Papanastasiou I., Tsotinis A., Kolocouris N., Prathalingam S.R., Kelly J.M. Design, Synthesis, and Trypanocidal Activity of New Aminoadamantane Derivatives. J. Med. Chem. 2008;51:1496–1500. doi: 10.1021/jm7014292. PubMed DOI PMC

Zoidis G., Tsotinis A., Kolocouris N., Kelly J.M., Radhika Prathalingam S., Naesens L., Clercq E.D. Design and Synthesis of Bioactive 1,2-Annulated Adamantane Derivatives. Org. Biomol. Chem. 2008;6:3177–3185. doi: 10.1039/b804907f. PubMed DOI

Papanastasiou I., Tsotinis A., Zoidis G., Kolocouris N., Prathalingam S.R., Kelly J.M. Design and Synthesis of Trypanosoma Brucei Active 1-Alkyloxy and 1-Benzyloxyadamantano 2-Guanylhydrazones. ChemMedChem. 2009;4:1059–1062. doi: 10.1002/cmdc.200900019. PubMed DOI

Zoidis G., Kolocouris N., Kelly J.M., Prathalingam S.R., Naesens L., De Clercq E. Design and Synthesis of Bioactive Adamantanaminoalcohols and Adamantanamines. Eur. J. Med. Chem. 2010;45:5022–5030. doi: 10.1016/j.ejmech.2010.08.009. PubMed DOI

Papanastasiou I., Tsotinis A., Kolocouris N., Nikas S.P., Vamvakides A. New Aminoadamantane Derivatives with Antiproliferative Activity. Med. Chem. Res. 2014;23:1966–1975. doi: 10.1007/s00044-013-0798-7. DOI

Zoidis G., Sandoval A., Pineda-Farias J.B., Granados-Soto V., Felix R. Anti-Allodynic Effect of 2-(Aminomethyl)adamantane-1-carboxylic Acid in a Rat Model of Neuropathic Pain: A Mechanism Dependent on CaV2.2 Channel Inhibition. Bioorg. Med. Chem. 2014;22:1797–1803. doi: 10.1016/j.bmc.2014.02.006. PubMed DOI

Pardali V., Giannakopoulou E., Konstantinidi A., Kolocouris A., Zoidis G. 1,2-Annulated Adamantane Heterocyclic Derivatives as Anti-Influenza A Virus Agents. Croat. Chem. Acta. 2019;92:211–228. doi: 10.5562/cca3540. DOI

Vogt B.R., Hoover J.R.E. The Synthesis of Noradamantane. Tetrahedron Lett. 1967;8:2841–2843. doi: 10.1016/S0040-4039(00)90870-0. DOI

Schleyer P.v.R., Wiskott E. Noradamatane by Aluminum Halide Catalyzed Rearrangement. Tetrahedron Lett. 1967;8:2845–2850. doi: 10.1016/S0040-4039(00)90871-2. DOI

Stoelting D.T., Shiner V.J., Jr. Solvolysis of 1-(3-Noradamantyl)ethyl Sulfonates. J. Am. Chem. Soc. 1993;115:1695–1705. doi: 10.1021/ja00058a013. DOI

Schleyer P.v.R., Lam L.K.M., Raber D.J., Fry J.L., McKervey M.A., Alford J.R., Cuddy B.D., Keizer V.G., Geluk H.W., Schlatmann J.L.M.A. Stereochemical Inhibition of Intramolecular 1,2 Shifts. Intermolecular Nature of Hydride Shifts in the Adamantane Series. J. Am. Chem. Soc. 1970;92:5246–5247. doi: 10.1021/ja00720a056. DOI

Majerski Z., Schleyer P.v.R., Wolf A.P. Stereochemical Inhibition of Intramolecular 1,2 Shifts. Mechanistic Evidence for Skeletal Rearrangement during Apparent 1,2-Methyl Shifts of Adamantane. J. Am. Chem. Soc. 1970;92:5731–5733. doi: 10.1021/ja00722a034. DOI

Okazaki T., Isobe H., Kitagawa T., Takeuchi K. Generation and Reactions of 2-(1-Adamantyl)adamantene. Rearrangement to 3-(1-Adamantyl)-4-protoadamantylidene. Bull. Chem. Soc. Jpn. 1996;69:2053–2062. doi: 10.1246/bcsj.69.2053. DOI

Sosnowski J.J., Rheingold A.L., Murray R.K., Jr. Bridgehead Functionalization of [1]Diadamantane. J. Org. Chem. 1985;50:3788–3791. doi: 10.1021/jo00220a022. DOI

Takeuchi K., Kitagawa I., Akiyama F., Shibata T., Kato M., Okamoto K. Ring-Expansion of Bridgehead Aldehydes with 1-Adamantanecarbonyl Cation or Benzoyl Trifluoromethanesulfonate: A New Route to Bicyclic and Tricyclic 1,2-Diols. Synthesis. 1987;1987:612–615. doi: 10.1055/s-1987-28022. DOI

Ohga Y., Takeuchi K. Steric Deuterium Isotope Effect in the Solvolysis of (Z)-[Methyl-d3]-2-ethylidene-1-adamantyl Iodide Accelerated by F-Strain. J. Phys. Org. Chem. 1993;6:293–301. doi: 10.1002/poc.610060507. DOI

Okazaki T., Tokunaga K., Kitagawa T., Takeuchi K. Generation and Reactivity of 2-Substituted Adamantenes. Bull. Chem. Soc. Jpn. 1999;72:549–561. doi: 10.1246/bcsj.72.549. DOI

Torres E., Fernández R., Miquet S., Font-Bardia M., Vanderlinden E., Naesens L., Vázquez S. Synthesis and Anti-Influenza A Virus Activity of 2,2-Dialkylamantadines and Related Compounds. ACS Med. Chem. Lett. 2012;3:1065–1069. doi: 10.1021/ml300279b. PubMed DOI PMC

Ioannou S., Krassos H., Nicolaides A.V. Synthesis of a Novel Diene from a Cyclobutane Precursor: An Entry to 2,9-Disubstituted [2]Diadamantanes. Tetrahedron. 2013;69:8064–8068. doi: 10.1016/j.tet.2013.06.102. DOI

Zonker B., Duman E., Hausmann H., Becker J., Hrdina R. [1,2]-Rearrangement of Iminium Salts Provides Access to Heterocycles with Adamantane Scaffold. Org. Biomol. Chem. 2020;18:4941–4945. doi: 10.1039/D0OB01156H. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...