Synthesis of 1,2-Disubstituted Adamantane Derivatives by Construction of the Adamantane Framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38005358
PubMed Central
PMC10675813
DOI
10.3390/molecules28227636
PII: molecules28227636
Knihovny.cz E-zdroje
- Klíčová slova
- adamantane, alkyl shifts, diamondoids, homoadamantane, noradamantane, protoadamantane, rearrangement, ring contraction, ring expansion, total synthesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review summarizes achievements in the synthesis of 1,2-disubstituted adamantane derivatives by the construction of the tricyclic framework either by total synthesis or by ring expansion/contraction reactions of corresponding adamantane homologues. It is intended to complement reviews focusing on the preparation of 1,2-disubstituted derivatives by C-H functionalization methods.
Zobrazit více v PubMed
Landa S., Macháček V. Sur l’adamantane, Nouvel Hydrocarbure Extrait du Naphte. Collect. Czech. Chem. Commun. 1933;5:1–5. doi: 10.1135/cccc19330001. DOI
Fort R.C., Schleyer P.v.R. Adamantane: Consequences of the Diamondoid Structure. Chem. Rev. 1964;64:277–300. doi: 10.1021/cr60229a004. DOI
Prelog V., Seiwerth R. Über die Synthese des Adamantans. Ber. Dtsch. Chem. Ges. 1941;74:1644–1648. doi: 10.1002/cber.19410741004. DOI
Schleyer P.v.R. A Simple Preparation of Adamantane. J. Am. Chem. Soc. 1957;79:3292. doi: 10.1021/ja01569a086. DOI
Červinka O., Fábryová A., Hájíček J. Absolute Configuration of (S)-(+)-3-Ethyl-5-methyladamantane-1-carboxylic Acid and (S)-(+)-1-Amino-3-ethyl-5-methyladamantane. Collect. Czech. Chem. Commun. 1974;39:1582–1588. doi: 10.1135/cccc19741582. DOI
Fokin A.A., Schreiner P.R. Chapter 12—Selective Alkane CH Bond Substitutions: Strategies for the Preparation of Functionalized Diamondoids (Nanodiamonds) In: Harmata M., editor. Strategies and Tactics in Organic Synthesis. Volume 8. Academic Press; Cambridge, MA, USA: 2012. pp. 317–350. DOI
Wanka L., Iqbal K., Schreiner P.R. The Lipophilic Bulslet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chem. Rev. 2013;113:3516–3604. doi: 10.1021/cr100264t. PubMed DOI PMC
Liu J., Obando D., Liao V., Lifa T., Codd R. The Many Faces of the Adamantyl Group in Drug Design. Eur. J. Med. Chem. 2011;46:1949–1963. doi: 10.1016/j.ejmech.2011.01.047. PubMed DOI
De Clercq E. Antiviral Agents Active against Influenza A Viruses. Nat. Rev. Drug Discov. 2006;5:1015–1025. doi: 10.1038/nrd2175. PubMed DOI PMC
Stockdale T.P., Williams C.M. Pharmaceuticals That Contain Polycyclic Hydrocarbon Scaffolds. Chem. Soc. Rev. 2015;44:7737–7763. doi: 10.1039/C4CS00477A. PubMed DOI
Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane—A Lead Structure for Drugs in Clinical Practice. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI
Štimac A., Šekutor M., Mlinarić-Majerski K., Frkanec L., Frkanec R. Adamantane in Drug Delivery Systems and Surface Recognition. Molecules. 2017;22:297. doi: 10.3390/molecules22020297. PubMed DOI PMC
Agnew-Francis K.A., Williams C.M. Catalysts Containing the Adamantane Scaffold. Adv. Synth. Catal. 2016;358:675–700. doi: 10.1002/adsc.201500949. DOI
Muller T., Bräse S. Tetrahedral Organic Molecules as Components in Supramolecular Architectures and in Covalent Assemblies, Networks and Polymers. RSC Adv. 2014;4:6886–6907. doi: 10.1039/c3ra46951d. DOI
Nasrallah H., Hierso J.-C. Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts. Chem. Mater. 2019;31:619–642. doi: 10.1021/acs.chemmater.8b04508. DOI
Liangjun L., Deng J., Guo J., Yue H. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane. Prog. Chem. 2020;32:190–203. doi: 10.7536/PC190613. DOI
Mohamadhoseini M., Mohamadnia Z. Supramolecular Self-Healing Materials via Host-Guest Strategy between Cyclodextrin and Specific Types of Guest Molecules. Coord. Chem. Rev. 2021;432:213711. doi: 10.1016/j.ccr.2020.213711. DOI
Gunawan M.A., Hierso J.-C., Poinsot D., Fokin A.A., Fokina N.A., Tkachenko B.A., Schreiner P.R. Diamondoids: Functionalization and Subsequent Applications of Perfectly Defined Molecular Cage Hydrocarbons. New J. Chem. 2013;38:28–41. doi: 10.1039/C3NJ00535F. DOI
Yeung K.-W., Dong Y., Chen L., Tang C.-Y., Law W.-C., Tsui G.C.-P. Nanotechnology of Diamondoids for the Fabrication of Nanostructured Systems. Nanotechnol. Rev. 2020;9:650–669. doi: 10.1515/ntrev-2020-0051. DOI
de Araujo P.L.B., Mansoori G.A., de Araujo E.S. Diamondoids: Occurrence in Fossil Fuels, Applications in Petroleum Exploration and Fouling in Petroleum Production. A Review Paper. Int. J. Oil Gas Coal Technol. 2012;5:316–367. doi: 10.1504/IJOGCT.2012.048981. DOI
Gund T., Thielecke W., Schleyer P.v.R. Diamantane: Pentacyclo [7.3. 1.14, 12. 02, 7. 06, 11] Tetradecane (3, 5, 1, 7-[1, 2, 3, 4]-Butanetetraylnaphthalene, Decahydro) Org. Synth. 1973;53:30–34.
Schwertfeger H., Fokin A.A., Schreiner P.R. Diamonds Are a Chemist’s Best Friend: Diamondoid Chemistry Beyond Adamantane. Angew. Chem. Int. Ed. 2008;47:1022–1036. doi: 10.1002/anie.200701684. PubMed DOI
Grover N., Senge M.O. Synthetic Advances in the C–H Activation of Rigid Scaffold Molecules. Synthesis. 2020;52:3295–3325. doi: 10.1055/s-0040-1707884. DOI
Fokin A.A., Schreiner P.R. Metal-Free, Selective Alkane Functionalizations. Adv. Synth. Catal. 2003;345:1035–1052. doi: 10.1002/adsc.200303049. DOI
Weigel W.K., Dang H.T., Feceu A., Martin D.B.C. Direct Radical Functionalization Methods to Access Substituted Adamantanes and Diamondoids. Org. Biomol. Chem. 2022;20:10–36. doi: 10.1039/D1OB01916C. PubMed DOI PMC
Bagrii E.I., Nekhaev A.I., Maksimov A.L. Oxidative Functionalization of Adamantanes (Review) Pet. Chem. 2017;57:183–197. doi: 10.1134/S0965544117020128. DOI
Hrdina R. Directed C–H Functionalization of the Adamantane Framework. Synthesis. 2019;51:629–642. doi: 10.1055/s-0037-1610321. DOI
Zhou Y., Brittain A.D., Kong D., Xiao M., Meng Y., Sun L. Derivatization of Diamondoids for Functional Applications. J. Mater. Chem. C. 2015;3:6947–6961. doi: 10.1039/C5TC01377A. DOI
Man’kova P.A., Shiryaev V.A., Shmel’kova Y.D., Moiseev A.V., Reznikov A.N., Klimochkin Y.N. Synthesis of 1,2-Diaminoadamantane and Chiral Ligands Derived from It. Russ. Chem. Bull. 2023;72:1791–1801. doi: 10.1007/s11172-023-3961-4. DOI
Müller C.E., Wanka L., Jewell K., Schreiner P.R. Enantioselective Kinetic Resolution of Trans-Cycloalkane-1,2-Diols. Angew. Chem. Int. Ed. 2008;47:6180–6183. doi: 10.1002/anie.200800641. PubMed DOI
Hrdina R., Müller C.E., Schreiner P.R. Kinetic Resolution of Trans-Cycloalkane-1,2-Diols via Steglich Esterification. Chem. Commun. 2010;46:2689–2690. doi: 10.1039/c001075h. PubMed DOI
Berndt J.-P., Radchenko Y., Becker J., Logemann C., Bhandari D.R., Hrdina R., Schreiner P.R. Site-Selective Nitrenoid Insertions Utilizing Postfunctionalized Bifunctional Rhodium(II) Catalysts. Chem. Sci. 2019;10:3324–3329. doi: 10.1039/C8SC05733H. PubMed DOI PMC
Hrdina R., Larrosa M., Logemann C. Triflic Acid Promoted Decarboxylation of Adamantane-Oxazolidine-2-One: Access to Chiral Amines and Heterocycles. J. Org. Chem. 2017;82:4891–4899. doi: 10.1021/acs.joc.7b00711. PubMed DOI
Yasue R., Yoshida K. Enantioselective Desymmetrization of 1,3-Disubstituted Adamantane Derivatives via Rhodium-Catalyzed C−H Bond Amination: Access to Optically Active Amino Acids Containing Adamantane Core. Adv. Synth. Catal. 2021;363:1662–1671. doi: 10.1002/adsc.202001419. DOI
Wen Q., di Gregorio M.C., Shimon L.J.W., Pinkas I., Malik N., Kossoy A., Alexandrov E.V., Proserpio D.M., Lahav M., van der Boom M.E. Chiral Motifs in Highly Interpenetrated Metal–Organic Frameworks Formed from Achiral Tetrahedral Ligands. Chem. Eur. J. 2022;28:e202201108. doi: 10.1002/chem.202201108. PubMed DOI PMC
Ou G.-C., Chen H.-Y., Wang Q., Zhou Q., Zeng F. Structure and Absolute Configuration of Liquid Molecules Based on Adamantane Derivative Cocrystallization. RSC Adv. 2022;12:6459–6462. doi: 10.1039/D1RA09284G. PubMed DOI PMC
Yang C., Chen W., Zhu X., Song X., Liu M. Self-Assembly and Circularly Polarized Luminescence from Achiral Pyrene-Adamantane Conjugates by Selective Inclusion with Cyclodextrins. J. Phys. Chem. Lett. 2021;12:7491–7496. doi: 10.1021/acs.jpclett.1c02013. PubMed DOI
Müller J., Kirschner R.A., Berndt J.-P., Wulsdorf T., Metz A., Hrdina R., Schreiner P.R., Geyer A., Klebe G. Diamondoid Amino Acid-Based Peptide Kinase A Inhibitor Analogues. ChemMedChem. 2019;14:663–672. doi: 10.1002/cmdc.201800779. PubMed DOI
Hrdina R., Metz F.M., Larrosa M., Berndt J.-P., Zhygadlo Y.Y., Becker S., Becker J. Intramolecular C–H Amination Reaction Provides Direct Access to 1,2-Disubstituted Diamondoids. Eur. J. Org. Chem. 2015;2015:6231–6236. doi: 10.1002/ejoc.201500691. DOI
Weigel W.K., Dang H.T., Yang H.-B., Martin D.B.C. Synthesis of Amino-Diamondoid Pharmacophores via Photocatalytic C–H Aminoalkylation. Chem. Commun. 2020;56:9699–9702. doi: 10.1039/D0CC02804E. PubMed DOI PMC
Martella D.J., Jones M., Jr., Schleyer P.V.R. Adamantene by Ring Enlargement of 3-Noradamantylcarbene. J. Am. Chem. Soc. 1978;100:2896–2897. doi: 10.1021/ja00477a057. DOI
Conlin R.T., Miller R.D., Michl J. Adamantene. J. Am. Chem. Soc. 1979;101:7637–7638. doi: 10.1021/ja00519a039. DOI
Bian N., Jones M. More on Adamantene. J. Am. Chem. Soc. 1995;117:8957–8961. doi: 10.1021/ja00140a009. DOI
Prelog V., Seiwerth R. Über eine Neue, Ergiebigere Darstellung des Adamantans. Ber. Dtsch. Chem. Ges. 1941;74:1769–1772. doi: 10.1002/cber.19410741109. DOI
Stetter H., Thomas H.G. A New Synthesis of the Adamantane Ring System. Angew. Chem. Int. Ed. 1967;6:554–555. doi: 10.1002/anie.196705541. DOI
Hickmott P.W., Suschitzky H., Urbani R. Enamine Chemistry. Part XVIII. Reaction of Crotonoyl and Methacryloyl Chlorides with Dialkyl 4-(pyrrolidin-1-yl)cyclohex-3-ene-1,1-dicarboxylates. One-Step Synthesis of Adamantanes. J. Chem. Soc. Perkin Trans. 1. 1973:2063–2064. doi: 10.1039/p19730002063. DOI
Asghari Ahmed S., Hickmott P.W. Enamine Chemistry. Part 26. Preparation of Substituted Adamantane-2,4-diones and Bicyclo[2.2.2]octan-2-ones. J. Chem. Soc. Perkin Trans. 1. 1979:2180–2183. doi: 10.1039/p19790002180. DOI
Hickmott P.W., Kapon M. Enamine Chemistry. Part 29.’ Synthesis of Adamantane Derivatives from α,β-Unsaturated Acid Chlorides and 4,4-Disubstituted Cyclohexanone Enamines. Multiple [3,3]Sigmatropic Rearrangement Transition State Stereochemistry. X-ray Analysis. J. Chem. Soc. Perkin Trans. 1. 1985;1:2559–2571. doi: 10.1039/P19850002559. DOI
Ahmed M.G., Ahmed S.A., Akhter K., Moeiz S.M.I., Tsuda Y., Kiuchi F., Hossain M.M., Forsterling F.H. Synthesis of Some Substituted Adamantane-2,4-diones from 4, 4-Disubstituted Cyclohexanone Enamines and Methacryloyl Chloride. J. Chem. Res. 2005;2005:293–298. doi: 10.3184/0308234054323904. DOI
Atkinson R.S., Miller J.E. Adamantanoid Dienones from Intramolecular Ar 1 6-Participation. J. Chem. Soc. Perkin Trans. 1. 1979:3017–3021. doi: 10.1039/p19790003017. DOI
Takagi R., Miwa Y., Matsumura S., Ohkata K. One-Pot Synthesis of Adamantane Derivatives by Domino Michael Reactions from Ethyl 2,4-Dioxocyclohexanecarboxylate. J. Org. Chem. 2005;70:8587–8589. doi: 10.1021/jo051163e. PubMed DOI
Takagi R., Inoue Y., Ohkata K. Construction of the Adamantane Core of Plukenetione-Type Polycyclic Polyprenylated Acylphloroglucinols. J. Org. Chem. 2008;73:9320–9325. doi: 10.1021/jo801595y. PubMed DOI
Zhang Q., Mitasev B., Qi J., Porco J.A., Jr. Total Synthesis of Plukenetione A. J. Am. Chem. Soc. 2010;132:14212–14215. doi: 10.1021/ja105784s. PubMed DOI PMC
Muraoka O., Wang Y., Okumura M., Nishiura S., Tanabe G., Momose T. A Facile Synthesis of 7-Methylenebicyclo-[3.3.1]Nonan-3-One and Its Transformation Leading to the Novel Tricyclic System, Protoadamantane. Synth. Commun. 1996;26:1555–1562. doi: 10.1080/00397919608003522. DOI
Gagneux A.R., Meier R. 1-Substituted 2-Heteroadamantanes. Tetrahedron Lett. 1969;10:1365–1368. doi: 10.1016/S0040-4039(01)87887-4. PubMed DOI
Krasutskii P.A., Khotkevich A.B., Serguchev Y.A., Yurchenko A.G. Mechanism of Transannular Bromination Reactions of Diolefins of the Bicyclo[3.3.1]nonane Series. Theor. Exp. Chem. 1985;21:48–52. doi: 10.1007/BF00524310. DOI
Serguchev Y.A., Krasutskii P.A., Khotkevich A.B., Yurchenko A.G. Mechanism of Transannular Iodination of 3,7-Dimethylenebicyclo[3.3.1]nonane Derivatives. Theor. Exp. Chem. 1987;22:712–715. doi: 10.1007/BF00524071. DOI
Sohár P., Kuszmann J., Néder Á. Synthesis and NMR Study of Adamantane Derivatives. Tetrahedron. 1986;42:2523–2532. doi: 10.1016/0040-4020(86)80017-5. DOI
Bishop R., Craig D.C., Rae A.D., Scudder M.L. Ritter Reactions. Part 4.’Rearrangement of 3,3,7,7-Tetramethyl-2,6-Dimethylenebicyclo[3.3.1] Inonane and Crystal Structure of 1-Acetamido-2,2,5,6,6-pentamethyladamantane. J. Chem. Soc. Perkin Trans. 1. 1989;4:733–737. doi: 10.1039/P19890000733. DOI
Skomorokhov M.Y., Klimochkin Y.N. Halogen Addition to Esters of 7-Methylenebicyclo[3.3.1]non-2-en-3-ol. Russ. J. Org. Chem. 2001;37:1188–1189. doi: 10.1023/A:1013165003385. DOI
Serguchev Y.A., Ponomarenko M.V., Lourie L.F., Chernega A.N. Synthesis of Halo-Fluoro-Substituted Adamantanes by Electrophilic Transannular Cyclization of Bicyclo[3.3.1]nonane Dienes. J. Fluor. Chem. 2003;123:207–215. doi: 10.1016/S0022-1139(03)00135-0. DOI
Ponomarenko M.V., Serguchev Y.A., Hirschberg M.E., Röschenthaler G.-V., Fokin A.A. Elemental F2 with Transannular Dienes: Regioselectivities and Mechanisms. Chem. Eur. J. 2014;20:10383–10391. doi: 10.1002/chem.201402640. PubMed DOI
Serguchev Y.A., Ponomarenko M.V., Lourie L.F., Fokin A.A. Transannular Additions of Selectfluor and Xenon Difluoride: Regioselectivity and Mechanism. J. Phys. Org. Chem. 2011;24:407–413. doi: 10.1002/poc.1770. DOI
Funk R.L., Bolton G.L., Daggett J.U., Hansen M.M., Horcher L.H.M. Intramolecular Cycloaddition Reactions of Exocyclic Nitrones: Application in the Total Synthesis of Terpenes. Tetrahedron. 1985;41:3479–3495. doi: 10.1016/S0040-4020(01)96702-X. DOI
Marchand A.P., Rajapaksa D. Synthesis of Substituted Hexacyclo[5.4.1.02,6.03,10.05,9.08,11]Dodecanes. A Novel Method for Bridging Across the 8,11-Positions of Pentacyclo[5.4.0.02,6.03,10.05,9]Undecane-8,11-Dione and Related Diketones. Tetrahedron Lett. 1993;34:1463–1466. doi: 10.1016/S0040-4039(00)60319-2. DOI
Camps P., El Achab R., Görbig D.M., Morral J., Muñoz-Torrero D., Badia A., Baños J.E., Vivas N.M., Barril X., Orozco M., et al. Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrine−Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer’s Disease. J. Med. Chem. 1999;42:3227–3242. doi: 10.1021/jm980620z. PubMed DOI
Djaidi D., Leung I.S.H., Bishop R., Craig D.C., Scudder M.L. Ritter Reactions. Part 14. Rearrangement of 3,3,7,7-Tetramethyl-6-methylidenebicyclo[3.3.1]nonan-2-one. J. Chem. Soc. Perkin Trans. 1. 2000;13:2037–2042. doi: 10.1039/b002544p. DOI
Shibuya M., Taniguchi T., Takahashi M., Ogasawara K. Chiral Modification of Adamantane. Tetrahedron Lett. 2002;43:4145–4147. doi: 10.1016/S0040-4039(02)00752-9. DOI
Kuga T., Sasano Y., Tomizawa M., Shibuya M., Iwabuchi Y. Expedient Entry to 1-Aminoadamantane Derivatives via Aza-Prins Cyclization of 7-Methylenebicyclo[3.3.1]nonan-3-one Oximes. Synthesis. 2018;50:1820–1826. doi: 10.1055/s-0036-1591920. DOI
Peters J.A., Van Der Toorn J.M., Van Bekkum H. 3,7-Disubstituted Bicyclo[3.3.1]Nonanes—III: Synthesis and Conformation of Bicyclo[3.3.1]nonane-3α,7α-dicarboxylic Acid, Its Dimethyl Ester and Some Other 3,7-Disubstituted Bicyclo[3.3.1]nonanes; Adamantane as an Integrated Holding System. Tetrahedron. 1975;31:2273–2281. doi: 10.1016/0040-4020(75)80226-2. DOI
Tkachenko I.M., Rybakov V.B., Klimochkin Y.N. Convenient Synthesis of Ethyl 5-Oxohomoadamantane-4-carboxylate: A Useful Precursor of Polyfunctional Homoadamantanes. Synthesis. 2019;51:1482–1490. doi: 10.1055/s-0037-1610312. DOI
Lightner D.A., Van Toan V. The Octant Rule. XX: Synthesis and Circular Dichroism of (1s,5s)-Dimethyladamantan-2-one—Predicted to Have Zero Cotton Effect. Tetrahedron. 1987;43:4905–4916. doi: 10.1016/S0040-4020(01)87672-9. DOI
Denmark S.E., Henke B.R. Investigations on Transition-State Geometry in the Aldol Condensation. J. Am. Chem. Soc. 1989;111:8032–8034. doi: 10.1021/ja00202a064. DOI
Whitlock H.W., Siefken M.W. Tricyclo[4.4.0.03,8]decane to Adamantane Rearrangement. J. Am. Chem. Soc. 1968;90:4929–4939. doi: 10.1021/ja01020a028. DOI
Janjatovic J., Majerski Z. Synthesis of Adamantanoid Ketones from Bridgehead Alcohols by the Hypoiodite Thermolysis-Cyclization Sequence. J. Org. Chem. 1980;45:4892–4898. doi: 10.1021/jo01312a015. DOI
Kolocouris N., Zoidis G., Fytas C. Facile Synthetic Routes to 2-Oxo-1-adamantanalkanoic Acids. Synlett. 2007;2007:1063–1066. doi: 10.1055/s-2007-973899. DOI
Hrdina R., Holovko-Kamoshenkova O.M., Císařová I., Koucký F., Machalický O. Annulated Carbamates Are Precursors for the Ring Contraction of the Adamantane Framework. RSC Adv. 2022;12:31056–31060. doi: 10.1039/D2RA06402B. PubMed DOI PMC
Zonker B., Becker J., Hrdina R. Synthesis of Noradamantane Derivatives by Ring-Contraction of the Adamantane Framework. Org. Biomol. Chem. 2021;19:4027–4031. doi: 10.1039/D1OB00471A. PubMed DOI
Lenoir D., Schleyer P.V.R. Chemistry of 4-Protoadamantyl Derivatives. J. Chem. Soc. D. 1970;15:941–942. doi: 10.1039/c29700000941. DOI
Lenoir D., Hall R.E., Schleyer P.v.R. Chemistry of Protoadamantane. IV. Preparation and Solvolysis of Secondary 4-Protoadamantyl Esters. Relation to the Solvolysis of 2-Adamantyl Derivatives. J. Am. Chem. Soc. 1974;96:2138–2148. doi: 10.1021/ja00814a025. DOI
Schleyer P.v.R., Lenoir D., Glaser R., Mison P. Synthesis of 1,2- and 2,4-Disubstituted Adamantanes. The Protoadamantane Route. J. Org. Chem. 1971;36:1821–1826. doi: 10.1021/jo00812a022. DOI
Lenoir D., Raber D.J., Schleyer P.V.R. Chemistry of Protoadamantane. V. Solvolysis of 4-Methyl-4-protoadamantyl and Related 1-Methyl-2-adamantyl Derivatives. J. Am. Chem. Soc. 1974;96:2149–2156. doi: 10.1021/ja00814a026. DOI
Herpers E., Kirmse W. The 4-Protoadamantyl → 2-Adamantyl Rearrangement; Chirality of the 2-Adamantyl Cation. J. Chem. Soc. Chem. Commun. 1993;2:160–161. doi: 10.1039/c39930000160. DOI
Cuddy B.D., Grant D., McKervey M.A. The Protoadamantane Route to 1,2- and 2,4-Disubstituted Adamantanes. J. Chem. Soc. C. 1971:3173–3179. doi: 10.1039/j39710003173. DOI
Chakrabarti J.K., Hotten T.M., Tupper D.E. Chemistry of Adamantane. VIII. Synthesis of 1,2-Difunctional Adamantanes Using Protoadamantane-4-Spiroöxirane as a Novel Intermediate. Tetrahedron Lett. 1975;16:2241–2244. doi: 10.1016/S0040-4039(00)75090-8. DOI
Chakrabarti J.K., Hotten T.M., Rackham D.M., Tupper D.E. Chemistry of Adamantane. Part IX. 1,2-Difunctional Adamantanes; Synthesis and Reactions of Protoadamantane-4-spiro-oxiran. J. Chem. Soc. Perkin Trans. 1. 1976;17:1893–1900. doi: 10.1039/p19760001893. DOI
Chakrabarti J.K., Hotten T.M., Sutton S., Tupper D.E. Adamantane and Protoadamantanealkanamines as Potential Anti-Parkinson Agents. 10. J. Med. Chem. 1976;19:967–969. doi: 10.1021/jm00229a022. PubMed DOI
Abdel-Sayed A.N., Bauer L. Syntheses of 1,2-Distributed Adamantanes. Tetrahedron. 1988;44:1873–1882. doi: 10.1016/S0040-4020(01)90330-8. DOI
Chyi Tseng C., Handa I., Abdel-Sayed A.N., Bauer L. N-[(Aryl Substitute Adamantane)Alkyl] 2-Mercaptoacetamidines, Their Corresponding Disulfides and 5-Phosphorothioates. Tetrahedron. 1988;44:1893–1904. doi: 10.1016/S0040-4020(01)90332-1. DOI
Mlinarić-Majerski K., Veljković J., Kaselj M., Marchand A.P. Dihaloadamantanes: Ring Closure versus Rearrangement or Halogen-Displacement Reactions. Eur. J. Org. Chem. 2004;2004:2923–2927. doi: 10.1002/ejoc.200400121. DOI
Mlinaric-Majerski K., Kaselj M. 1,2-Methanoadamantane: A Molecule with a Twist Bent. Sigma. Bond. J. Org. Chem. 1994;59:4362–4363. doi: 10.1021/jo00095a004. DOI
Mlinarić-Majerski K., Kragol G., Ramljak T.Š. Transannular Cyclization with Grignard Reagents: Facile Synthetic Routes to Oxaadamantane and Protoadamantane Derivatives. Synlett. 2008;2008:405–409. doi: 10.1055/s-2008-1032054. DOI
Cindro N., Antol I., Mlinarić-Majerski K., Halasz I., Wan P., Basarić N. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives. J. Org. Chem. 2015;80:12420–12430. doi: 10.1021/acs.joc.5b02297. PubMed DOI
Wang X., Dong Y., Ezell E.L., Garrison J.C., Wood J.K., Hagen J.P., Vennerstrom J.L. Semipinacol and Protoadamantane-adamantane Rearrangements of 5,6-Dibromoadamantan-2-one and -2-ol. Tetrahedron. 2017;73:2972–2976. doi: 10.1016/j.tet.2017.04.006. DOI
Yoshihara T., Shudo H., Yagi A., Itami K. Adamantane Annulation to Arenes: A Strategy for Property Modulation of Aromatic π-Systems. J. Am. Chem. Soc. 2023;145:11754–11763. doi: 10.1021/jacs.3c02788. PubMed DOI
Papanastasiou I., Tsotinis A., Kolocouris N., Prathalingam S.R., Kelly J.M. Design, Synthesis, and Trypanocidal Activity of New Aminoadamantane Derivatives. J. Med. Chem. 2008;51:1496–1500. doi: 10.1021/jm7014292. PubMed DOI PMC
Zoidis G., Tsotinis A., Kolocouris N., Kelly J.M., Radhika Prathalingam S., Naesens L., Clercq E.D. Design and Synthesis of Bioactive 1,2-Annulated Adamantane Derivatives. Org. Biomol. Chem. 2008;6:3177–3185. doi: 10.1039/b804907f. PubMed DOI
Papanastasiou I., Tsotinis A., Zoidis G., Kolocouris N., Prathalingam S.R., Kelly J.M. Design and Synthesis of Trypanosoma Brucei Active 1-Alkyloxy and 1-Benzyloxyadamantano 2-Guanylhydrazones. ChemMedChem. 2009;4:1059–1062. doi: 10.1002/cmdc.200900019. PubMed DOI
Zoidis G., Kolocouris N., Kelly J.M., Prathalingam S.R., Naesens L., De Clercq E. Design and Synthesis of Bioactive Adamantanaminoalcohols and Adamantanamines. Eur. J. Med. Chem. 2010;45:5022–5030. doi: 10.1016/j.ejmech.2010.08.009. PubMed DOI
Papanastasiou I., Tsotinis A., Kolocouris N., Nikas S.P., Vamvakides A. New Aminoadamantane Derivatives with Antiproliferative Activity. Med. Chem. Res. 2014;23:1966–1975. doi: 10.1007/s00044-013-0798-7. DOI
Zoidis G., Sandoval A., Pineda-Farias J.B., Granados-Soto V., Felix R. Anti-Allodynic Effect of 2-(Aminomethyl)adamantane-1-carboxylic Acid in a Rat Model of Neuropathic Pain: A Mechanism Dependent on CaV2.2 Channel Inhibition. Bioorg. Med. Chem. 2014;22:1797–1803. doi: 10.1016/j.bmc.2014.02.006. PubMed DOI
Pardali V., Giannakopoulou E., Konstantinidi A., Kolocouris A., Zoidis G. 1,2-Annulated Adamantane Heterocyclic Derivatives as Anti-Influenza A Virus Agents. Croat. Chem. Acta. 2019;92:211–228. doi: 10.5562/cca3540. DOI
Vogt B.R., Hoover J.R.E. The Synthesis of Noradamantane. Tetrahedron Lett. 1967;8:2841–2843. doi: 10.1016/S0040-4039(00)90870-0. DOI
Schleyer P.v.R., Wiskott E. Noradamatane by Aluminum Halide Catalyzed Rearrangement. Tetrahedron Lett. 1967;8:2845–2850. doi: 10.1016/S0040-4039(00)90871-2. DOI
Stoelting D.T., Shiner V.J., Jr. Solvolysis of 1-(3-Noradamantyl)ethyl Sulfonates. J. Am. Chem. Soc. 1993;115:1695–1705. doi: 10.1021/ja00058a013. DOI
Schleyer P.v.R., Lam L.K.M., Raber D.J., Fry J.L., McKervey M.A., Alford J.R., Cuddy B.D., Keizer V.G., Geluk H.W., Schlatmann J.L.M.A. Stereochemical Inhibition of Intramolecular 1,2 Shifts. Intermolecular Nature of Hydride Shifts in the Adamantane Series. J. Am. Chem. Soc. 1970;92:5246–5247. doi: 10.1021/ja00720a056. DOI
Majerski Z., Schleyer P.v.R., Wolf A.P. Stereochemical Inhibition of Intramolecular 1,2 Shifts. Mechanistic Evidence for Skeletal Rearrangement during Apparent 1,2-Methyl Shifts of Adamantane. J. Am. Chem. Soc. 1970;92:5731–5733. doi: 10.1021/ja00722a034. DOI
Okazaki T., Isobe H., Kitagawa T., Takeuchi K. Generation and Reactions of 2-(1-Adamantyl)adamantene. Rearrangement to 3-(1-Adamantyl)-4-protoadamantylidene. Bull. Chem. Soc. Jpn. 1996;69:2053–2062. doi: 10.1246/bcsj.69.2053. DOI
Sosnowski J.J., Rheingold A.L., Murray R.K., Jr. Bridgehead Functionalization of [1]Diadamantane. J. Org. Chem. 1985;50:3788–3791. doi: 10.1021/jo00220a022. DOI
Takeuchi K., Kitagawa I., Akiyama F., Shibata T., Kato M., Okamoto K. Ring-Expansion of Bridgehead Aldehydes with 1-Adamantanecarbonyl Cation or Benzoyl Trifluoromethanesulfonate: A New Route to Bicyclic and Tricyclic 1,2-Diols. Synthesis. 1987;1987:612–615. doi: 10.1055/s-1987-28022. DOI
Ohga Y., Takeuchi K. Steric Deuterium Isotope Effect in the Solvolysis of (Z)-[Methyl-d3]-2-ethylidene-1-adamantyl Iodide Accelerated by F-Strain. J. Phys. Org. Chem. 1993;6:293–301. doi: 10.1002/poc.610060507. DOI
Okazaki T., Tokunaga K., Kitagawa T., Takeuchi K. Generation and Reactivity of 2-Substituted Adamantenes. Bull. Chem. Soc. Jpn. 1999;72:549–561. doi: 10.1246/bcsj.72.549. DOI
Torres E., Fernández R., Miquet S., Font-Bardia M., Vanderlinden E., Naesens L., Vázquez S. Synthesis and Anti-Influenza A Virus Activity of 2,2-Dialkylamantadines and Related Compounds. ACS Med. Chem. Lett. 2012;3:1065–1069. doi: 10.1021/ml300279b. PubMed DOI PMC
Ioannou S., Krassos H., Nicolaides A.V. Synthesis of a Novel Diene from a Cyclobutane Precursor: An Entry to 2,9-Disubstituted [2]Diadamantanes. Tetrahedron. 2013;69:8064–8068. doi: 10.1016/j.tet.2013.06.102. DOI
Zonker B., Duman E., Hausmann H., Becker J., Hrdina R. [1,2]-Rearrangement of Iminium Salts Provides Access to Heterocycles with Adamantane Scaffold. Org. Biomol. Chem. 2020;18:4941–4945. doi: 10.1039/D0OB01156H. PubMed DOI