Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GA23-04703S
Grantová Agentura České Republiky
RVO
Ústav analytické chemie, Akademie Věd České Republiky
68081715
Ústav analytické chemie, Akademie Věd České Republiky
PubMed
38440918
PubMed Central
PMC11705224
DOI
10.1111/febs.17108
Knihovny.cz E-zdroje
- Klíčová slova
- MS‐based proteomics, cardiovascular disease, post‐translational modifications, proteins,
- MeSH
- fosforylace MeSH
- hmotnostní spektrometrie metody MeSH
- kardiovaskulární nemoci * metabolismus genetika patologie MeSH
- lidé MeSH
- posttranslační úpravy proteinů * MeSH
- proteomika * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Zobrazit více v PubMed
Chapman EA, Aballo TJ, Melby JA, Zhou T, Price SJ, Rossler KJ, Lei I, Tang PC & Ge Y (2023) Defining the sarcomeric proteoform landscape in ischemic cardiomyopathy by top‐down proteomics. J Proteome Res 22, 931–941. PubMed PMC
Tiambeng TN, Tucholski T, Wu Z, Zhu Y, Mitchell SD, Roberts DS, Jin Y & Ge Y (2019) Analysis of cardiac troponin proteoforms by top‐down mass spectrometry. Methods Enzymol 626, 347–374. PubMed PMC
Smith LM & Kelleher NL (2013) Proteoform: a single term describing protein complexity. Nat Methods 10, 186–187. PubMed PMC
Hwang JT, Lee A & Kho C (2022) Ubiquitin and ubiquitin‐like proteins in cancer, neurodegenerative disorders, and heart diseases. Int J Mol Sci 23, 50053. PubMed PMC
Wang S, Osgood AO & Chatterjee A (2022) Uncovering post‐translational modification‐associated protein‐protein interactions. Curr Opin Struct Biol 74, 102352. PubMed PMC
Li Y, Huang Y & Li T (2022) PTM‐X: prediction of post‐translational modification crosstalk within and across proteins. Methods Mol Biol 2499, 275–283. PubMed
Leutert M, Entwisle SW & Villen J (2021) Decoding post‐translational modification crosstalk with proteomics. Mol Cell Proteomics 20, 100129. PubMed PMC
Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul‐Leclaire M, Villot R, Uriarte M, Boulay K, Hlayhel S, Farhat B et al. (2023) An inventory of crosstalk between ubiquitination and other post‐translational modifications in orchestrating cellular processes. iScience 26, 106276. PubMed PMC
Iannetta AA & Hicks LM (2022) Maximizing depth of PTM coverage: generating robust MS datasets for computational prediction modeling. Methods Mol Biol 2499, 1–41. PubMed
Kwon EJ & Ju JH (2021) Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: focusing on citrullination, carbamylation, and acetylation. Int J Mol Sci 22, 10576. PubMed PMC
Morales‐Tarre O, Alonso‐Bastida R, Arcos‐Encarnacion B, Perez‐Martinez L & Encarnacion‐Guevara S (2021) Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 18, 949–975. PubMed
Kabir F, Atkinson R, Cook AL, Phipps AJ & King AE (2023) The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 14, 1025473. PubMed PMC
Ciesielski O, Biesiekierska M, Panthu B, Soszynski M, Pirola L & Balcerczyk A (2022) Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci 79, 94. PubMed PMC
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S et al. (2023) The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 14, 1125662. PubMed PMC
Mandel N & Agarwal N (2022) Role of SUMOylation in neurodegenerative diseases. Cell 11, 3395. PubMed PMC
Lu K & Han D (2022) A review of the mechanism of succinylation in cancer. Medicine (Baltimore) 101, e31493. PubMed PMC
Zhu G, Jin L, Sun W, Wang S & Liu N (2022) Proteomics of post‐translational modifications in colorectal cancer: discovery of new biomarkers. Biochim Biophys Acta Rev Cancer 1877, 188735. PubMed
Zhou F, Ma J, Zhu Y, Wang T, Yang Y, Sun Y, Chen Y, Song H, Huo X & Zhang J (2022) The role and potential mechanism of O‐glycosylation in gastrointestinal tumors. Pharmacol Res 184, 106420. PubMed
Chen L & Kashina A (2021) Post‐translational modifications of the protein termini. Front Cell Dev Biol 9, 719590. PubMed PMC
Tosatto L & Coscia F (2022) A glance at post‐translational modifications of human thyroglobulin: potential impact on function and pathogenesis. Eur Thyroid 11, e220046. PubMed PMC
Balmik AA & Chinnathambi S (2021) Methylation as a key regulator of tau aggregation and neuronal health in Alzheimer's disease. Cell Commun Signal 19, 51. PubMed PMC
Clark JS, Kayed R, Abate G, Uberti D, Kinnon P & Piccirella S (2022) Post‐translational modifications of the p53 protein and the impact in Alzheimer's disease: a review of the literature. Front Aging Neurosci 14, 835288. PubMed PMC
Zhang B, Li S & Shui W (2022) Post‐translational modifications of G protein‐coupled receptors revealed by proteomics and structural biology. Front Chem 10, 843502. PubMed PMC
Pancoe SX, Wang YJ, Shimogawa M & Perez RM (2022) Effects of mutations and post‐translational modifications on α‐synuclein in vitro aggregation. J Mol Biol 434, 167859. PubMed PMC
Gulen B, Casey A & Orth K (2023) AMPylation of small GTPases by fic enzymes. FEBS Lett 597, 883–891. PubMed PMC
Longarini EJ & Matic I (2022) The fast‐growing business od serine ADP‐ribosylation. DNA Repair (Amst) 118, 103382. PubMed
Bashyal A & Brodbelt JS (2022) Uncommon posttranslational modifications in proteomics: ADP‐ribosylation, tyrosine nitration and tyrosine sulfation. Mass Spectrom Rev 43, 289–326. PubMed PMC
Zhao Y, Hao S, Wu W, Li Y, Hou K, Liu Y, Cui W, Xu X & Wang H (2022) Lysine crotonylation: an emerging player in DNA damage response. Biomolecules 12, 1428. PubMed PMC
Liddy KA, White MY & Cordwell SJ (2013) Functional decorations: post‐translational modifications and heart disease delineated by targeted proteomics. Genome Med 5, 20. PubMed PMC
Chen XF, Chen X & Tang X (2020) Short‐chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond) 134, 657–676. PubMed
Zou L, Yang Y, Wang Z, Fu X, He X, Song J, Li T, Ma H & Yu T (2023) Lysine malonylation and its links to metabolism and diseases. Aging Dis 14, 84–98. PubMed PMC
Wu LF, Wang DP, Shen J, Gao LJ, Zhou Y, Liu QH & Cao JM (2022) Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. J Proteome 266, 104667. PubMed
VanHecke GC, Abeywardana MY & Ahn YH (2019) Proteomic identification of protein gluthathionylation in cardiomyocytes. J Proteome Res 18, 1806–1818. PubMed PMC
Mao L, Mostafa R, Ibili E & Fert‐Bober J (2021) Role of protein deamination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 18, 1059–1071. PubMed
Vitorino R, Guedes S, Vitorino C, Ferreira R, Amado F & Van Eyk JE (2021) Elucidating citrullination by mass spectrometry and its role in disease pathogenesis. J Proteome Res 20, 38–48. PubMed PMC
Yang F & Wang C (2020) Profiling of post‐translational modifications by chemical and computational proteomics. Chem Commun (Camb) 56, 13506–13519. PubMed
Meng L, Chan WS, Huang L, Liu L, Chen X, Zhang W, Wang F, Cheng K, Sun H & Wong KC (2022) Mini‐review: recent advances in post‐translational modification site prediction based on deep learning. Comput Struct Biotechnol J 20, 3522–3532. PubMed PMC
Neely BA, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S, Deutsch EW, Gessulat S, Kall L, Palczynski P et al. (2023) Toward an integrated machine learning model of a proteomics experiment. J Proteome Res 22, 681–696. PubMed PMC
Bouwmeester R, Gabriels R, Hulstaert N, Martens L & Degrove S (2021) DeepLC can predict retention times for peptides that carry as‐yet unseen modifications. Nat Methods 18, 1363–1369. PubMed
Yang J, Gao Z, Ren X, Sheng J, Xu P, Chang C & Fu Y (2021) DeepDigest: prediction of protein proteolytic digestion with deep learning. Anal Chem 93, 6094–6103. PubMed
Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J, Knaute T, Rechenberger J, Delanghe B, Huhmer A et al. (2019) Prosit: proteome‐wide prediction of peptide tandem mass spectra by deep learning. Nat Methods 16, 509–518. PubMed
LeCun Y, Bengio Y & Hinton G (2015) Deep learning. Nature 521, 436–444. doi: 10.1038/nature14539 PubMed DOI
UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43, D204–D212. PubMed PMC
Xu H, Zhou J, Lin S, Deng W, Zhang Y & Xue Y (2017) PLMD: an updated data resource of protein lysine modifications. J Genet Genomics 44, 243–250. PubMed
Huang KY, Lee TY, Kao HJ, Ma CT, Lee CC, Lin TH, Chang WC & Huang HD (2019) dbPTM in 2019: exploring disease association and cross‐talk of post‐translational modifications. Nucleic Acids Res 47, D298–D308. PubMed PMC
Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, Pang Y, Wang Z, Wang R, Ma R et al. (2022) dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post‐translational modifications. Nucleic Acids Res 50, D471–D479. PubMed PMC
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V & Skrzypek E (2015) PhosphoSitePlus 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520. PubMed PMC
Blanc M, David FPA & van der Goot FG (2019) SwissPalm 2: protein S‐palmitoylation database. Methods Mol Biol 2009, 203–214. PubMed
Ramazi S & Zahiri J (2021) Post‐translational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021, baab012. PubMed PMC
Rookyard AW, Paulech J, Thyssen S, Liddy KA, Puckeridge M, Li DK, White MY & Cordwell SJ (2021) A global profile of reversible and irreversible cysteine redox post‐translational modifications during myocardial ischemia/reperfusion injury and antioxidant intervention. Antioxid Redox Signal 34, 11–31. PubMed
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W & Zhao Y (2007) Lysine propionylation and butyrylation are novel post‐translational modifications in histones. Mol Cell Proteomics 6, 812–819. PubMed PMC
Chen HX, Wang XC, Hou HT, Wang J, Yang Q, Chen YL, Chen HZ & He GW (2023) Lysine crotonylation of SERCA2A correlates to cardiac dysfunction and arrhythmia in Sirt1 cardiac‐specific knockout mice. Int J Biol Macromol 242 (Pt4), 125151. PubMed
Tang X, Chen XF, Sun X, Xu P, Zhao X, Tong Y, Wang XM, Yang K, Zhu YT, Hao DL et al. (2021) Short‐chain enoyl‐CoA hydratase mediates histone crotonylation and contributes to cardiac homeostasis. Circulation 143, 1066–1069. PubMed
Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028. PubMed PMC
Xu W, Wan J, Zhan J, Li X, He H, Shi Z & Zhang H (2017) Global profiling of crotonylation on non‐histone proteins. Cell Res 27, 946–949. PubMed PMC
Chen YZ, Wang ZZ, Wang Y, Ying G, Chen Z & Song J (2021) nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Brief Bioinform 22, bbab146. PubMed PMC
Hou JY, Zhou L, Li JL, Wang DP & Cao JM (2021) Emerging roles of non‐histone protein crotonylation in biomedicine. Cell Biosci 11, 101. PubMed PMC
Subba P & Prasad TSK (2021) Protein crotonylation expert review: a new lens to take post‐translational modifications and cell biology to new heights. OMICS 25, 617–625. PubMed
Ntorla A & Burgoyne JR (2021) The regulation and function of histone crotonylation. Front Cell Dev Biol 9, 624914. PubMed PMC
Wang S, Mu G, Qiu B, Wang M, Yu Z, Wang W, Wang J & Yang Y (2021) The function and related diseases of protein crotonylation. Int J Biol Sci 17, 3441–3455. PubMed PMC
Jiang G, Li C, Lu M, Lu K & Li H (2021) Protein lysine crotonylation: past, present, perspective. Cell Death Dis 12, 703. PubMed PMC
Orgovan G & Noszal B (2011) The complete microspeciation of arginine and citrulline. J Pharm Biomed Anal 54, 965–971. PubMed
Rosas PC & Solaro RJ (2023) Implications of S‐glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front Cardiovasc Med 9, 1060716. PubMed PMC
Gladden JD, Linke WA & Redfield MM (2014) Heart failure with preserved ejection fraction. Pflugers Arch 466, 1037–1053. PubMed PMC
Miles MR, Seo J, Jiang M, Wilson ZT, Little J, Hao J, Andrade J, Ueberheide B & Tseng GN (2021) Global identification of S‐palmitoylated proteins and detection of palmitoylating (DHHC) enzymes in heart. J Mol Cell Cardiol 155, 1–9. PubMed PMC
Khoury GA, Baliban RC & Floudas CA (2011) Proteome‐wide post‐translational modification statistics: frequency analysis and curation of the swiss‐prot database. Sci Rep 13, 90. PubMed PMC
Farriol‐Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL & Bairoch A (2004) Annotation of post‐translational modifications in the Swiss‐Prot knowledge base. Proteomics 4, 1537–1550. PubMed
Stepanova S & Kasicka V (2023) Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (mid‐2018‐2022). J Sep Sci 46, e2300043. PubMed
Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, Xu T, Wang Q & Sun L (2023) Recent advances (2019–2021) of capillary electrophoresis‐mass spectrometry for multilevel proteomics. Mass Spectrom Rev 42, 617–642. PubMed PMC
Zhao Y & Jensen ON (2009) Modification‐specific proteomics: strategies for characterization of post‐translational modifications using enrichment techniques. Proteomics 9, 4632–4641. PubMed PMC
Pandeswari PB & Sabareesh V (2019) Middle‐down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 9, 313–344. PubMed PMC
Sidoli S & Garcia BA (2017) Middle‐down proteomics: a still unexploited resource for chromatin biology. Expert Rev Proteomics 14, 617–626. PubMed PMC
Siuti N & Kelleher NL (2007) Decoding protein modifications using top‐down mass spectrometry. Nat Methods 4, 817–821. PubMed PMC
Brandi J, Noberini R, Bonaldi T & Cecconi D (2022) Advances in enrichment methods for mass spectrometry‐based proteomics analysis of post‐translational modifications. J Chromatogr A 1678, 463352. PubMed
Lenco J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholous P, Urban J, Broeckhoven K, Novakova L & Svec F (2022) Reversed‐phase liquid chromatography of peptides for bottom‐up proteomics: a tutorial. J Proteome Res 21, 2846–2892. PubMed
Dams M, Dores‐Sousa JL, Lamers RJ, Treumann A & Eeltink S (2019) High‐resolution nano‐liquid chromatography with tandem mass spectrometric detection for the bottom‐up analysis of complex proteomic samples. Chromatographia 82, 101–110.
Schaffer LV, Tucholski T, Shortreed MR, Ge Y & Smith LM (2019) Intact‐mass analysis facilitating the identification of large human heart proteoforms. Anal Chem 91, 10937–10942. PubMed PMC
Tucholski T, Knott SJ, Chen B, Pistono P, Lin Z & Ge Y (2019) A top‐down proteomics platform coupling serial size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 91, 3835–3844. PubMed PMC
Compton PD, Zamdborg L, Thomas PM & Kelleher NL (2011) On the scalability and requirements of whole protein mass spectrometry. Anal Chem 83, 6868–6874. doi: 10.1021/ac2010795 PubMed DOI PMC
Holtz A, Basisty N & Scilling B (2021) Quantification and identification of post‐translational modifications using modern proteomics approaches. Methods Mol Biol 2228, 225–235. PubMed PMC
Sandin M, Chawade A & Levander F (2015) Is label‐free LC‐MS/MS ready for biomarker discovery? Proteomics Clin Appl 9, 289–294. PubMed
Ong S, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A & Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386. PubMed
Evans C, Noirel J, Ow SY, Salim M, Pereira‐Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E et al. (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404, 1011–1027. PubMed
Romanick SS, Ulrich C, Schlauch K, Hostler A, Payne J, Woolsey R, Qulici D, Feng Y & Ferguson BS (2018) Obesity‐mediated regulation of cardiac protein acetylation: parallel analysis of total and acetylated proteins via TMT‐tagged mass spectrometry. Biosci Rep 38, BSR20180721. PubMed PMC
Lange V, Picotti P, Domon B & Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4, 222. PubMed PMC
Duan J, Gaffrey MJ & Qian WJ (2017) Quantitative proteomic characterization of redox‐dependent post‐translational modifications on protein cysteines. Mol BioSyst 13, 816–829. PubMed PMC
Lam MPY, Scruggs SB, Kim T, Zong C, Lau E, Wang D, Ryan CM, Faull KF & Ping P (2012) An MRM‐based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. J Proteome 75, 4602–4609. PubMed PMC
Gianazza E & Banfi C (2018) Post‐translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 15, 477–502. PubMed
Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S, Fischer R & Cox J (2020) MaxQuant software for ion mobility enhanced shotgun proteomics. Mol Cell Proteomics 19, 1058–1069. PubMed PMC
Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M, Goedecke N, Decker J, Kosinski T, Park MA et al. (2018) Online parallel accumulation‐serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteomics 17, 2534–2545. PubMed PMC
Zhang H, Zhang Y, Wang H, Yang P, Lu C, Liu Y, Xu Z, Wang C & Hu J (2023) Global proteomic analysis reveals lysine succinylation contributes to the pathogenesis of aortic aneurysm and dissection. J Proteome 280, 104889. PubMed
Eng JK, Searle BC, Clauser KR & Tabb DL (2011) A face in the crowd: recognizing peptides through database search. Mol Cell Proteomics 10 (R111), 009522. PubMed PMC
Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D & Nesvizhskii AI (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry‐based proteomics. Nat Methods 14, 513–520. PubMed PMC
Liu Z, Cao J, Gao X, Zhou Y, Wen L, Yang X, Yao X, Ren J & Xue Y (2011) CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res 39 (Suppl.1), D1029–D1034. PubMed PMC
Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q, Cheng Z, Guo A, Ren J & Xue Y (2014) CPLM: a database of protein lysine modifications. Nucleic Acids Res 42, D531–D536. PubMed PMC
Blanc M, David F, Abrami L, Migliozzi D, Armand F, Burgi J & van der Goot FG (2015) SwisPalm: protein palmitoylation database. F1000Res 4, 261. PubMed PMC
Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL & Gygi SP (2015) A mass‐tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol 33, 743–749. PubMed PMC
Griss J, Perez‐Riverol Y, Lewis S, Tabb DL, Dianes JA, Del-Toro N, Rurik M, Walzer MW, Kohlbacher O, Hemjakob H et al. (2016) Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nat Methods 13, 651–656. PubMed PMC
Skinner OS & Kelleher NL (2015) Illuminating the dark matter of shotgun proteomics. Nat Biotechnol 33, 717–718. PubMed
Geiszler DJ, Kong AT, Avtonomov DM, Yu F, Leprevost FDV & Nesvizhskii AI (2021) PTM‐Shepperd: analysis and summarization of post‐translational and chemical modifications from open search results. Mol Cell Proteomics 20, 100018. PubMed PMC
Bagwan N, Bonzon‐Kulichenko E, Calvo E, Lechuga‐Vieco AV, Michalakopoulos S, Trevisan‐Herraz M, Ezkurdia I, Rodriguez JM, Magni R, Latorre‐Pellicer A et al. (2018) Comprehensive quantification of the modified proteome reveals oxidative heart damage in mitochondrial heteroplasmy. Cell Rep 23, 3685–3697. PubMed
Laguillo‐Gomez A, Calvo E, Martin‐Cofreces N, Lozano‐Prieto M, Sanchez‐Madrid F & Vasquez J (2023) ReCom: a semi‐supervised approach to ultra‐tolerant database search for improved identification of modified peptides. J Proteome 287, 104968. PubMed
Perchey RT, Tonini L, Tosolini M, Fournie JJ, Lopez F, Besson A & Pont F (2019) PTMselect: optimization of protein modifications discovery by mass spectrometry. Sci Rep 9, 4181. PubMed PMC
Fu Y (2016) Data analysis strategies for protein modification identification. In Statistical Analysis in Proteomics (Jung K, ed.), pp. 265–275. Springer, New York, NY. PubMed
Yan Y, Jiang JY, Fu M, Wang D, Pelletier AR, Sigdel D, Ng DCM, Wang W & Ping P (2023) MIND‐S is a deep‐learning prediction model for elucidating protein post‐translational modifications in human diseases. Cell Rep Methods 3, 100430. PubMed PMC
Rehfeldt TG, Krawczyk K, Echers SG, Marcatili P, Palczynski P, Rottger R & Schwammle V (2023) Variability analysis of LC‐MS experimental factors and their impact on machine learning. GigaScience 12, 1–12. PubMed PMC
Stransky S, Sun Y, Shi X & Sidoli S (2023) Ten questions to AI regarding the present and future of proteomics. Front Mol Biosci 10, 1295721. PubMed PMC
Pakhrin SC, Pokharel S, Saigo H & Kc DB (2022) Deep learning‐based advances in protein posttranslational modification site and protein cleavage prediction. Methods Mol Biol 2499, 285–322. PubMed
Mann M, Kumar C, Zeng WF & Staruss MT (2021) Artificial intelligence for proteomics and biomarker discovery. Cell Syst 12, 759–770. PubMed
Chou KC (2019) Artificial intelligence (AI) tools constructed via the 5‐steps rule for predicting post‐translational modifications. Trends Artif Intell 3, 60–74.
Li J, Johnson JA & Su H (2018) Ubiquitin and ubiquitin‐like proteins in cardiac disease and protection. Curr Drug Targets 19, 989–1002. PubMed PMC
Shetty PMV, Rangrez AY & Frey N (2020) SUMO proteins in the cardiovascular system: friend or foe? J Biomed Sci 27, 98. PubMed PMC
Zhao W, Zhang X & Rong J (2021) SUMOylation as a therapeutic target for myocardial infarction. Front Cardiovasc Med 8, 701583. PubMed PMC
Michishita E, Park JY, Burneskis JM, Barrett JC & Horikawa I (2005) Evolutionary conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16, 4623–4635. PubMed PMC
Imai S, Armstrong CM, Kaebarlein M & Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase. Nature 403, 795–800. PubMed
Hershberger KA, Abraham DM, Liu J, Locasale JW, Grimsrud PA & Hirschey MD (2018) Ablation of sirtuin 5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload. J Biol Chem 293, 10630–10645. PubMed PMC
Bai F, Ma Y & Liu Q (2018) Succinylation as a novel mode of energy metabolism regulation during atrial fibrillation. Med Hypotheses 121, 54–55. PubMed
Bai F, Tu T, Qin F, Ma Y, Liu N, Liu Y, Liao X, Zhou S & Liu Q (2019) Quantitative proteomics of changes in succinylated proteins expression profiling in left appendages tissue from valvular heart disease patients with atrial fibrillation. Clin Chim Acta 495, 345–354. PubMed
Hershberger KA, Abraham DM, Martin AS, Mao L, Liu J, Gu H, Locasale JW & Hirschey MD (2017) Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. J Biol Chem 292, 19767–19781. PubMed PMC
Sadhukhan S, Liu X, Ryu d, Nelson OD, Stupinski JA, Li Z, Chen W, Zhang S, Weiss RS, Locasale JW et al. (2016) Metabolomics‐assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci USA 113, 4320–4325. PubMed PMC
Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, Najjar R, Fitch M, Hellerstein M, Gibson BW et al. (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59, 321–332. PubMed PMC
Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Strancakova A, Goetzman E, Lam MM, Schwer B et al. (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44, 177–190. PubMed PMC
Fernandez‐Marcos PJ, Jeninga EH, Canto C, Harach T, de Boer VC, Andreux P, Moullan N, Pirinen E, Yamamoto H, Houten SM et al. (2012) Muscle or liver‐specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep 2, 425. PubMed PMC
Tu T, Zhou S, Liu Z, Li X & Liu Q (2014) Quantitative proteomics of changes in energy metabolism‐related proteins in atrial tissue from valvular disease patients with permanent atrial fibrillation. Circ J 78, 993–1001. PubMed
Paulsen CE & Carroll KS (2013) Cysteine‐mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113, 4633–4679. PubMed PMC
Samarasinghe KTG, Godage DNPM, VanHecke GC & Ahn YH (2014) Metabolic synthesis of clickable glutathione for chemoselective detection of glutathionylation. J Am Chem Soc 136, 11566–11569. PubMed
Kekulandara DN, Samarasinghe KTG, Godage DNPM & Ahn YH (2016) Clickable glutathione using tetrazine‐alkene biorthogonal chemistry for detecting protein glutathionylation. Org Biomol Chem 14, 10886–10893. PubMed
Samarasinghe KTG, Godage DNPM, Zhou YN, Ndombera FT, Weerapana E & Ahn YH (2016) Clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism. Mol BioSyst 12, 2471–2480. PubMed PMC
Aurigemma GP, de Simone G & Fitzgibbons TP (2013) Cardiac remodeling in obesity. Circ Cardiovasc Imaging 6, 142–152. PubMed
Fert‐Bober J, Venkatraman V, Hunter CL, Liu R, Crowgey EL, Pandey R, Holewinski RJ, Stotland A, Berman BP & Van Eyk JE (2019) Mapping citrullinated sites in multiple organs of mice using hypercitrullinated library. J Proteome Res 18, 2270–2278. PubMed PMC
Bagwan N, El Ali HH & Lundby A (2021) Proteome‐wide profiling and mapping of post translational modifications in human hearts. Sci Rep 11, 2184. PubMed PMC
Apple FS, Sandoval Y, Jaffe AS & Ordonez‐Llanos J (2017) Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem 63, 73–81. PubMed
Layland J, Solaro RJ & Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66, 12–21. PubMed
Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH et al. (2011) Top‐down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 10, 4054–4065. PubMed PMC
Fernandez AM, Regazzoni L, Brioschi M, Gianazza E, Agostoni P, Aldini G & Banfi C (2019) Pro‐oxidant and pro‐inflammatory effects of glycated albumin on cardiomyocytes. Free Radic Biol Med 144, 245–255. PubMed
Landim‐Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB et al. (2022) Post‐translational modification patterns on β‐myosin heavy chain are altered in ischemic and nonischemic human hearts. elife 11, e74919. PubMed PMC
Habibian J & Fergusson BS (2018) The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart. Int J Mol Sci 20, 102. PubMed PMC
Kim MS, Zhong J & Pandey A (2016) Common errors in mass spectrometry‐based analysis of post‐translational modifications. Proteomics 16, 700–714. PubMed PMC