The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Institutional Support RVO:68081715
Czech Academy of Sciences
GA23-04703S
Grant Agency of the Czech Republic
PubMed
39201251
PubMed Central
PMC11354107
DOI
10.3390/ijms25168564
PII: ijms25168564
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial proteins, health-promoting effect, mass spectrometry-based proteomics, probiotics,
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny * metabolismus MeSH
- lidé MeSH
- probiotika * MeSH
- proteomika * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Zobrazit více v PubMed
Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. Expert consensus document. The Internal Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI
Lebeer S., Bron P.A., Marco M.L., Van Pijkeren J.P., O’Connell Motherway M., Hill C., Pot B., Roos S., Klaenhammer T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018;49:217–223. doi: 10.1016/j.copbio.2017.10.007. PubMed DOI
Gupta R.S. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 1998;62:1435–1491. doi: 10.1128/MMBR.62.4.1435-1491.1998. PubMed DOI PMC
Scott J.R., Barnett T.C. Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol. 2006;60:397–423. doi: 10.1146/annurev.micro.60.080805.142256. PubMed DOI
Fischetti V.A. Surface proteins on gram-positive bacteria. Microbiol. Spectr. 2019;7:GPP3-0012-2018. doi: 10.1128/microbiolspec.GPP3-0012-2018. PubMed DOI PMC
Flach J., van der Waal M.B., Kardinaal A.F.M., Schloesser J., Ruijschop R.M.A.J., Claasen E. Probiotic research priorities for the healthy adult population: A review on the health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12. Cogent Food Agric. 2018;66:1452839. doi: 10.1080/23311932.2018.1452839. DOI
Siciliano R.A., Mazzeo M.F. Molecular mechanisms of probiotic action: A proteomic perspective. Curr. Opin. Microbiol. 2012;15:390–396. doi: 10.1016/j.mib.2012.03.006. PubMed DOI
Zhang C., Zhang Y., Li H., Liu X. The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: Current research and future perspectives. Food Funct. 2020;11:1946. doi: 10.1039/C9FO02961C. PubMed DOI
Dominguez Rubio A.P.D., D’Antoni C.L., Piuri M., Perez O.E. Probiotics, their extracellular vesicles and infectious diseases. Front. Microbiol. 2022;13:864720. doi: 10.3389/fmicb.2022.864720. PubMed DOI PMC
Escobar-Sancez M., Carrasco-Navarro U., Juarez-Castelan C., Lozano-Aguirre Beltran L., Perez-Chabela M.L., Ponce-Alquicira E. Probiotic properties and proteomic analysis of Pediococcus pentosaceus 1101. Foods. 2022;12:46. doi: 10.3390/foods12010046. PubMed DOI PMC
Szajewska H., Horvath A. Lactobacillus rhamnosus GG in the primary prevention of eczema in children: A systematic review and meta-analysis. Nutrients. 2018;10:1319. doi: 10.3390/nu10091319. PubMed DOI PMC
Liu S., Hu P., Du X., Zhou T., Pei X. Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: A meta-analysis of randomized, placebo-controlled trials. Indian Pediatr. 2013;50:377–381. doi: 10.1007/s13312-013-0123-z. PubMed DOI
van Baarlen P., Troost F.J., van Hemert S., Kleerebezem M. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl. Acad. Sci. USA. 2009;106:2371–2376. doi: 10.1073/pnas.0809919106. PubMed DOI PMC
Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi: 10.1136/bmj.k2179. PubMed DOI PMC
Hu S., Wang L., Jiang Z. Dietary additive probiotics modulation of the intestinal microbiota. Protein Pept. Lett. 2017;24:382–387. doi: 10.2174/0929866524666170223143615. PubMed DOI
Chan H.H.Y., Siu P.L.K., Choy C.T., Chan U.K., Zhou J., Wong C.H., Lee Y.W., Chan H.W., Tsui J.C.C., Loo S.K.F., et al. Novel multi-strain E3 probiotic formulation improved mental health symptoms and sleep quality in Hong Kong Chinese. Nutrients. 2023;15:5037. doi: 10.3390/nu15245037. PubMed DOI PMC
Ponda P.P., Mayer L. Mucosal epithelium in health and disease. Curr. Mol. Med. 2005;5:549–556. doi: 10.2174/1566524054863933. PubMed DOI
Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009;9:799–809. doi: 10.1038/nri2653. PubMed DOI
Siciliano R.A., Lippolis R., Mazzeo M.F. Proteomics for the investigation of surface-exposed proteins in probiotics. Front. Nutr. 2019;6:52. doi: 10.3389/fnut.2019.00052. PubMed DOI PMC
Yan F., Polk D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011;27:496–501. doi: 10.1097/MOG.0b013e32834baa4d. PubMed DOI PMC
Gandhi A., Shah N.P. Integrating omics to unravel the stress-response mechanisms in probiotic bacteria: Approaches, challenges, and prospects. Crit. Rev. Food Sci. Nutr. 2017;57:3464–3471. doi: 10.1080/10408398.2015.1136805. PubMed DOI
Remus D.M., Bongers R.S., Meijerink M., Fusetti F., Poolman B., de Vos P., Wells J.M., Kleerebezem M., Bron P.A. Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J. Bacteriol. 2013;195:502–509. doi: 10.1128/JB.01321-12. PubMed DOI PMC
Yu X., Wei M., Yang D., Wu X., Wei H., Xu F. Lactiplantibacillus plantarum strain FLPL05 promotes longevity in mice by improving intestinal barrier. Probiotics Antimicrob. Proteins. 2023;15:1193–1205. doi: 10.1007/s12602-022-09933-5. PubMed DOI
Servin A.L. Antagonistic activities of lactobacilli and bifidobacterial against microbial pathogens. FEMS Microbiol. Rev. 2004;28:405–440. doi: 10.1016/j.femsre.2004.01.003. PubMed DOI
Corre S.C., Li Y., Riedel C.U., Gahan C.G.M. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarus UCC118. Proc. Natl. Acad. Sci. USA. 2007;104:7617–7621. doi: 10.1073/pnas.0700440104. PubMed DOI PMC
Makras L., Triantafyllou V., Fayol-Messaoudi D., Adriany T., Zoumpopoulou G., Tsakalidou E., Servin A., De Vuyst L. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol. 2006;157:241–247. doi: 10.1016/j.resmic.2005.09.002. PubMed DOI
Kazmierczak-Siedlecka K., Skonieczna-Zydecka K., Hupp T., Duchnowska R., Marek-Trzonkowska N., Polom K. Next-generation probiotics—Do they open new therapeutic strategy for cancer patients? Gut Microbes. 2022;14:2035659. doi: 10.1080/19490976.2022.2035659. PubMed DOI PMC
Dudik B., Kinova Sepova H., Greifova G., Bilka F., Bilkova A. Next generation probiotics: An overview of the most promising candidates. Epidemiol. Mikrobiol. Imunol. 2022;71:48–56. PubMed
Das A., Behera R.N., Kapoor A., Ambatipudi K. The potential of meta-proteomics and artificial intelligence to establish the next generation of probiotics for personalized healthcare. J. Agric. Food Chem. 2023;71:17528–17542. doi: 10.1021/acs.jafc.3c03834. PubMed DOI
Louis P., Scott K.P., Duncan S.H., Flint H.J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 2007;102:1197–1208. doi: 10.1111/j.1365-2672.2007.03322.x. PubMed DOI
Nie K., Ma K., Luo W., Shen Z., Yang Z., Xiao M., Tong T., Yang Y., Wang X. Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front. Cell. Infect. Microbiol. 2021;11:757718. doi: 10.3389/fcimb.2021.757718. PubMed DOI PMC
Marco M.L., Pavan S., Kleerebezem M. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 2006;17:204–210. doi: 10.1016/j.copbio.2006.02.005. PubMed DOI
Remaut H., Tang C., Henderson N.S., Pinkner J.S., Wang T., Hultgren S.J., Thanassi D.G., Waksman G., Li H. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell. 2008;133:640–652. doi: 10.1016/j.cell.2008.03.033. PubMed DOI PMC
Sleytr U.B., Beveridge T.J. Bacterial S-layers. Trends Microbiol. 1999;7:253–260. doi: 10.1016/S0966-842X(99)01513-9. PubMed DOI
Yan F., Cao H., Cover T.L., Whitehead R., Washington M.K., Polk D.B. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132:562–575. doi: 10.1053/j.gastro.2006.11.022. PubMed DOI PMC
Tao Y., Grabik K.A., Waypa T.S., Musch M.W., Alverdy J.C., Schneewind O., Chang E.B., Petrof E.O. Soluble factors from Lactobacillus GG activate MAPKS and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am. J. Physiol. Cell. Physiol. 2006;290:C1018-30. doi: 10.1152/ajpcell.00131.2005. PubMed DOI
Yan F., Polk D.B. Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 2012;3:25–28. doi: 10.4161/gmic.19245. PubMed DOI PMC
Aires J., Butel M.J. Proteomics, human gut microbiota and probiotics. Expert Rev. Proteom. 2011;8:279–288. doi: 10.1586/epr.11.5. PubMed DOI
Ruiz L., Hidalgo C., Blanco-Miguez A., Lourenco A., Sanchez B., Margolles A. Tackling probiotic and gut microbiota functionality through proteomics. J. Proteom. 2016;147:29–39. doi: 10.1016/j.jprot.2016.03.023. PubMed DOI
De Angelis M., Calasso M., Cavallo N., Di Cagno R., Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics. 2016;16:946–962. doi: 10.1002/pmic.201500117. PubMed DOI
Martin R., Langella P. Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol. 2019;10:1047. doi: 10.3389/fmicb.2019.01047. PubMed DOI PMC
Sauer S., Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 2010;8:74–82. doi: 10.1038/nrmicro2243. PubMed DOI
Welker M. Proteomics for routine identification of microorganisms. Proteomics. 2011;11:3143–3152. doi: 10.1002/pmic.201100049. PubMed DOI
Welker M., Van Belkum A., Girard V., Charrier J.P., Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev. Proteom. 2019;16:695–710. doi: 10.1080/14789450.2019.1645603. PubMed DOI
Izquierdo E., Horvatovich P., Marchioni E., Aoude-Werner D., Sanz Y., Ennahar S. 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis. 2009;30:949–956. doi: 10.1002/elps.200800399. PubMed DOI
Maffei B., Francetic O., Subtil A. Tracking proteins secreted by bacteria: What’s in the toolbox? Front. Cell. Infect. Microbiol. 2017;7:221. doi: 10.3389/fcimb.2017.00221. PubMed DOI PMC
Abele M., Doll E., Bayer F.P., Meng C., Lomp N., Neuhaus K., Scherer S., Kuster B., Ludwig C. Unified workflow for the rapid and in-depth characterization of bacterial proteomes. Mol. Cell. Proteom. 2023;22:100612. doi: 10.1016/j.mcpro.2023.100612. PubMed DOI PMC
Solis N., Cordwell S.J. Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics. 2011;11:3169–3189. doi: 10.1002/pmic.201000808. PubMed DOI
Bonn F., Maaß S., van Dijl J.M. Enrichment of cell surface-associated proteins in Gram-positive bacteria by biotinylation or trypsin shaving for mass spectrometry analysis. Methods Mol. Biol. 2018;1841:35–43. doi: 10.1007/978-1-4939-8695-8_4. PubMed DOI
Solis N., Larsen M.R., Cordwell S.J. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. Proteomics. 2010;10:2037–2049. doi: 10.1002/pmic.200900564. PubMed DOI
Ong S., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI
Dieterich D.C., Link A.J., Graumann J., Tirrell D.A., Schuman E.M. Selective identification of newly synthesized proteins in mammalian cells using biorthogonal noncanonical amino acid tagging (BONCAT) Proc. Natl. Acad. Sci. USA. 2006;103:9482–9487. doi: 10.1073/pnas.0601637103. PubMed DOI PMC
Ma Y., McClatchy D.B., Barkallah S., Wood W.W., Yates J.R., 3rd Quantitative analysis of newly synthesized proteins. Nat. Protoc. 2018;13:1744–1762. doi: 10.1038/s41596-018-0012-y. PubMed DOI PMC
Lange V., Picotti P., Domon B., Aebersold R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008;4:222. doi: 10.1038/msb.2008.61. PubMed DOI PMC
Hamon E., Horvatovich P., Izquierdo E., Bringel F., Marchioni E., Aoude-Werner D., Ennahar S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 2011;11:63. doi: 10.1186/1471-2180-11-63. PubMed DOI PMC
Silva W.M., Sousa C.S., Oliveira L.C., Soares S.C., Souza G.F.M.H., Tavares G.C., Resende C.P., Folador E.L., Pereira F.L., Figueiredo H., et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics. Microb. Biotechnol. 2019;12:265–274. doi: 10.1111/1751-7915.13305. PubMed DOI PMC
Chen S., Yi J., Suo K., Kang Q., Lu L., Lu J. Probiotic properties and proteomic analysis of ethanol-induced Lactococcus lactis subsp. lactis IL1403. World J. Microbiol. Biotechnol. 2023;39:197. doi: 10.1007/s11274-023-03627-y. PubMed DOI
Chen S., Yi J., Kang Q., Song M., Raubenheimer D., Lu J. Identification of a novel peptide with alcohol dehydrogenase activating ability from ethanol-induced Lactococcus lactis: A combined in silico prediction and in vivo validation. J. Agric. Food Chem. 2024;72:5746–5756. doi: 10.1021/acs.jafc.3c07632. PubMed DOI
Mbye M., Baig M.A., AbuQamar S.F., El-Tarabily K.A., Obaid R.S., Osaili T.M., Al-Nabulsi A.A., Turner M.S., Shah N.P., Ayyash M.M. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr. Rev. Food Sci. Food Saf. 2020;19:1110–1124. doi: 10.1111/1541-4337.12554. PubMed DOI
Beck H.C., Madsen S.M., Glenting J., Petersen J., Israelsen H., Norrelykke M.R., Antonsson M., Hansen A.M. Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum. FEMS Microbiol. Lett. 2009;297:61–66. doi: 10.1111/j.1574-6968.2009.01662.x. PubMed DOI
Desvaux M., Dumas E., Chafsey I., Hebraud M. Protein cell surface display in Gram-positive bacteria: From single protein to macromolecular protein structure. FEMS Microbiol. Lett. 2006;256:1–15. doi: 10.1111/j.1574-6968.2006.00122.x. PubMed DOI
Kwoji I.D., Aiyegoro O.A., Okpeku M., Adeleke M.A. Elucidating the mechanisms of cell-to-cell crosstalk in probiotics co-culture: A proteomics study of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614. Probiotics Antimicrob. Proteins. 2023 doi: 10.1007/s12602-023-10133-y. PubMed DOI
Wang G., Xia Y., Cui J., Gu Z., Song Y., Chen Y.Q., Chen H., Zhang H., Chen W. The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 2014;16:15–22. doi: 10.21775/cimb.016.015. PubMed DOI
Jeffery C.J. Intracellular/surface moonlighting proteins that aid in the attachment of gut microbiota to the host. AIMS Microbiol. 2019;5:77–86. doi: 10.3934/microbiol.2019.1.77. PubMed DOI PMC
Dramsi S., Bierne H. Spatial organization of cell wall-anchored proteins at the surface of Gram-positive bacteria. In: Bagnoli F., Rappuoli R., editors. Protein and Sugar Export and Assembly in Gram-Positive Bacteria. Volume 404. Springer; Cham, Switzerland: 2016. Current Topics in Microbiology and Immunology. DOI
Fagan R.P., Fairweather N.F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 2014;12:211–222. doi: 10.1038/nrmicro3213. PubMed DOI
Mazzeo M.F., Reale A., Di Renzo T., Siciliano R.A. Surface layer protein pattern of Levilactobacillus brevis strains investigated by proteomics. Nutrients. 2022;14:3679. doi: 10.3390/nu14183679. PubMed DOI PMC
Klotz C., O’Flaherty S., Goh Y.J., Barrangou R. Investigating the effect of growth phase on the surface-layer associated proteome of Lactobacillus acidophilus using quantitative proteomics. Front. Microbiol. 2017;8:2174. doi: 10.3389/fmicb.2017.02174. PubMed DOI PMC
Proft T., Baker E.N. Pili in Gram-negative and Gram-positive bacteria—Structure, assembly and their role in disease. Cell. Mol. Life Sci. 2009;66:613–635. doi: 10.1007/s00018-008-8477-4. PubMed DOI PMC
Lebeer S., Claes I., Tytgat H.L.P., Verhoeven T.L.A., Marien E., von Ossowski I., Reunanen J., Palva A., de Vos W.M., De Keersmaecker S.C.J., et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 2012;78:185–193. doi: 10.1128/AEM.06192-11. PubMed DOI PMC
Lightfoot Y.L., Selle K., Yang T., Goh Y.J., Sahay B., Zadeh M., Owen J.L., Colliou N., Li E., Johannssen T., et al. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 2015;34:881–895. doi: 10.15252/embj.201490296. PubMed DOI PMC
Calvo E., Pucciarelli M.G., Bierne H., Cossart P., Albar J.P., Garcia-Del Portillo F. Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics. 2005;5:433–443. doi: 10.1002/pmic.200400936. PubMed DOI
Tjalsma H., van Dijl J.M. Proteomic-based consensus prediction of protein retention in a bacterial membrane. Proteomics. 2005;5:4472–4482. doi: 10.1002/pmic.200402080. PubMed DOI
Candela M., Bergmann S., Vici M., Vitali B., Turroni S., Eikmanns B.J., Hammerschmidt S., Brigidi P. Binding of human plasminogen to Bifidobacterium. J. Bacteriol. 2007;189:5929–5936. doi: 10.1128/JB.00159-07. PubMed DOI PMC
Martin C., Escobedo S., Suarez J.E., Quiros L.M. Widespread use of Lactobacillus OppA, a surface located protein, as an adhesin that recognizes epithelial cell surface glycosaminoglycans. Benef. Microbes. 2019;10:463–472. doi: 10.3920/BM2018.0128. PubMed DOI
Dubey V., Mishra A.K., Ghosh A.R. Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp) J. Proteom. 2020;226:103894. doi: 10.1016/j.jprot.2020.103894. PubMed DOI
Zhai Z., Xiong Y., Gu Y., Lei Y., An H., Yi H., Zhao L., Ren F., Hao Y. Up-regulation of sortase-dependent pili in Bifidobacterium longum BBMN68 in response to bile stress enhances its adhesion to HT-29 cells. Pt 2Int. J. Biol. Macromol. 2024;257:127527. doi: 10.1016/j.ijbiomac.2023.127527. PubMed DOI
Qiao L., Dou X., Song X., Chang J., Zeng X., Zhu L., Xu C. Selenite bioremediation by food-grade probiotic Lactobacillus casei ATCC 393: Insights from proteomics analysis. Microbiol. Spectr. 2023;11:e0065923. doi: 10.1128/spectrum.00659-23. PubMed DOI PMC
Yang Y., Song X., Wang G., Xia Y., Xiong Z., Ai L. Understanding Ligilactobacillus salivarius from probiotic properties to omics technology: A review. Foods. 2024;13:895. doi: 10.3390/foods13060895. PubMed DOI PMC
Gilad O., Svensson B., Viborg A.H., Stuer-Lauridsen B., Jacobsen S. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics. 2011;11:2503–2514. doi: 10.1002/pmic.201000716. PubMed DOI
Bagon B.B., Oh J.K., Valeriano V.D.V., Pajarillo E.A.B., Kang D.K. Exploring the bile stress response of Lactobacillus mucosae LM1 through exoproteome analysis. Molecules. 2021;26:5695. doi: 10.3390/molecules26185695. PubMed DOI PMC
Sanchez B., Urdaci M.C., Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology. 2010;156:3232–3242. doi: 10.1099/mic.0.044057-0. PubMed DOI
Krzyzek P., Marinacci B., Vitele I., Grande R. Extracellular vesicles of probiotics: Shedding light on the biological activity and future applications. Pharmaceutics. 2023;15:522. doi: 10.3390/pharmaceutics15020522. PubMed DOI PMC
Shah R., Patel T., Freedman J.E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. 2018;379:958–966. doi: 10.1056/NEJMra1704286. PubMed DOI
Nah G., Park S.C., Kim K., Kim S., Park J., Lee S., Won S. Type-2 diabetics reduces spatial variation of microbiome based on extracellular vesicles from gut microbes across human body. Sci. Rep. 2019;9:20136. doi: 10.1038/s41598-019-56662-x. PubMed DOI PMC
Kalra H., Drummen G.P.C., Mathivanan S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 2016;17:170. doi: 10.3390/ijms17020170. PubMed DOI PMC
Stastna M. Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis. 2023;45:101–119. doi: 10.1002/elps.202300084. PubMed DOI
Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G., Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 2019;20:4673. doi: 10.3390/ijms20194673. PubMed DOI PMC
Vindertola G., Sanders M.E., Salminen S. The concept of postbiotics. Foods. 2022;11:1077. doi: 10.3390/foods11081077. PubMed DOI PMC
Kulig K., Kowalik K., Surowiec M., Karnas E., Barczyk-Woznicka O., Zuba-Surma E., Pyza E., Kozik A., Rapala-Kozik M., Karkowska-Kuleta J. Isolation and characteristics of extracellular vesicles produced by probiotics: Yeast Saccharomyces boulardii CNCM I-745 and Bacterium streptococcus salivarius K12. Probiotics Antimicrob. Proteins. 2023;16:936–948. doi: 10.1007/s12602-023-10085-3. PubMed DOI PMC
Lee B.H., Chen Y.Z., Shen T.L., Pan T.M., Hsu W.H. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem. 2023;427:136685. doi: 10.1016/j.foodchem.2023.136685. PubMed DOI
Huang J., Zhao A., He D., Wu X., Yan H., Zhu L. Isolation and proteomic analysis of extracellular vesicles from Lactobacillus salivarius SNK-6. J. Microbiol. Biotechnol. 2024;34:224–231. doi: 10.4014/jmb.2308.08017. PubMed DOI PMC
Rodovalho V.R., da Luz B.S.R., Nicolas A., Jardin J., Briard-Bion V., Folador E.L., Santos A.R., Jan G., Loir Y.L., Azevedo V.A.C., et al. Different culture media and purification methods unveil the core proteome of Propionibacterium freudenreichii-derived extracellular vesicles. Microlife. 2023;4:uqad029. doi: 10.1093/femsml/uqad029. PubMed DOI PMC
de Rezende Rodovalho V., da Luz B.S.R., Nicolas A., do Carmo F.L.R., Jardin J., Briard-Bion V., Jan G., Le Loir Y., de Carvalho Azevedo V.A., Guedon E. Environmental conditions modulate the protein content and immunomodulatory activity of extracellular vesicles produced by the probiotic Propionibacterium freudenreichii. Appl. Environ. Microbiol. 2021;87:e02263-20. doi: 10.1128/AEM.02263-20. PubMed DOI PMC
Hill D., Sugrue I., Tobin C., Hill C., Stanton C., Ross R.P. The Lactobacillus casei group: History and health related applications. Front. Microbiol. 2018;9:2107. doi: 10.3389/fmicb.2018.02107. PubMed DOI PMC
Huang R., Wang K., Hu J. Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016;8:483. doi: 10.3390/nu8080483. PubMed DOI PMC
Borgeraas H., Johnson L.K., Skattebu J., Hertel J.K., Hjemesaeth J. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2018;19:219–232. doi: 10.1111/obr.12626. PubMed DOI
Cuello-Garcia C.A., Brozek J.L., Fiocchi A., Pawankar R., Yepes-Nunez J.J., Terracciano L., Gandhi S., Agarwal A., Zhang Y., Schunemann H.J. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 2015;136:952–961. doi: 10.1016/j.jaci.2015.04.031. PubMed DOI
So S.S.Y., Wan M.L.Y., El-Nezami H. Probiotics-mediated suppression of cancer. Curr. Opin. Oncol. 2017;29:62–72. doi: 10.1097/CCO.0000000000000342. PubMed DOI
Raslan M.A., Raslan S.A., Shehata E.M., Mahmoud A.S., Viana M.V.C., Barh D., Sabri N.A., Azevedo V. Applications of proteomics in probiotics having anticancer and chemopreventive properties. Adv. Exp. Med. Biol. 2024;1443:243–256. doi: 10.1007/978-3-031-50624-6_13. PubMed DOI
Beltran-Velasco A.I., Reiriz M., Uceda S., Echeverry-Alzate V. Lactiplantibacillus (Lactobacillus) plantarum as a complementary treatment to improve symptomatology in neurodegenerative disease: A systematic review of open access literature. Int. J. Mol. Sci. 2024;25:3010. doi: 10.3390/ijms25053010. PubMed DOI PMC
Cafaro G., Cruciani G., Bruno L., Dal Pozzolo R., Colangelo A., Tromby F., Nicchi M., Pianese B., Perricone C., Gerli R., et al. Microbiota and arthritis: Cause or consequence? Clin. Exp. Rheumatol. 2024;42:1097–1103. doi: 10.55563/clinexprheumatol/f6q4dc. PubMed DOI
Jarosz L.S., Socala K., Michalak K., Wiater A., Ciszewski A., Majewska M., Marek A., Gradzki Z., Wlaz P. The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rgamnosus JB-1, on brain proteome profiles in mice. Psychopharmacology. 2024;241:925–945. doi: 10.1007/s00213-023-06519-z. PubMed DOI PMC
Cufaro M.C., Prete R., Di Marco F., Sabatini G., Corsetti A., Gonzalez N.G., Del Boccio P., Battista N. A proteomic insight reveals the role of food-associated Lactiplantibacillus plantarum C9O4 in reverting intestinal inflammation. iScience. 2023;26:108481. doi: 10.1016/j.isci.2023.108481. PubMed DOI PMC
Averina O.A., Kovtun A.S., Mavletova D.A., Ziganshin R.H., Danilenko V.N., Mihaylova D., Blazheva D., Slavchev A., Brazkova M., Ibrahim S.A., et al. Oxidative stress response of probiotic strain Bifidobacterium longum subsp. longum GT15. Foods. 2023;12:3356. doi: 10.3390/foods12183356. PubMed DOI PMC
Suez J., Zmora N., Segal E., Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019;25:716–729. doi: 10.1038/s41591-019-0439-x. PubMed DOI
Siciliano R.A., Reale A., Mazzeo M.F., Morandi S., Silvetti T., Brasca M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients. 2021;13:1225. doi: 10.3390/nu13041225. PubMed DOI PMC
Haranahalli Nataraj B., Behare P.V., Yadav H., Srivastava A.K. Emerging pre-clinical safety assessment for potential probiotic strains: A review. Crit. Rev. Food Sci. Nutr. 2023:1–29. doi: 10.1080/10408398.2023.2197066. PubMed DOI
Zucko J., Starcevic A., Diminic J., Oros D., Mortazavian A.M., Putnik P. Probiotic—Friend or foe? Curr. Opin. Food Sci. 2020;32:45–49. doi: 10.1016/j.cofs.2020.01.007. DOI
Wu F., Xie X., Du T., Jiang X., Miao W., Wang T. Lactococcus lactis, a bacterium with probiotic functions and pathogenicity. World J. Microbiol. Biotechnol. 2023;39:325. doi: 10.1007/s11274-023-03771-5. PubMed DOI
Pasala S., Singer L., Arshad T., Roach K. Lactobacillus endocarditis in a healthy patient with probiotic use. IDCases. 2020;22:e00915. doi: 10.1016/j.idcr.2020.e00915. PubMed DOI PMC
Rahman A., Alqaisi S., Nath J. A case of Lactobacillus casei endocarditis associated with probiotic intake in an immunocompromised patient. Cureus. 2023;15:e38049. doi: 10.7759/cureus.38049. PubMed DOI PMC
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J. 2024 doi: 10.1111/febs.17108. Early View . PubMed DOI
Kwoji I.D., Aiyegoro O.A., Okpeku M., Adeleke M.A. ‘Multi-omics’ data integration: Application in probiotics studies. npj Sci. Food. 2023;7:25. doi: 10.1038/s41538-023-00199-x. PubMed DOI PMC
Ferrocino I., Rentsiou K., McClure R., Kostic T., de Souza R.S.C., Lange L., FitzGerald J., Kriaa A., Cotter P., Maguin E., et al. Microbiome Support Consortium. Compr. Rev. Food Sci. Food Saf. 2023;22:1082–1103. doi: 10.1111/1541-4337.13103. PubMed DOI
Rajczewski A.T., Jagtap P.D., Griffin T.J. An overview of technologies for MS-based proteomics-centric multiomics. Expert Rev. Proteomics. 2022;19:165–181. doi: 10.1080/14789450.2022.2070476. PubMed DOI PMC
Bianchi L., Laghi L., Correani V., Schifano E., Landi C., Uccelletti D., Mattei B. A combined proteomics, metabolomics and in vivo analysis approach for the characterization of probiotics in large-scale production. Biomolecules. 2020;10:157. doi: 10.3390/biom10010157. PubMed DOI PMC
Preidis G.A., Weizman A.V., Kashyap P.C., Morgan R.L. AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology. 2020;159:708–738. doi: 10.1053/j.gastro.2020.05.060. PubMed DOI PMC
Al-Fakhrany O., Elekhnawy E. Next-generation probiotics: The upcoming biotherapeutics. Mol. Biol. Rep. 2024;51:505. doi: 10.1007/s11033-024-09398-5. PubMed DOI PMC
Abouelela M.E., Helmy Y.A. Next-generation probiotics as novel therapeutics for improving human health: Current trends and future perspectives. Microorganisms. 2024;12:430. doi: 10.3390/microorganisms12030430. PubMed DOI PMC