Age-related differences in macromolecular resonances observed in ultra-short-TE STEAM MR spectra at 7T

. 2024 Jul ; 92 (1) : 4-14. [epub] 20240305

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38441257

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
P41 EB027061 NIH HHS - United States
P30 NS076408 NIH HHS - United States
R01 AG055591 NIA NIH HHS - United States
U19 AG073585 NIA NIH HHS - United States
R01 AG039396 NIA NIH HHS - United States
P30 NS076408 NINDS NIH HHS - United States
U19AG073585 NIH HHS - United States
R01AG039396 NIH HHS - United States
R01AG055591 NIH HHS - United States

PURPOSE: To understand how macromolecular content varies in the human brain with age in a large cohort of healthy subjects. METHODS: In-vivo 1H-MR spectra were acquired using ultra-short TE STEAM at 7T in the posterior cingulate cortex. Macromolecular content was studied in 147 datasets from a cohort ranging in age from 19 to 89 y. Three fitting approaches were used to evaluate the macromolecular content: (1) a macromolecular resonances model developed for this study; (2) LCModel-simulated macromolecules; and (3) a combination of measured and LCModel-simulated macromolecules. The effect of age on the macromolecular content was investigated by considering age both as a continuous variable (i.e., linear regressions) and as a categorical variable (i.e., multiple comparisons among sub-groups obtained by stratifying data according to age by decade). RESULTS: While weak age-related effects were observed for macromolecular peaks at ˜0.9 (MM09), ˜1.2 (MM12), and ˜1.4 (MM14) ppm, moderate to strong effects were observed for peaks at ˜1.7 (MM17), and ˜2.0 (MM20) ppm. Significantly higher MM17 and MM20 content started from 30 to 40 y of age, while for MM09, MM12, and MM14, significantly higher content started from 60 to 70 y of age. CONCLUSIONS: Our findings provide insights into age-related differences in macromolecular contents and strengthen the necessity of using age-matched measured macromolecules during quantification.

Zobrazit více v PubMed

Deelchand DK, Henry PG, Uǧurbil K, Marjańska M. Measurement of transverse relaxation times of PubMed DOI PMC

Deelchand DK, Auerbach EJ, Kobayashi N, Marjańska M. Transverse relaxation time constants of the five major metabolites in human brain measured in vivo using LASER and PRESS at 3 T: T PubMed DOI PMC

Marjańska M, Auerbach EJ, Valabrègue R, Van de Moortele PF, Adriany G, Garwood M. Localized PubMed DOI PMC

Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med. 1993;30(1):38–44. doi: 10.1002/mrm.1910300107 PubMed DOI

Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in PubMed DOI

Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain PubMed DOI PMC

De Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL. High magnetic field water and metabolite proton PubMed DOI

Murali-Manohar S, Borbath T, Wright AM, Soher B, Mekle R, Henning A. T PubMed DOI

Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized PubMed DOI

Marjańska M, Deelchand DK, Hodges JS, et al. Altered macromolecular pattern and content in the aging human brain. NMR Biomed. 2018;31(2):e3865. doi: 10.1002/nbm.3865 PubMed DOI PMC

Hui SCN, Gong T, Zöllner HJ, et al. The macromolecular MR spectrum does not change with healthy aging. Magn Reson Med. 2022;87(4):1711–1719. doi: 10.1002/mrm.29093 PubMed DOI PMC

Zöllner HJ, Davies-Jenkins CW, Murali-Manohar S, et al. Feasibility and implications of using subject-specific macromolecular spectra to model short echo time magnetic resonance spectroscopy data. NMR Biomed. 2023;36(3). doi: 10.1002/nbm.4854 PubMed DOI PMC

Tkáč I, Andersen P, Adriany G, Merkle H, Uǧurbil K, Gruetter R. In vivo PubMed DOI

Tkáć I, Gruetter R. Methodology of PubMed DOI PMC

Marjańska M, McCarten JR, Hodges JS, Hemmy LS, Terpstra M. Distinctive Neurochemistry in Alzheimer’s Disease via 7 T In Vivo Magnetic Resonance Spectroscopy. Shaw M, ed. J Alzheimers Dis. 2019;68(2):559–569. doi: 10.3233/JAD-180861 PubMed DOI PMC

Marjańska M, McCarten JR, Hodges J, et al. Region-specific aging of the human brain as evidenced by neurochemical profiles measured noninvasively in the posterior cingulate cortex and the occipital lobe using PubMed DOI PMC

Marjańska M, Terpstra M. Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline. NMR Biomed. 2021;34(5). doi: 10.1002/nbm.4197 PubMed DOI PMC

Adriany G, Van de Moortele PF, Ritter J, et al. A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med. 2008;59(3):590–597. doi: 10.1002/mrm.21488 PubMed DOI

Brant-Zawadzki M, Gillan G, Nitz N. MPRAGE: a three-dimensional, T1-weighted, gradient-echo sequence—initial experience in the brain. Radiology. 1992;182(3):769–775. doi: 10.1148/radiology.182.3.1535892 PubMed DOI

Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Uğurbil K, Moeller S. T PubMed DOI PMC

Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele PF. Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 2008;59(2):396–409. doi: 10.1002/mrm.21476 PubMed DOI PMC

Gruetter R, Tkáč I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319–323. doi: 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 PubMed DOI

Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–679. doi: 10.1002/mrm.1910300604 PubMed DOI

Henry PG, Marjańska M, Walls JD, Valette J, Gruetter R, Ugurbil K. Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems. Magn Reson Med. 2006;55(2):250–257. doi: 10.1002/mrm.20764 PubMed DOI

Govind V, Young K, Maudsley AA. Corrigendum: Proton NMR chemical shifts and coupling constants for brain metabolites. Govindaraju V, Young K, Maudsley AA, NMR Biomed . 2000; 13: 129–153: Corrigendum. NMR Biomed. 2015;28(7):923–924. doi: 10.1002/nbm.3336 PubMed DOI

Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. Published online 2000:25. doi: 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V PubMed DOI

Provencher S LCModel1 & LCMgui User’s Manual. Published online 2021:184.

Lopez-Kolkovsky AL, Mériaux S, Boumezbeur F. Metabolite and macromolecule T PubMed DOI

Gasparovic C, Song T, Devier D, et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med. 2006;55(6):1219–1226. doi: 10.1002/mrm.20901 PubMed DOI

Abbas Z, Gras V, Möllenhoff K, Keil F, Oros-Peusquens AM, Shah NJ. Analysis of proton-density bias corrections based on T PubMed DOI

Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral water content changes: Study of age- and gender-related H PubMed DOI

Ernst T, Kreis R, Ross BD. Absolute Quantitation of Water and Metabolites in the Human Brain. 1. Compartments and Water. J Magn Reson. 1993;Series B 102:1–8. doi: 10.1006/jmrb.1993.1055 DOI

Rooney WD, Johnson G, Li X, et al. Magnetic field and tissue dependencies of human brain longitudinal PubMed DOI

Bartha R, Michaeli S, Merkle H, et al. In vivo PubMed DOI

Fischl B, Salat DH, Busa E, et al. Whole Brain Segmentation. Neuron. 2002;33(3):341–355. doi: 10.1016/S0896-6273(02)00569-X PubMed DOI

Cox RW. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput Biomed Res. 1996;29(3):162–173. doi: 10.1006/cbmr.1996.0014 PubMed DOI

Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. 2013;80:105–124. doi: 10.1016/j.neuroimage.2013.04.127 PubMed DOI PMC

Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48(1):63–72. doi: 10.1016/j.neuroimage.2009.06.060 PubMed DOI PMC

Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of Metabolite from Lipid and Macromolecule Resonances in Cerebral Infarction in Humans Using Short Echo Proton Spectroscopy. J Magn Reson Imaging. 1997;7(6):1116–1121. doi: 10.1002/jmri.1880070626 PubMed DOI

Graham GD, Hwang JH, Rothman DL, Prichard JW. Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke. Stroke. 2001;32(12):2797–2802. doi: 10.1161/hs1201.099414 PubMed DOI

Marjańska M, Emir UE, Deelchand DK, Terpstra M. Faster Metabolite PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...