Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
QK1910018
Ministry of Agriculture of the Czech Republic
RO0423
Ministry of Agriculture of the Czech Republic
SVV260679
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund (ERDF) project CePaViP
PubMed
38446070
DOI
10.1002/pmic.202300312
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, DWV, autophagy, host‐pathogen interaction, lipid metabolism,
- MeSH
- hmyzí proteiny metabolismus MeSH
- interakce hostitele a parazita MeSH
- peroxizomy * metabolismus virologie MeSH
- proteom metabolismus analýza MeSH
- proteomika metody MeSH
- RNA-viry * fyziologie MeSH
- signální transdukce MeSH
- Varroidae * virologie MeSH
- včely virologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- proteom MeSH
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
Department of Genetics and Microbiology Faculty of Science BIOCEV Charles University Vestec Czechia
Department of Parasitology Faculty of Science BIOCEV Charles University Vestec Czechia
Proteomics and Metabolomics Laboratory Crop Research Institute Prague 6 Ruzyne Czechia
Proteomics Core Facility Faculty of Science BIOCEV Charles University Vestec Czechia
Zobrazit více v PubMed
Anderson, D. L., & Trueman, J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology, 24(3), 165–189. https://doi.org/10.1023/A:1006456720416
Traynor, K. S., Mondet, F., de Miranda, J. R., Techer, M., Kowallik, V., Oddie, M. A. Y., Chantawannakul, P., & Mcafee, A. (2020). Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36(7), 592–606. https://doi.org/10.1016/j.pt.2020.04.004
Australian Government (2022). Varroa mite (Varroa destructor): pest situation. National pest & disease outbreaks. (Accessed date: 9 March 2023). https://www.outbreak.gov.au/current‐responses‐to‐outbreaks/varroa‐mite
Rooth, M. (2018). Varroa mite detected at Port of Melbourne on a ship from United States. ABC Rural, 29 June 2018. https://www.abc.net.au/news/rural/2018‐06‐29/varroa‐mite‐detected‐in‐melbourne/9923972
Martin, S. J. (2001). The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology, 38(5), 1082–1093. https://doi.org/10.1046/j.1365‐2664.2001.00662.x
Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103(Supplement 1), S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
Wilfert, L., Long, G., Leggett, H. C., Schmid‐Hempel, P., Butlin, R., Martin, S. J. M., & Boots, M. (2016). Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science, 351(6273), 594–597. https://doi.org/10.1126/science.aac9976
Roberts, J. M. K., Anderson, D. L., & Durr, P. A. (2018). Metagenomic analysis of Varroa‐free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. Journal of General Virology, 99(6), 818–826. https://doi.org/10.1099/jgv.0.001073
Kadleckova, D., Tachezy, R., Erban, T. S., Deboutte, W., Nunvar, J., Salakova, M., & Matthijnssens, J. (2022). The virome of healthy honey bee colonies: ubiquitous occurrence of known and new viruses in bee populations. mSystems, 7(3), e0007222. https://doi.org/10.1128/msystems.00072‐22
Bowen‐Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207–217. https://doi.org/10.1046/j.1570‐7458.2001.00905.x
Erban, T., Harant, K., Hubalek, M., Vitamvas, P., Kamler, M., Poltronieri, P., Tyl, J., Markovic, M., & Titera, D. (2015). In‐depth proteomic analysis of Varroa destructor: Detection of DWV‐complex, ABPV, VdMLV and honeybee proteins in the mite. Scientific Reports, 5(1), 13907. https://doi.org/10.1038/srep13907
McAfee, A., Chan, Q. W. T., Evans, J., & Foster, L. J. (2017). A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Molecular & Cellular Proteomics, 16(12), 2125–2137. https://doi.org/10.1074/mcp.RA117.000104
Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., Lim, D., Joklik, J., Cicero, J. M., Ellis, J. D., Hawthorne, D., & Vanengelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116
Slowinska, M., Nynca, J., Bak, B., Wilde, J., Siuda, M., & Ciereszko, A. (2019). 2D‐DIGE proteomic analysis reveals changes in haemolymph proteome of 1‐day‐old honey bee (Apis mellifera) workers in response to infection with Varroa destructor mites. Apidologie, 50(5), 632–656. https://doi.org/10.1007/s13592‐019‐00674‐z
Yang, X., & Cox‐Foster, D. L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7470–7475. https://doi.org/10.1073/pnas.0501860102
Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., Caprio, E., Nazzi, F., & Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3203–3208. https://doi.org/10.1073/pnas.1523515113
Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., Della Vedova, G., Cattonaro, F., Caprio, E., & Pennacchio, F. (2012). Synergistic parasite‐pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLOS Pathogens, 8(6), e1002735. https://doi.org/10.1371/journal.ppat.1002735
Erban, T., Sopko, B., Kadlikova, K., Talacko, P., & Harant, K. (2019). Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF‐β signaling pathways. Scientific Reports, 9(1), 9400. https://doi.org/10.1038/s41598‐019‐45764‐1
Kuster, R. D., Boncristiani, H. F., & Rueppell, O. (2014). Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. Journal of Experimental Biology, 217(10), 1710–1718. https://doi.org/10.1242/jeb.097766
Navajas, M., Migeon, A., Alaux, C., Martin‐Magniette, M. L., Robinson, G. E., Evans, J. D., Cros‐Arteil, S., Crauser, D., & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9(1), 301. https://doi.org/10.1186/1471‐2164‐9‐301
Johnson, R. M., Evans, J. D., Robinson, G. E., & Berenbaum, M. R. (2009). Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14790–14795. https://doi.org/10.1073/pnas.0906970106
Kunc, M., Dobes, P., Ward, R., Lee, S., Cegan, R., Dostalkova, S., Holusova, K., Hurychova, J., Elias, S., Pindakova, E., Cukanova, E., Prodelalova, J., Petrivalsky, M., Danihlik, J., Havlik, J., Hobza, R., Kavanagh, K., & Hyrsl, P. (2023). Omics‐based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochemistry and Molecular Biology, 152, 103877. https://doi.org/10.1016/j.ibmb.2022.103877
Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., Mead, A., Burroughs, N., & Evans, D. J. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor‐mediated, or in vitro, transmission. PLOS Pathogens, 10(6), e1004230. https://doi.org/10.1371/journal.ppat.1004230
Doublet, V., Poeschl, Y., Gogol‐Doring, A., Alaux, C., Annoscia, D., Aurori, C., Barribeau, S. M., Bedoya‐Reina, O. C., Brown, M. J. F., Bull, J. C., Flenniken, M. L., Galbraith, D. A., Genersch, E., Gisder, S., Grosse, I., Holt, H. L., Hultmark, D., Lattorff, H. M. G., Le Conte, Y., … Grozinger, C. M. (2017). Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 18(1), 207. https://doi.org/10.1186/s12864‐017‐3597‐6
Erban, T., Harant, K., Kamler, M., Markovic, M., & Titera, D. (2016). Detailed proteome mapping of newly emerged honeybee worker hemolymph and comparison with the red‐eye pupal stage. Apidologie, 47(6), 805–817. https://doi.org/10.1007/s13592‐016‐0437‐7
Erban, T., Parizkova, K., Sopko, B., Talacko, P., Markovic, M., Jarosova, J., & Votypka, J. (2023). Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers. Science of The Total Environment, 905, 166973. https://doi.org/10.1016/j.scitotenv.2023.166973
Erban, T., Sopko, B., Talacko, P., Harant, K., Kadlikova, K., Halesova, T., Riddellova, K., & Pekas, A. (2019). Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. Journal of Proteomics, 196, 69–80. https://doi.org/10.1016/j.jprot.2018.12.022
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26(12), 1367–1372. https://doi.org/10.1038/nbt.1511
Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513–2526. https://doi.org/10.1074/mcp.M113.031591
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10(4), 1794–1805. https://doi.org/10.1021/pr101065j
O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., Mcveigh, R., Rajput, B., Robbertse, B., Smith‐White, B., Ako‐Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., … Pruitt, K. D. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 44(D1), D733–D745. https://doi.org/10.1093/nar/gkv1189
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. https://doi.org/10.1038/nmeth.3901
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta‐Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & von Mering, C. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler‐Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro‐Watanabe, M. (2023). KEGG for taxonomy‐based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587–D592. https://doi.org/10.1093/nar/gkac963
Paysan‐Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Marchler‐Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418–D427. https://doi.org/10.1093/nar/gkac993
Lim, M. Y., Paulo, J. A., & Gygi, S. P. (2019). Evaluating false transfer rates from the match‐between‐runs algorithm with a two‐proteome model. Journal of Proteome Research, 18(11), 4020–4026. https://doi.org/10.1021/acs.jproteome.9b00492
Conceicao‐Neto, N., Yinda, K. C., Van Ranst, M., & Matthijnssens, J. (2018). NetoVIR: modular approach to customize sample preparation procedures for viral metagenomics. In: A. Moya, & V. P. Brocal (Eds.), The human virome (pp. 85–95). New York, NY: Humana Press. https://doi.org/10.1007/978‐1‐4939‐8682‐8_7
Babraham Bioinformatics. (2019). FastQC. Cambridge: Babraham Institute. (Accessed date: 9 March 2023). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
Buchfink, B., Reuter, K., & Drost, H. G. (2021). Sensitive protein alignments at tree‐of‐life scale using DIAMOND. Nature Methods, 18(4), 366–368. https://doi.org/10.1038/s41592‐021‐01101‐x
Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient architecture‐aware acceleration of BWA‐MEM for multicore systems. In: L. Alvarez, L. Arantes, E. Arima, T. Benson, J. L. Bez, S. Bhalachandra, … A. Zlateski (Eds.), 2019 IEEE 33rd International Parallel and Distributed Processing Symposium (IPDPS 2019) (pp. 314–324). https://doi.org/10.1109/ipdps.2019.00041
Woodcroft, B. J. (2021). CoverM. GitHub. (Accessed date: 9 March 2023). https://github.com/wwood/CoverM
Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 12(1), 385. https://doi.org/10.1186/1471‐2105‐12‐385
Skubnik, K., Novacek, J., Fuzik, T., Pridal, A., Paxton, R. J., & Plevka, P. (2017). Structure of deformed wing virus, a major honey bee pathogen. Proceedings of the National Academy of Sciences of the United States of America, 114(12), 3210–3215. https://doi.org/10.1073/pnas.1615695114
Lanzi, G., de Miranda, J. R., Boniotti, M. B., Cameron, C. E., Lavazza, A., Capucci, L., Camazine, S. M., & Rossi, C. (2006). Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). Journal of Virology, 80(10), 4998–5009. https://doi.org/10.1128/JVI.80.10.4998‐5009.2006
Remnant, E. J., Shi, M., Buchmann, G., Blacquiere, T., Holmes, E. C., Beekman, M., & Ashe, A. (2017). A diverse range of novel RNA viruses in geographically distinct honey bee populations. Journal of Virology, 91(16), e00158–00117. https://doi.org/10.1128/jvi.00158‐17
Reddy, K. E., Yoo, M.‐S., Kim, Y.‐H., Kim, N.‐H., Jung, H.‐N., Thao, L. T. B., Ramya, M., Doan, H. T. T., Nguyen, L. T. K., Jung, S.‐C., & Kang, S.‐W. (2014). Analysis of the RdRp, intergenic and structural polyprotein regions, and the complete genome sequence of Kashmir bee virus from infected honeybees (Apis mellifera) in Korea. Virus Genes, 49(1), 137–144. https://doi.org/10.1007/s11262‐014‐1074‐8
Organisation for Economic Co‐operation and Development (OECD). (2017). Test No. 245: Honey bee (Apis mellifera L.), chronic oral toxicity test (10‐day feeding). In: OECD (Ed.), OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems. Paris: OECD Publishing. https://www.oecd‐ilibrary.org/environment/test‐no‐245‐honey‐bee‐apis‐mellifera‐l‐chronic‐oral‐toxicity‐test‐10‐day‐feeding_9789264284081‐en
Surlis, C., Carolan, J. C., Coffey, M., & Kavanagh, K. (2018). Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor. Journal of Insect Physiology, 107, 291–301. https://doi.org/10.1016/j.jinsphys.2017.12.004
de Miranda, J. R., & Genersch, E. (2010). Deformed wing virus. Journal of Invertebrate Pathology, 103(Supplement 1), S48–S61. https://doi.org/10.1016/j.jip.2009.06.012
Paxton, R. J., Schafer, M. O., Nazzi, F., Zanni, V., Annoscia, D., Marroni, F., Bigot, D., Laws‐Quinn, E. R., Panziera, D., Jenkins, C., & Shafiey, H. (2022). Epidemiology of a major honey bee pathogen, deformed wing virus: Potential worldwide replacement of genotype A by genotype B. International Journal for Parasitology: Parasites and Wildlife, 18, 157–171. https://doi.org/10.1016/j.ijppaw.2022.04.013
Foster, L. J. (2011). Interpretation of data underlying the link between colony collapse disorder (CCD) and an invertebrate iridescent virus. Molecular & Cellular Proteomics, 10(3), M110006387. https://doi.org/10.1074/mcp.M110.006387
Morita, M., & Imanaka, T. (2019). The function of the peroxisome. In: T. Imanaka,& N. Shimozawa (Eds.), Peroxisomes: biogenesis, function, and role in human disease (pp. 59–104). Singapore: Springer. https://doi.org/10.1007/978‐981‐15‐1169‐1_4
Pridie, C., Ueda, K., & Simmonds, A. J. (2020). Rosy beginnings: Studying peroxisomes in Drosophila. Frontiers in Cell and Developmental Biology, 8, 835. https://doi.org/10.3389/fcell.2020.00835
Tripathi, D. N., & Walker, C. L. (2016). The peroxisome as a cell signaling organelle. Current Opinion in Cell Biology, 39, 109–112. https://doi.org/10.1016/j.ceb.2016.02.017
Sargsyan, Y., & Thoms, S. (2020). Staying in healthy contact: How peroxisomes interact with other cell organelles. Trends in Molecular Medicine, 26(2), 201–214. https://doi.org/10.1016/j.molmed.2019.09.012
Schrader, M., Kamoshita, M., & Islinger, M. (2020). Organelle interplay—peroxisome interactions in health and disease. Journal of Inherited Metabolic Disease, 43(1), 71–89. https://doi.org/10.1002/jimd.12083
Ivashchenko, O., Van Veldhoven, P. P., Brees, C., Ho, Y. E.‐S., Terlecky, S. R., & Fransen, M. (2011). Intraperoxisomal redox balance in mammalian cells: Oxidative stress and interorganellar cross‐talk. Molecular Biology of the Cell, 22(9), 1440–1451. https://doi.org/10.1091/mbc.E10‐11‐0919
Knoops, B., Argyropoulou, V., Becker, S., Ferte, L., & Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Molecules and Cells, 39(1), 60–64. https://doi.org/10.14348/molcells.2016.2341
Radyuk, S. N., Michalak, K., Klichko, V. I., Benes, J., & Orr, W. C. (2010). Peroxiredoxin 5 modulates immune response in Drosophila. Biochimica et Biophysica Acta (BBA)—General Subjects, 1800(11), 1153–1163. https://doi.org/10.1016/j.bbagen.2010.06.010
Shin, J. A., Chung, J. S., Cho, S.‐H., Kim, H. J., & Yoo, Y. D. (2013). Romo1 expression contributes to oxidative stress‐induced death of lung epithelial cells. Biochemical and Biophysical Research Communications, 439(2), 315–320. https://doi.org/10.1016/j.bbrc.2013.07.012
Amini, M. A., Karimi, J., Talebi, S. S., & Piri, H. (2022). The association of COVID‐19 and reactive oxygen species modulator 1 (ROMO1) with oxidative stress. Chonnam Medical Journal, 58(1), 1–5. https://doi.org/10.4068/cmj.2022.58.1.1
Olejnik, J., Hume, A. J., & Muhlberger, E. (2018). Toll‐like receptor 4 in acute viral infection: Too much of a good thing. PLOS Pathogens, 14(12), e1007390. https://doi.org/10.1371/journal.ppat.1007390
Liaunardy‐Jopeace, A., Bryant, C. E., & Gay, N. J. (2014). The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Science Signaling, 7(336), ra70. https://doi.org/10.1126/scisignal.2005275
Saraya, R., Veenhuis, M., & van der Klei, I. J. (2010). Peroxisomes as dynamic organelles: Peroxisome abundance in yeast. The FEBS Journal, 277(16), 3279–3288. https://doi.org/10.1111/j.1742‐4658.2010.07740.x
Lippai, M., & Low, P. (2014). The role of the selective adaptor p62 and ubiquitin‐like proteins in autophagy. BioMed Research International, 2014, 832704. https://doi.org/10.1155/2014/832704
Bar‐Peled, L., Schweitzer, L. D., Zoncu, R., & Sabatini, D. M. (2012). Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208. https://doi.org/10.1016/j.cell.2012.07.032
Sancak, Y., Bar‐Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290–303. https://doi.org/10.1016/j.cell.2010.02.024
Eun, S. Y., Lee, J. N., Nam, I.‐K., Liu, Z.‐q., So, H.‐S., Choe, S.‐K., & Park, R. K. (2018). PEX5 regulates autophagy via the mTORC1‐TFEB axis during starvation. Experimental & Molecular Medicine, 50(4), 1–12. https://doi.org/10.1038/s12276‐017‐0007‐8
Eid, W., Dauner, K., Courtney, K. C., Gagnon, A., Parks, R. J., Sorisky, A., & Zha, X. (2017). mTORC1 activates SREBP‐2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7999–8004. https://doi.org/10.1073/pnas.1705304114
Glitscher, M., & Hildt, E. (2021). Endosomal cholesterol in viral infections—a common denominator? Frontiers in Physiology, 12, 750544. https://doi.org/10.3389/fphys.2021.750544
Li, N. A., Hua, B., Chen, Q., Teng, F., Ruan, M., Zhu, M., Zhang, L. I., Huo, Y., Liu, H., Zhuang, M., Shen, H., & Zhu, H. (2022). A sphingolipid‐mTORC1 nutrient‐sensing pathway regulates animal development by an intestinal peroxisome relocation‐based gut‐brain crosstalk. Cell Reports, 40(4), 111140. https://doi.org/10.1016/j.celrep.2022.111140
Wang, X., Beugnet, A., Murakami, M., Yamanaka, S., & Proud, C. G. (2005). Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E‐binding proteins. Molecular and Cellular Biology, 25(7), 2558–2572. https://doi.org/10.1128/MCB.25.7.2558‐2572.2005
Thedieck, K., & Hall, M. N. (2010). Translational control by amino acids and energy. In: R. A. Bradshaw, & E. A. Dennis (Eds.), Handbook of cell signaling, Vol. 3, 2nd edn. (pp. 2285–2293). Amsterdam: Elsevier/Academic Press. https://doi.org/10.1016/B978‐0‐12‐374145‐5.00274‐6
Gingras, A.‐C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., & Sonenberg, N. (1999). Regulation of 4E‐BP1 phosphorylation: a novel two‐step mechanism. Genes & Development, 13(11), 1422–1437. https://doi.org/10.1101/gad.13.11.1422
Karaki, S., Andrieu, C., Ziouziou, H., & Rocchi, P. (2015). The eukaryotic translation initiation factor 4E (eIF4E) as a therapeutic target for cancer. Advances in Protein Chemistry and Structural Biology, 101, 1–26. https://doi.org/10.1016/bs.apcsb.2015.09.001
Perez‐Gil, G., Landa‐Cardena, A., Coutino, R., Garcia‐Roman, R., Sampieri, C. L., Mora, S. I., & Montero, H. (2015). 4EBP1 is dephosphorylated by respiratory syncytial virus infection. Intervirology, 58(4), 205–208. https://doi.org/10.1159/000435774
Connor, J. H., & Lyles, D. S. (2002). Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E‐BP1. Journal of Virology, 76(20), 10177–10187. https://doi.org/10.1128/jvi.76.20.10177‐10187.2002
Stern‐Ginossar, N., Thompson, S. R., Mathews, M. B., & Mohr, I. (2019). Translational control in virus‐infected cells. Cold Spring Harbor Perspectives in Biology, 11(3), a033001. https://doi.org/10.1101/cshperspect.a033001
Woodcock, H. V., Eley, J. D., Guillotin, D., Plate, M., Nanthakumar, C. B., Martufi, M., Peace, S., Joberty, G., Poeckel, D., Good, R. B., Taylor, A. R., Zinn, N., Redding, M., Forty, E. J., Hynds, R. E., Swanton, C., Karsdal, M., Maher, T. M., Fisher, A., … Chambers, R. C. (2019). The mTORC1/4E‐BP1 axis represents a critical signaling node during fibrogenesis. Nature Communications, 10(1), 6. https://doi.org/10.1038/s41467‐018‐07858‐8
Kisseleva, T., & Brenner, D. A. (2008). Mechanisms of fibrogenesis. Experimental Biology and Medicine, 233(2), 109–122. https://doi.org/10.3181/0707‐MR‐190
Wang, J., Cui, B., Chen, Z., & Ding, X. (2022). The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Frontiers in Cell and Developmental Biology, 10, 950973. https://doi.org/10.3389/fcell.2022.950973
Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016–1023. https://doi.org/10.1038/ncb2329
Chaudhury, A., & Howe, P. H. (2009). The tale of transforming growth factor‐beta (TGFβ) signaling: A soigne enigma. IUBMB Life, 61(10), 929–939. https://doi.org/10.1002/iub.239
Ramirez, H., Patel, S. B., & Pastar, I. (2014). The role of TGFβ signaling in wound epithelialization. Advances in Wound Care, 3(7), 482–491. https://doi.org/10.1089/wound.2013.0466
Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the immune response by TGF‐β: From conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236
Upadhyay, A., Moss‐Taylor, L., Kim, M.‐J., Ghosh, A. C., & O'Connor, M. B. (2017). TGF‐β family signaling in drosophila. Cold Spring Harbor Perspectives in Biology, 9(9), a022152. https://doi.org/10.1101/cshperspect.a022152
Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF‐β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. Journal of Cell Biology, 178(3), 437–451. https://doi.org/10.1083/jcb.200611146
Honda, D., Okumura, M., & Chihara, T. (2023). Crosstalk between the mTOR and Hippo pathways. Development, Growth & Differentiation, 65(6), 337–347. https://doi.org/10.1111/dgd.12867
Zhang, S., Liang, S., Wu, D., Guo, H., Ma, K., & Liu, L. (2021). LncRNA coordinates Hippo and mTORC1 pathway activation in cancer. Cell Death & Disease, 12(9), 822. https://doi.org/10.1038/s41419‐021‐04112‐w
Kulaberoglu, Y., Lin, K., Holder, M., Gai, Z., Gomez, M., Assefa Shifa, B., Mavis, M., Hoa, L., Sharif, A. A. D., Lujan, C., Smith, E. S. J., Bjedov, I., Tapon, N., Wu, G., & Hergovich, A. (2017). Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nature Communications, 8(1), 695. https://doi.org/10.1038/s41467‐017‐00795‐y
Liu, B. O., Zheng, Y., Yin, F., Yu, J., Silverman, N., & Pan, D. (2016). Toll receptor‐mediated Hippo signaling controls innate immunity in Drosophila. Cell, 164(3), 406–419. https://doi.org/10.1016/j.cell.2015.12.029
Huang, Y., Ma, F.‐t., & Ren, Q. (2020). Function of the MOB kinase activator‐like 1 in the innate immune defense of the oriental river prawn (Macrobrachium nipponense). Fish & Shellfish Immunology, 102, 440–448.
Munoz‐Wolf, N., & Lavelle, E. C. (2017). Hippo interferes with antiviral defences. Nature Cell Biology, 19(4), 267–269. https://doi.org/10.1038/ncb3502
Wang, Z., Lu, W., Zhang, Y., Zou, F., Jin, Z., & Zhao, T. (2020). The Hippo pathway and viral infections. Frontiers in Microbiology, 10, 3033. https://doi.org/10.3389/fmicb.2019.03033
Weaver, D. B., Cantarel, B. L., Elsik, C. G., Boncristiani, D. L., & Evans, J. D. (2021). Multi‐tiered analyses of honey bees that resist or succumb to parasitic mites and viruses. BMC Genomics, 22(1), 720. https://doi.org/10.1186/s12864‐021‐08032‐z
Yu, F.‐X., & Guan, K.‐L. (2013). The Hippo pathway: Regulators and regulations. Genes & Development, 27(4), 355–371. https://doi.org/10.1101/gad.210773.112
Dutta, S., Mana‐Capelli, S., Paramasivam, M., Dasgupta, I., Cirka, H., Billiar, K., & Mccollum, D. (2018). TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Reports, 19(2), 337–350. https://doi.org/10.15252/embr.201744777
Lin, V. T. G., & Lin, F.‐T. (2011). TRIP6: An adaptor protein that regulates cell motility, antiapoptotic signaling and transcriptional activity. Cellular Signalling, 23(11), 1691–1697. https://doi.org/10.1016/j.cellsig.2011.06.004
Karpova, N., Bobinnec, Y., Fouix, S., Huitorel, P., & Debec, A. (2006). Jupiter, a new Drosophila protein associated with microtubules. Cell Motility and the Cytoskeleton, 63(5), 301–312. https://doi.org/10.1002/cm.20124
Martinez, D., Zhu, M., Guidry, J. J., Majeste, N., Mao, H., Yanofsky, S. T., Tian, X., & Wu, C. (2021). Mask, the Drosophila ankyrin repeat and KH domain‐containing protein, affects microtubule stability. Journal of Cell Science, 134(20), jcs258512. https://doi.org/10.1242/jcs.258512
Walsh, D., & Naghavi, M. H. (2019). Exploitation of cytoskeletal networks during early viral infection. Trends in Microbiology, 27(1), 39–50. https://doi.org/10.1016/j.tim.2018.06.008
Marsh, M. (2005). Membrane trafficking in viral replication. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138037
Hernandez‐Gonzalez, M., Larocque, G., & Way, M. (2021). Viral use and subversion of membrane organization and trafficking. Journal of Cell Science, 134(5), jcs252676. https://doi.org/10.1242/jcs.25267
Taylor, M. P., Koyuncu, O. O., & Enquist, L. W. (2011). Subversion of the actin cytoskeleton during viral infection. Nature Reviews Microbiology, 9(6), 427–439. https://doi.org/10.1038/nrmicro2574
Seo, D., & Gammon, D. B. (2022). Manipulation of host microtubule networks by viral microtubule‐associated proteins. Viruses, 14(5), 979. https://doi.org/10.3390/v14050979
Badaoui, B., Fougeroux, A., Petit, F., Anselmo, A., Gorni, C., Cucurachi, M., Cersini, A., Granato, A., Cardeti, G., Formato, G., Mutinelli, F., Giuffra, E., Williams, J. L., & Botti, S. (2017). RNA‐sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLOS ONE, 12(3), e0173438. https://doi.org/10.1371/journal.pone.0173438
Kanbar, G., & Engels, W. (2004). Visualisation by vital staining with trypan blue of wounds punctured by Varroa destructor mites in pupae of the honey bee (Apis mellifera). Apidologie, 35(1), 25–29. https://doi.org/10.1051/apido:2003057
Parker, R., Guarna, M. M., Melathopoulos, A. P., Moon, K.‐M., White, R., Huxter, E., Pernal, S. F., & Foster, L. J. (2012). Correlation of proteome‐wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biology, 13(9), R81. https://doi.org/10.1186/gb‐2012‐13‐9‐r81
Li, J., Ma, L., Lin, Z., Zou, Z., & Lu, Z. (2016). Serpin‐5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 73, 27–37. https://doi.org/10.1016/j.ibmb.2016.04.003
An, C., & Kanost, M. R. (2010). Manduca sexta serpin‐5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochemistry and Molecular Biology, 40(9), 683–689. https://doi.org/10.1016/j.ibmb.2010.07.001
Katsukawa, M., Ohsawa, S., Zhang, L., Yan, Y., & Igaki, T. (2018). Serpin facilitates tumor‐suppressive cell competition by blocking Toll‐mediated Yki activation in Drosophila. Current Biology, 28(11), 1756–1767.e6.e1756. https://doi.org/10.1016/j.cub.2018.04.022