Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways

. 2024 May ; 24 (9) : e2300312. [epub] 20240306

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38446070

Grantová podpora
QK1910018 Ministry of Agriculture of the Czech Republic
RO0423 Ministry of Agriculture of the Czech Republic
SVV260679 Charles University
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund (ERDF) project CePaViP

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.

Zobrazit více v PubMed

Anderson, D. L., & Trueman, J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology, 24(3), 165–189. https://doi.org/10.1023/A:1006456720416

Traynor, K. S., Mondet, F., de Miranda, J. R., Techer, M., Kowallik, V., Oddie, M. A. Y., Chantawannakul, P., & Mcafee, A. (2020). Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36(7), 592–606. https://doi.org/10.1016/j.pt.2020.04.004

Australian Government (2022). Varroa mite (Varroa destructor): pest situation. National pest & disease outbreaks. (Accessed date: 9 March 2023). https://www.outbreak.gov.au/current‐responses‐to‐outbreaks/varroa‐mite

Rooth, M. (2018). Varroa mite detected at Port of Melbourne on a ship from United States. ABC Rural, 29 June 2018. https://www.abc.net.au/news/rural/2018‐06‐29/varroa‐mite‐detected‐in‐melbourne/9923972

Martin, S. J. (2001). The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology, 38(5), 1082–1093. https://doi.org/10.1046/j.1365‐2664.2001.00662.x

Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103(Supplement 1), S96–S119. https://doi.org/10.1016/j.jip.2009.07.016

Wilfert, L., Long, G., Leggett, H. C., Schmid‐Hempel, P., Butlin, R., Martin, S. J. M., & Boots, M. (2016). Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science, 351(6273), 594–597. https://doi.org/10.1126/science.aac9976

Roberts, J. M. K., Anderson, D. L., & Durr, P. A. (2018). Metagenomic analysis of Varroa‐free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. Journal of General Virology, 99(6), 818–826. https://doi.org/10.1099/jgv.0.001073

Kadleckova, D., Tachezy, R., Erban, T. S., Deboutte, W., Nunvar, J., Salakova, M., & Matthijnssens, J. (2022). The virome of healthy honey bee colonies: ubiquitous occurrence of known and new viruses in bee populations. mSystems, 7(3), e0007222. https://doi.org/10.1128/msystems.00072‐22

Bowen‐Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207–217. https://doi.org/10.1046/j.1570‐7458.2001.00905.x

Erban, T., Harant, K., Hubalek, M., Vitamvas, P., Kamler, M., Poltronieri, P., Tyl, J., Markovic, M., & Titera, D. (2015). In‐depth proteomic analysis of Varroa destructor: Detection of DWV‐complex, ABPV, VdMLV and honeybee proteins in the mite. Scientific Reports, 5(1), 13907. https://doi.org/10.1038/srep13907

McAfee, A., Chan, Q. W. T., Evans, J., & Foster, L. J. (2017). A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Molecular & Cellular Proteomics, 16(12), 2125–2137. https://doi.org/10.1074/mcp.RA117.000104

Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., Lim, D., Joklik, J., Cicero, J. M., Ellis, J. D., Hawthorne, D., & Vanengelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116

Slowinska, M., Nynca, J., Bak, B., Wilde, J., Siuda, M., & Ciereszko, A. (2019). 2D‐DIGE proteomic analysis reveals changes in haemolymph proteome of 1‐day‐old honey bee (Apis mellifera) workers in response to infection with Varroa destructor mites. Apidologie, 50(5), 632–656. https://doi.org/10.1007/s13592‐019‐00674‐z

Yang, X., & Cox‐Foster, D. L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7470–7475. https://doi.org/10.1073/pnas.0501860102

Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., Caprio, E., Nazzi, F., & Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3203–3208. https://doi.org/10.1073/pnas.1523515113

Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., Della Vedova, G., Cattonaro, F., Caprio, E., & Pennacchio, F. (2012). Synergistic parasite‐pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLOS Pathogens, 8(6), e1002735. https://doi.org/10.1371/journal.ppat.1002735

Erban, T., Sopko, B., Kadlikova, K., Talacko, P., & Harant, K. (2019). Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF‐β signaling pathways. Scientific Reports, 9(1), 9400. https://doi.org/10.1038/s41598‐019‐45764‐1

Kuster, R. D., Boncristiani, H. F., & Rueppell, O. (2014). Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. Journal of Experimental Biology, 217(10), 1710–1718. https://doi.org/10.1242/jeb.097766

Navajas, M., Migeon, A., Alaux, C., Martin‐Magniette, M. L., Robinson, G. E., Evans, J. D., Cros‐Arteil, S., Crauser, D., & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9(1), 301. https://doi.org/10.1186/1471‐2164‐9‐301

Johnson, R. M., Evans, J. D., Robinson, G. E., & Berenbaum, M. R. (2009). Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14790–14795. https://doi.org/10.1073/pnas.0906970106

Kunc, M., Dobes, P., Ward, R., Lee, S., Cegan, R., Dostalkova, S., Holusova, K., Hurychova, J., Elias, S., Pindakova, E., Cukanova, E., Prodelalova, J., Petrivalsky, M., Danihlik, J., Havlik, J., Hobza, R., Kavanagh, K., & Hyrsl, P. (2023). Omics‐based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochemistry and Molecular Biology, 152, 103877. https://doi.org/10.1016/j.ibmb.2022.103877

Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., Mead, A., Burroughs, N., & Evans, D. J. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor‐mediated, or in vitro, transmission. PLOS Pathogens, 10(6), e1004230. https://doi.org/10.1371/journal.ppat.1004230

Doublet, V., Poeschl, Y., Gogol‐Doring, A., Alaux, C., Annoscia, D., Aurori, C., Barribeau, S. M., Bedoya‐Reina, O. C., Brown, M. J. F., Bull, J. C., Flenniken, M. L., Galbraith, D. A., Genersch, E., Gisder, S., Grosse, I., Holt, H. L., Hultmark, D., Lattorff, H. M. G., Le Conte, Y., … Grozinger, C. M. (2017). Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 18(1), 207. https://doi.org/10.1186/s12864‐017‐3597‐6

Erban, T., Harant, K., Kamler, M., Markovic, M., & Titera, D. (2016). Detailed proteome mapping of newly emerged honeybee worker hemolymph and comparison with the red‐eye pupal stage. Apidologie, 47(6), 805–817. https://doi.org/10.1007/s13592‐016‐0437‐7

Erban, T., Parizkova, K., Sopko, B., Talacko, P., Markovic, M., Jarosova, J., & Votypka, J. (2023). Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers. Science of The Total Environment, 905, 166973. https://doi.org/10.1016/j.scitotenv.2023.166973

Erban, T., Sopko, B., Talacko, P., Harant, K., Kadlikova, K., Halesova, T., Riddellova, K., & Pekas, A. (2019). Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. Journal of Proteomics, 196, 69–80. https://doi.org/10.1016/j.jprot.2018.12.022

Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26(12), 1367–1372. https://doi.org/10.1038/nbt.1511

Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513–2526. https://doi.org/10.1074/mcp.M113.031591

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10(4), 1794–1805. https://doi.org/10.1021/pr101065j

O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., Mcveigh, R., Rajput, B., Robbertse, B., Smith‐White, B., Ako‐Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., … Pruitt, K. D. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 44(D1), D733–D745. https://doi.org/10.1093/nar/gkv1189

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. https://doi.org/10.1038/nmeth.3901

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta‐Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & von Mering, C. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler‐Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro‐Watanabe, M. (2023). KEGG for taxonomy‐based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587–D592. https://doi.org/10.1093/nar/gkac963

Paysan‐Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Marchler‐Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418–D427. https://doi.org/10.1093/nar/gkac993

Lim, M. Y., Paulo, J. A., & Gygi, S. P. (2019). Evaluating false transfer rates from the match‐between‐runs algorithm with a two‐proteome model. Journal of Proteome Research, 18(11), 4020–4026. https://doi.org/10.1021/acs.jproteome.9b00492

Conceicao‐Neto, N., Yinda, K. C., Van Ranst, M., & Matthijnssens, J. (2018). NetoVIR: modular approach to customize sample preparation procedures for viral metagenomics. In: A. Moya, & V. P. Brocal (Eds.), The human virome (pp. 85–95). New York, NY: Humana Press. https://doi.org/10.1007/978‐1‐4939‐8682‐8_7

Babraham Bioinformatics. (2019). FastQC. Cambridge: Babraham Institute. (Accessed date: 9 March 2023). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021

Buchfink, B., Reuter, K., & Drost, H. G. (2021). Sensitive protein alignments at tree‐of‐life scale using DIAMOND. Nature Methods, 18(4), 366–368. https://doi.org/10.1038/s41592‐021‐01101‐x

Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient architecture‐aware acceleration of BWA‐MEM for multicore systems. In: L. Alvarez, L. Arantes, E. Arima, T. Benson, J. L. Bez, S. Bhalachandra, … A. Zlateski (Eds.), 2019 IEEE 33rd International Parallel and Distributed Processing Symposium (IPDPS 2019) (pp. 314–324). https://doi.org/10.1109/ipdps.2019.00041

Woodcroft, B. J. (2021). CoverM. GitHub. (Accessed date: 9 March 2023). https://github.com/wwood/CoverM

Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 12(1), 385. https://doi.org/10.1186/1471‐2105‐12‐385

Skubnik, K., Novacek, J., Fuzik, T., Pridal, A., Paxton, R. J., & Plevka, P. (2017). Structure of deformed wing virus, a major honey bee pathogen. Proceedings of the National Academy of Sciences of the United States of America, 114(12), 3210–3215. https://doi.org/10.1073/pnas.1615695114

Lanzi, G., de Miranda, J. R., Boniotti, M. B., Cameron, C. E., Lavazza, A., Capucci, L., Camazine, S. M., & Rossi, C. (2006). Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). Journal of Virology, 80(10), 4998–5009. https://doi.org/10.1128/JVI.80.10.4998‐5009.2006

Remnant, E. J., Shi, M., Buchmann, G., Blacquiere, T., Holmes, E. C., Beekman, M., & Ashe, A. (2017). A diverse range of novel RNA viruses in geographically distinct honey bee populations. Journal of Virology, 91(16), e00158–00117. https://doi.org/10.1128/jvi.00158‐17

Reddy, K. E., Yoo, M.‐S., Kim, Y.‐H., Kim, N.‐H., Jung, H.‐N., Thao, L. T. B., Ramya, M., Doan, H. T. T., Nguyen, L. T. K., Jung, S.‐C., & Kang, S.‐W. (2014). Analysis of the RdRp, intergenic and structural polyprotein regions, and the complete genome sequence of Kashmir bee virus from infected honeybees (Apis mellifera) in Korea. Virus Genes, 49(1), 137–144. https://doi.org/10.1007/s11262‐014‐1074‐8

Organisation for Economic Co‐operation and Development (OECD). (2017). Test No. 245: Honey bee (Apis mellifera L.), chronic oral toxicity test (10‐day feeding). In: OECD (Ed.), OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems. Paris: OECD Publishing. https://www.oecd‐ilibrary.org/environment/test‐no‐245‐honey‐bee‐apis‐mellifera‐l‐chronic‐oral‐toxicity‐test‐10‐day‐feeding_9789264284081‐en

Surlis, C., Carolan, J. C., Coffey, M., & Kavanagh, K. (2018). Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor. Journal of Insect Physiology, 107, 291–301. https://doi.org/10.1016/j.jinsphys.2017.12.004

de Miranda, J. R., & Genersch, E. (2010). Deformed wing virus. Journal of Invertebrate Pathology, 103(Supplement 1), S48–S61. https://doi.org/10.1016/j.jip.2009.06.012

Paxton, R. J., Schafer, M. O., Nazzi, F., Zanni, V., Annoscia, D., Marroni, F., Bigot, D., Laws‐Quinn, E. R., Panziera, D., Jenkins, C., & Shafiey, H. (2022). Epidemiology of a major honey bee pathogen, deformed wing virus: Potential worldwide replacement of genotype A by genotype B. International Journal for Parasitology: Parasites and Wildlife, 18, 157–171. https://doi.org/10.1016/j.ijppaw.2022.04.013

Foster, L. J. (2011). Interpretation of data underlying the link between colony collapse disorder (CCD) and an invertebrate iridescent virus. Molecular & Cellular Proteomics, 10(3), M110006387. https://doi.org/10.1074/mcp.M110.006387

Morita, M., & Imanaka, T. (2019). The function of the peroxisome. In: T. Imanaka,& N. Shimozawa (Eds.), Peroxisomes: biogenesis, function, and role in human disease (pp. 59–104). Singapore: Springer. https://doi.org/10.1007/978‐981‐15‐1169‐1_4

Pridie, C., Ueda, K., & Simmonds, A. J. (2020). Rosy beginnings: Studying peroxisomes in Drosophila. Frontiers in Cell and Developmental Biology, 8, 835. https://doi.org/10.3389/fcell.2020.00835

Tripathi, D. N., & Walker, C. L. (2016). The peroxisome as a cell signaling organelle. Current Opinion in Cell Biology, 39, 109–112. https://doi.org/10.1016/j.ceb.2016.02.017

Sargsyan, Y., & Thoms, S. (2020). Staying in healthy contact: How peroxisomes interact with other cell organelles. Trends in Molecular Medicine, 26(2), 201–214. https://doi.org/10.1016/j.molmed.2019.09.012

Schrader, M., Kamoshita, M., & Islinger, M. (2020). Organelle interplay—peroxisome interactions in health and disease. Journal of Inherited Metabolic Disease, 43(1), 71–89. https://doi.org/10.1002/jimd.12083

Ivashchenko, O., Van Veldhoven, P. P., Brees, C., Ho, Y. E.‐S., Terlecky, S. R., & Fransen, M. (2011). Intraperoxisomal redox balance in mammalian cells: Oxidative stress and interorganellar cross‐talk. Molecular Biology of the Cell, 22(9), 1440–1451. https://doi.org/10.1091/mbc.E10‐11‐0919

Knoops, B., Argyropoulou, V., Becker, S., Ferte, L., & Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Molecules and Cells, 39(1), 60–64. https://doi.org/10.14348/molcells.2016.2341

Radyuk, S. N., Michalak, K., Klichko, V. I., Benes, J., & Orr, W. C. (2010). Peroxiredoxin 5 modulates immune response in Drosophila. Biochimica et Biophysica Acta (BBA)—General Subjects, 1800(11), 1153–1163. https://doi.org/10.1016/j.bbagen.2010.06.010

Shin, J. A., Chung, J. S., Cho, S.‐H., Kim, H. J., & Yoo, Y. D. (2013). Romo1 expression contributes to oxidative stress‐induced death of lung epithelial cells. Biochemical and Biophysical Research Communications, 439(2), 315–320. https://doi.org/10.1016/j.bbrc.2013.07.012

Amini, M. A., Karimi, J., Talebi, S. S., & Piri, H. (2022). The association of COVID‐19 and reactive oxygen species modulator 1 (ROMO1) with oxidative stress. Chonnam Medical Journal, 58(1), 1–5. https://doi.org/10.4068/cmj.2022.58.1.1

Olejnik, J., Hume, A. J., & Muhlberger, E. (2018). Toll‐like receptor 4 in acute viral infection: Too much of a good thing. PLOS Pathogens, 14(12), e1007390. https://doi.org/10.1371/journal.ppat.1007390

Liaunardy‐Jopeace, A., Bryant, C. E., & Gay, N. J. (2014). The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Science Signaling, 7(336), ra70. https://doi.org/10.1126/scisignal.2005275

Saraya, R., Veenhuis, M., & van der Klei, I. J. (2010). Peroxisomes as dynamic organelles: Peroxisome abundance in yeast. The FEBS Journal, 277(16), 3279–3288. https://doi.org/10.1111/j.1742‐4658.2010.07740.x

Lippai, M., & Low, P. (2014). The role of the selective adaptor p62 and ubiquitin‐like proteins in autophagy. BioMed Research International, 2014, 832704. https://doi.org/10.1155/2014/832704

Bar‐Peled, L., Schweitzer, L. D., Zoncu, R., & Sabatini, D. M. (2012). Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208. https://doi.org/10.1016/j.cell.2012.07.032

Sancak, Y., Bar‐Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290–303. https://doi.org/10.1016/j.cell.2010.02.024

Eun, S. Y., Lee, J. N., Nam, I.‐K., Liu, Z.‐q., So, H.‐S., Choe, S.‐K., & Park, R. K. (2018). PEX5 regulates autophagy via the mTORC1‐TFEB axis during starvation. Experimental & Molecular Medicine, 50(4), 1–12. https://doi.org/10.1038/s12276‐017‐0007‐8

Eid, W., Dauner, K., Courtney, K. C., Gagnon, A., Parks, R. J., Sorisky, A., & Zha, X. (2017). mTORC1 activates SREBP‐2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7999–8004. https://doi.org/10.1073/pnas.1705304114

Glitscher, M., & Hildt, E. (2021). Endosomal cholesterol in viral infections—a common denominator? Frontiers in Physiology, 12, 750544. https://doi.org/10.3389/fphys.2021.750544

Li, N. A., Hua, B., Chen, Q., Teng, F., Ruan, M., Zhu, M., Zhang, L. I., Huo, Y., Liu, H., Zhuang, M., Shen, H., & Zhu, H. (2022). A sphingolipid‐mTORC1 nutrient‐sensing pathway regulates animal development by an intestinal peroxisome relocation‐based gut‐brain crosstalk. Cell Reports, 40(4), 111140. https://doi.org/10.1016/j.celrep.2022.111140

Wang, X., Beugnet, A., Murakami, M., Yamanaka, S., & Proud, C. G. (2005). Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E‐binding proteins. Molecular and Cellular Biology, 25(7), 2558–2572. https://doi.org/10.1128/MCB.25.7.2558‐2572.2005

Thedieck, K., & Hall, M. N. (2010). Translational control by amino acids and energy. In: R. A. Bradshaw, & E. A. Dennis (Eds.), Handbook of cell signaling, Vol. 3, 2nd edn. (pp. 2285–2293). Amsterdam: Elsevier/Academic Press. https://doi.org/10.1016/B978‐0‐12‐374145‐5.00274‐6

Gingras, A.‐C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., & Sonenberg, N. (1999). Regulation of 4E‐BP1 phosphorylation: a novel two‐step mechanism. Genes & Development, 13(11), 1422–1437. https://doi.org/10.1101/gad.13.11.1422

Karaki, S., Andrieu, C., Ziouziou, H., & Rocchi, P. (2015). The eukaryotic translation initiation factor 4E (eIF4E) as a therapeutic target for cancer. Advances in Protein Chemistry and Structural Biology, 101, 1–26. https://doi.org/10.1016/bs.apcsb.2015.09.001

Perez‐Gil, G., Landa‐Cardena, A., Coutino, R., Garcia‐Roman, R., Sampieri, C. L., Mora, S. I., & Montero, H. (2015). 4EBP1 is dephosphorylated by respiratory syncytial virus infection. Intervirology, 58(4), 205–208. https://doi.org/10.1159/000435774

Connor, J. H., & Lyles, D. S. (2002). Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E‐BP1. Journal of Virology, 76(20), 10177–10187. https://doi.org/10.1128/jvi.76.20.10177‐10187.2002

Stern‐Ginossar, N., Thompson, S. R., Mathews, M. B., & Mohr, I. (2019). Translational control in virus‐infected cells. Cold Spring Harbor Perspectives in Biology, 11(3), a033001. https://doi.org/10.1101/cshperspect.a033001

Woodcock, H. V., Eley, J. D., Guillotin, D., Plate, M., Nanthakumar, C. B., Martufi, M., Peace, S., Joberty, G., Poeckel, D., Good, R. B., Taylor, A. R., Zinn, N., Redding, M., Forty, E. J., Hynds, R. E., Swanton, C., Karsdal, M., Maher, T. M., Fisher, A., … Chambers, R. C. (2019). The mTORC1/4E‐BP1 axis represents a critical signaling node during fibrogenesis. Nature Communications, 10(1), 6. https://doi.org/10.1038/s41467‐018‐07858‐8

Kisseleva, T., & Brenner, D. A. (2008). Mechanisms of fibrogenesis. Experimental Biology and Medicine, 233(2), 109–122. https://doi.org/10.3181/0707‐MR‐190

Wang, J., Cui, B., Chen, Z., & Ding, X. (2022). The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Frontiers in Cell and Developmental Biology, 10, 950973. https://doi.org/10.3389/fcell.2022.950973

Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016–1023. https://doi.org/10.1038/ncb2329

Chaudhury, A., & Howe, P. H. (2009). The tale of transforming growth factor‐beta (TGFβ) signaling: A soigne enigma. IUBMB Life, 61(10), 929–939. https://doi.org/10.1002/iub.239

Ramirez, H., Patel, S. B., & Pastar, I. (2014). The role of TGFβ signaling in wound epithelialization. Advances in Wound Care, 3(7), 482–491. https://doi.org/10.1089/wound.2013.0466

Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the immune response by TGF‐β: From conception to autoimmunity and infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236

Upadhyay, A., Moss‐Taylor, L., Kim, M.‐J., Ghosh, A. C., & O'Connor, M. B. (2017). TGF‐β family signaling in drosophila. Cold Spring Harbor Perspectives in Biology, 9(9), a022152. https://doi.org/10.1101/cshperspect.a022152

Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF‐β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. Journal of Cell Biology, 178(3), 437–451. https://doi.org/10.1083/jcb.200611146

Honda, D., Okumura, M., & Chihara, T. (2023). Crosstalk between the mTOR and Hippo pathways. Development, Growth & Differentiation, 65(6), 337–347. https://doi.org/10.1111/dgd.12867

Zhang, S., Liang, S., Wu, D., Guo, H., Ma, K., & Liu, L. (2021). LncRNA coordinates Hippo and mTORC1 pathway activation in cancer. Cell Death & Disease, 12(9), 822. https://doi.org/10.1038/s41419‐021‐04112‐w

Kulaberoglu, Y., Lin, K., Holder, M., Gai, Z., Gomez, M., Assefa Shifa, B., Mavis, M., Hoa, L., Sharif, A. A. D., Lujan, C., Smith, E. S. J., Bjedov, I., Tapon, N., Wu, G., & Hergovich, A. (2017). Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nature Communications, 8(1), 695. https://doi.org/10.1038/s41467‐017‐00795‐y

Liu, B. O., Zheng, Y., Yin, F., Yu, J., Silverman, N., & Pan, D. (2016). Toll receptor‐mediated Hippo signaling controls innate immunity in Drosophila. Cell, 164(3), 406–419. https://doi.org/10.1016/j.cell.2015.12.029

Huang, Y., Ma, F.‐t., & Ren, Q. (2020). Function of the MOB kinase activator‐like 1 in the innate immune defense of the oriental river prawn (Macrobrachium nipponense). Fish & Shellfish Immunology, 102, 440–448.

Munoz‐Wolf, N., & Lavelle, E. C. (2017). Hippo interferes with antiviral defences. Nature Cell Biology, 19(4), 267–269. https://doi.org/10.1038/ncb3502

Wang, Z., Lu, W., Zhang, Y., Zou, F., Jin, Z., & Zhao, T. (2020). The Hippo pathway and viral infections. Frontiers in Microbiology, 10, 3033. https://doi.org/10.3389/fmicb.2019.03033

Weaver, D. B., Cantarel, B. L., Elsik, C. G., Boncristiani, D. L., & Evans, J. D. (2021). Multi‐tiered analyses of honey bees that resist or succumb to parasitic mites and viruses. BMC Genomics, 22(1), 720. https://doi.org/10.1186/s12864‐021‐08032‐z

Yu, F.‐X., & Guan, K.‐L. (2013). The Hippo pathway: Regulators and regulations. Genes & Development, 27(4), 355–371. https://doi.org/10.1101/gad.210773.112

Dutta, S., Mana‐Capelli, S., Paramasivam, M., Dasgupta, I., Cirka, H., Billiar, K., & Mccollum, D. (2018). TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Reports, 19(2), 337–350. https://doi.org/10.15252/embr.201744777

Lin, V. T. G., & Lin, F.‐T. (2011). TRIP6: An adaptor protein that regulates cell motility, antiapoptotic signaling and transcriptional activity. Cellular Signalling, 23(11), 1691–1697. https://doi.org/10.1016/j.cellsig.2011.06.004

Karpova, N., Bobinnec, Y., Fouix, S., Huitorel, P., & Debec, A. (2006). Jupiter, a new Drosophila protein associated with microtubules. Cell Motility and the Cytoskeleton, 63(5), 301–312. https://doi.org/10.1002/cm.20124

Martinez, D., Zhu, M., Guidry, J. J., Majeste, N., Mao, H., Yanofsky, S. T., Tian, X., & Wu, C. (2021). Mask, the Drosophila ankyrin repeat and KH domain‐containing protein, affects microtubule stability. Journal of Cell Science, 134(20), jcs258512. https://doi.org/10.1242/jcs.258512

Walsh, D., & Naghavi, M. H. (2019). Exploitation of cytoskeletal networks during early viral infection. Trends in Microbiology, 27(1), 39–50. https://doi.org/10.1016/j.tim.2018.06.008

Marsh, M. (2005). Membrane trafficking in viral replication. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138037

Hernandez‐Gonzalez, M., Larocque, G., & Way, M. (2021). Viral use and subversion of membrane organization and trafficking. Journal of Cell Science, 134(5), jcs252676. https://doi.org/10.1242/jcs.25267

Taylor, M. P., Koyuncu, O. O., & Enquist, L. W. (2011). Subversion of the actin cytoskeleton during viral infection. Nature Reviews Microbiology, 9(6), 427–439. https://doi.org/10.1038/nrmicro2574

Seo, D., & Gammon, D. B. (2022). Manipulation of host microtubule networks by viral microtubule‐associated proteins. Viruses, 14(5), 979. https://doi.org/10.3390/v14050979

Badaoui, B., Fougeroux, A., Petit, F., Anselmo, A., Gorni, C., Cucurachi, M., Cersini, A., Granato, A., Cardeti, G., Formato, G., Mutinelli, F., Giuffra, E., Williams, J. L., & Botti, S. (2017). RNA‐sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLOS ONE, 12(3), e0173438. https://doi.org/10.1371/journal.pone.0173438

Kanbar, G., & Engels, W. (2004). Visualisation by vital staining with trypan blue of wounds punctured by Varroa destructor mites in pupae of the honey bee (Apis mellifera). Apidologie, 35(1), 25–29. https://doi.org/10.1051/apido:2003057

Parker, R., Guarna, M. M., Melathopoulos, A. P., Moon, K.‐M., White, R., Huxter, E., Pernal, S. F., & Foster, L. J. (2012). Correlation of proteome‐wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biology, 13(9), R81. https://doi.org/10.1186/gb‐2012‐13‐9‐r81

Li, J., Ma, L., Lin, Z., Zou, Z., & Lu, Z. (2016). Serpin‐5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 73, 27–37. https://doi.org/10.1016/j.ibmb.2016.04.003

An, C., & Kanost, M. R. (2010). Manduca sexta serpin‐5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochemistry and Molecular Biology, 40(9), 683–689. https://doi.org/10.1016/j.ibmb.2010.07.001

Katsukawa, M., Ohsawa, S., Zhang, L., Yan, Y., & Igaki, T. (2018). Serpin facilitates tumor‐suppressive cell competition by blocking Toll‐mediated Yki activation in Drosophila. Current Biology, 28(11), 1756–1767.e6.e1756. https://doi.org/10.1016/j.cub.2018.04.022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...