• This record comes from PubMed

Comparative Effectiveness of Natalizumab, Fingolimod, and Injectable Therapies in Pediatric-Onset Multiple Sclerosis: A Registry-Based Study

. 2024 Apr 09 ; 102 (7) : e208114. [epub] 20240306

Language English Country United States Media print-electronic

Document type Journal Article

BACKGROUND AND OBJECTIVES: Patients with pediatric-onset multiple sclerosis (POMS) typically experience higher levels of inflammation with more frequent relapses, and though patients with POMS usually recover from relapses better than adults, patients with POMS reach irreversible disability at a younger age than adult-onset patients. There have been few randomized, placebo-controlled clinical trials of multiple sclerosis (MS) disease-modifying therapies (DMTs) in patients with POMS, and most available data are based on observational studies of off-label use of DMTs approved for adults. We assessed the effectiveness of natalizumab compared with fingolimod using injectable platform therapies as a reference in pediatric patients in the global MSBase registry. METHODS: This retrospective study included patients with POMS who initiated treatment with an injectable DMT, natalizumab, or fingolimod between January 1, 2006, and May 3, 2021. Patients were matched using inverse probability treatment weighting. The primary outcome was time to first relapse from index therapy initiation. Secondary study outcomes included annualized relapse rate; proportions of relapse-free patients at 1, 2, and 5 years; time to treatment discontinuation; and times to 24-week confirmed disability worsening and confirmed disability improvement. RESULTS: A total of 1,218 patients with POMS were included in this analysis. Patients treated with fingolimod had a significantly lower risk of relapse than patients treated with injectable DMTs (hazard ratio [HR], 0.49; 95% confidence interval [CI], 0.29-0.83; p = 0.008). After adjustment for prior DMT experience in the unmatched sample, patients treated with natalizumab had a significantly lower risk of relapse than patients treated either with injectable DMTs (HR, 0.15; 95% CI 0.07-0.31; p < 0.001) or fingolimod (HR, 0.37; 95% CI 0.14-1.00; p = 0.049). The adjusted secondary study outcomes were generally consistent with the primary outcome or with previous observations. The findings in the inverse probability treatment weighting-adjusted patient populations were confirmed in multiple sensitivity analyses. DISCUSSION: Our analyses of relapse risk suggest that natalizumab is more effective than fingolimod in the control of relapses in this population with high rates of new inflammatory activity, consistent with previous studies of natalizumab and fingolimod in adult-onset patients and POMS. In addition, both fingolimod and natalizumab were more effective than first-line injectable therapies. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that patients with POMS treated with natalizumab had a lower risk of relapse than those with fingolimod.

Erratum In

PubMed

See more in PubMed

Multiple Sclerosis International Federation. Atlas of MS 3rd edition. Part 2: clinical management of multiple sclerosis around the world; 2021. Accessed October 31, 2022. msif.org/wp-content/uploads/2021/05/Atlas-3rd-Edition-clinical-management-report-EN-5-5-21.pdf.

McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. J Am Med Assoc. 2021;325(8):765-779. doi:10.1001/jama.2020.26858 PubMed DOI

Boiko A, Vorobeychik G, Paty D, Devonshire V, Sadovnick D, University of British Columbia MS Clinic Neurologists. Early onset multiple sclerosis: a longitudinal study. Neurology. 2002;59(7):1006-1010. doi:10.1212/wnl.59.7.1006 PubMed DOI

Chitnis T, Glanz B, Jaffin S, Healy B. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler. 2009;15(5):627-631. doi:10.1177/1352458508101933 PubMed DOI

Harding KE, Liang K, Cossburn MD, et al. . Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2013;84(2):141-147. doi:10.1136/jnnp-2012-303996 PubMed DOI

Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009;66(1):54-59. doi:10.1001/archneurol.2008.505 PubMed DOI

Alroughani R, Boyko A. Pediatric multiple sclerosis: a review. BMC Neurol. 2018;18(1):27. doi:10.1186/s12883-018-1026-3 PubMed DOI PMC

Benson LA, Healy BC, Gorman MP, et al. . Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Mult Scler Relat Disord. 2014;3(2):186-193. doi:10.1016/j.msard.2013.06.004 PubMed DOI

Renoux C, Vukusic S, Mikaeloff Y, et al. . Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356(25):2603-2613. doi:10.1056/NEJMoa067597 PubMed DOI

Wallach AI, Waltz M, Casper TC, et al. . Cognitive processing speed in pediatric-onset multiple sclerosis: baseline characteristics of impairment and prediction of decline. Mult Scler. 2020;26(14):1938-1947. doi:10.1177/1352458519891984 PubMed DOI

McKay KA, Friberg E, Razaz N, Alexanderson K, Hillert J. Long-term socioeconomic outcomes associated with pediatric-onset multiple sclerosis. JAMA Neurol. 2021;78(4):478-482. doi:10.1001/jamaneurol.2020.5520 PubMed DOI PMC

Baroncini D, Simone M, Iaffaldano P, et al. . Risk of persistent disability in patients with pediatric-onset multiple sclerosis. JAMA Neurol. 2021;78(6):726-735. doi:10.1001/jamaneurol.2021.1008 PubMed DOI PMC

Jakimovski D, Awan S, Eckert SP, Farooq O, Weinstock-Guttman B. Multiple sclerosis in children: differential diagnosis, prognosis, and disease-modifying treatment. CNS Drugs. 2022;36(1):45-59. doi:10.1007/s40263-021-00887-w PubMed DOI PMC

Bar-Or A, Hintzen RQ, Dale RC, Rostasy K, Bruck W, Chitnis T. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases. Neurology. 2016;87(9 suppl 2):S12-S19. doi:10.1212/WNL.0000000000002821 PubMed DOI

Waubant E, Ponsonby AL, Pugliatti M, Hanwell H, Mowry EM, Hintzen RQ. Environmental and genetic factors in pediatric inflammatory demyelinating diseases. Neurology. 2016;87(9 suppl 2):S20-S27. doi:10.1212/WNL.0000000000003029 PubMed DOI

Margoni M, Rinaldi F, Perini P, Gallo P. Therapy of pediatric-onset multiple sclerosis: state of the art, challenges, and opportunities. Front Neurol. 2021;12:676095. doi:10.3389/fneur.2021.676095 PubMed DOI PMC

Baroncini D, Zaffaroni M, Moiola L, et al. . Long-term follow-up of pediatric MS patients starting treatment with injectable first-line agents: a multicentre, Italian, retrospective, observational study. Mult Scler. 2019;25(3):399-407. doi:10.1177/1352458518754364 PubMed DOI

Krysko KM, Graves J, Rensel M, et al. . Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology. 2018;91(19):e1778-e1787. doi:10.1212/WNL.0000000000006471 PubMed DOI PMC

Gilenya® (Fingolimod) [prescribing Information]. Novartis Pharmaceuticals Corp; 2019.

Gilenya® (Fingolimod) [summary of Product Characteristics]. Novartis Pharma GmbH; 2018.

Chitnis T, Arnold DL, Banwell B, et al. . Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018;379(11):1017-1027. doi:10.1056/NEJMoa1800149 PubMed DOI

Banwell B, Reder AT, Krupp L, et al. . Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology. 2006;66(4):472-476. doi:10.1212/01.wnl.0000198257.52512.1a PubMed DOI

Ghezzi A, Amato MP, Capobianco M, et al. . Treatment of early-onset multiple sclerosis with intramuscular interferon beta-1a: long-term results. Neurol Sci. 2007;28(3):127-132. doi:10.1007/s10072-007-0804-2 PubMed DOI

Kornek B, Aboul-Enein F, Rostasy K, et al. . Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol. 2013;70(4):469-475. doi:10.1001/jamaneurol.2013.923 PubMed DOI

Tenembaum SN, Banwell B, Pohl D, et al. . Subcutaneous interferon beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol. 2013;28(7):849-856. doi:10.1177/0883073813488828 PubMed DOI

Krysko KM, Graves JS, Rensel M, et al. . Real-world effectiveness of initial disease-modifying therapies in pediatric multiple sclerosis. Ann Neurol. 2020;88(1):42-55. doi:10.1002/ana.25737 PubMed DOI

Palavra F, Figueiroa S, Correia AS, et al. . TyPed study: natalizumab for the treatment of pediatric-onset multiple sclerosis in Portugal. Mult Scler Relat Disord. 2021;51:102865. doi:10.1016/j.msard.2021.102865 PubMed DOI

Simpson A, Mowry EM, Newsome SD. Early aggressive treatment approaches for multiple sclerosis. Curr Treat Options Neurol. 2021;23(7):19. doi:10.1007/s11940-021-00677-1 PubMed DOI PMC

Kalincik T, Butzkueven H. The MSBase registry: informing clinical practice. Mult Scler. 2019;25(14):1828-1834. doi:10.1177/1352458519848965 PubMed DOI

Butzkueven H, Chapman J, Cristiano E, et al. . MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler. 2006;12(6):769-774. doi:10.1177/1352458506070775 PubMed DOI

Waubant E, Banwell B, Wassmer E, et al. . Clinical trials of disease-modifying agents in pediatric MS: opportunities, challenges, and recommendations from the IPMSSG. Neurology. 2019;92(22):e2538-e2549. doi:10.1212/WNL.0000000000007572 PubMed DOI PMC

Cohen JA, Trojano M, Mowry EM, Uitdehaag BM, Reingold SC, Marrie RA. Leveraging real-world data to investigate multiple sclerosis disease behavior, prognosis, and treatment. Mult Scler. 2020;26(1):23-37. doi:10.1177/1352458519892555 PubMed DOI PMC

Schwartz CE, Grover SA, Powell VE, et al. . Risk factors for non-adherence to disease-modifying therapy in pediatric multiple sclerosis. Mult Scler. 2018;24(2):175-185. doi:10.1177/1352458517695469 PubMed DOI PMC

Baroncini D, Ghezzi A, Guaschino C, et al. . Long-term follow-up (up to 11 years) of an Italian pediatric MS cohort treated with Natalizumab: a multicenter, observational study. Neurol Sci. 2022;43(11):6415-6423. doi:10.1007/s10072-022-06211-8 PubMed DOI

Butzkueven H, Kappos L, Wiendl H, et al. . Long-term safety and effectiveness of natalizumab treatment in clinical practice: 10 years of real-world data from the Tysabri Observational Program (TOP). J Neurol Neurosurg Psychiatry. 2020;91(6):660-668. doi:10.1136/jnnp-2019-322326 PubMed DOI PMC

Kalincik T, Horakova D, Spelman T, et al. . Switch to natalizumab versus fingolimod in active relapsing-remitting multiple sclerosis. Ann Neurol. 2015;77(3):425-435. doi:10.1002/ana.24339 PubMed DOI

He A, Spelman T, Jokubaitis V, et al. . Comparison of switch to fingolimod or interferon beta/glatiramer acetate in active multiple sclerosis. JAMA Neurol. 2015;72(4):405-413. doi:10.1001/jamaneurol.2014.4147 PubMed DOI

Kister I, Spelman T, Alroughani R, et al. . Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: a propensity score-matched study. J Neurol Neurosurg Psychiatry. 2016;87(10):1133-1137. doi:10.1136/jnnp-2016-313760 PubMed DOI

Spelman T, Kalincik T, Zhang A, et al. . Comparative efficacy of switching to natalizumab in active multiple sclerosis. Ann Clin Transl Neurol. 2015;2(4):373-387. doi:10.1002/acn3.180 PubMed DOI PMC

Allan V, Ramagopalan SV, Mardekian J, et al. . Propensity score matching and inverse probability of treatment weighting to address confounding by indication in comparative effectiveness research of oral anticoagulants. J Comp Eff Res. 2020;9(9):603-614. doi:10.2217/cer-2020-0013 PubMed DOI

Arnold DL, Banwell B, Bar-Or A, et al. . Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIGMS study. J Neurol Neurosurg Psychiatry. 2020;91(5):483-492. doi:10.1136/jnnp-2019-322138 PubMed DOI PMC

Deiva K, Huppke P, Banwell B, et al. . Consistent control of disease activity with fingolimod versus IFN β-1a in paediatric-onset multiple sclerosis: further insights from PARADIGMS. J Neurol Neurosurg Psychiatry. 2020;91(1):58-66. doi:10.1136/jnnp-2019-321124 PubMed DOI PMC

Feng J, Rensel M. Review of the safety, efficacy and tolerability of fingolimod in the treatment of pediatric patients with relapsing-remitting forms of multiple sclerosis (RRMS). Pediatr Health Med Ther. 2019;10:141-146. doi:10.2147/PHMT.S220817 PubMed DOI PMC

Zaffaroni M. Fingolimod in pediatric-onset multiple sclerosis. Neurol Sci. 2021;42(suppl 1):1-4. doi:10.1007/s10072-021-05294-z PubMed DOI

Ziemssen T, Albrecht H, Haas J, et al. . Descriptive analysis of real-world data on fingolimod long-term treatment of young adult RRMS patients. Front Neurol. 2021;12:637107. doi:10.3389/fneur.2021.637107 PubMed DOI PMC

Cohen M, Mondot L, Bucciarelli F, et al. . BEST-MS: a prospective head-to-head comparative study of natalizumab and fingolimod in active relapsing MS. Mult Scler. 2021;27(10):1556-1563. doi:10.1177/1352458520969145 PubMed DOI

Butzkueven H, Licata S, Jeffery D, et al. . Natalizumab versus fingolimod for patients with active relapsing-remitting multiple sclerosis: results from REVEAL, a prospective, randomised head-to-head study. BMJ Open. 2020;10(10):e038861. doi:10.1136/bmjopen-2020-038861 PubMed DOI PMC

Guerra T, Caputo F, Orlando B, Paolicelli D, Trojano M, Iaffaldano P. Long-term comparative analysis of no evidence of disease activity (NEDA-3) status between multiple sclerosis patients treated with natalizumab and fingolimod for up to 4 years. Neurol Sci. 2021;42(11):4647-4655. doi:10.1007/s10072-021-05127-z PubMed DOI PMC

He A, Merkel B, Brown JWL, et al. . Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 2020;19(4):307-316. doi:10.1016/S1474-4422(20)30067-3 PubMed DOI

Brown JWL, Coles A, Horakova D, et al. . Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321(2):175-187. doi:10.1001/jama.2018.20588 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...