Ca2+ Depletion in the ER Causes Store-Operated Ca2+ Entry via the TRPC6 Channel in Mouse Brown Adipocytes
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38466006
PubMed Central
PMC11019620
DOI
10.33549/physiolres.935071
PII: 935071
Knihovny.cz E-zdroje
- MeSH
- endoplazmatické retikulum metabolismus MeSH
- hnědé tukové buňky metabolismus MeSH
- kationtové kanály TRP * metabolismus MeSH
- kationtové kanály TRPC metabolismus MeSH
- kationtový kanál TRPC6 metabolismus MeSH
- myši MeSH
- vápník metabolismus MeSH
- vápníková signalizace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kationtové kanály TRP * MeSH
- kationtové kanály TRPC MeSH
- kationtový kanál TRPC6 MeSH
- vápník MeSH
beta3-adrenergic activation causes Ca2+ release from the mitochondria and subsequent Ca2+ release from the endoplasmic reticulum (ER), evoking store-operated Ca2+ entry (SOCE) due to Ca2+ depletion from the ER in mouse brown adipocytes. In this study, we investigated how Ca2+ depletion from the ER elicits SOCE in mouse brown adipocytes using fluorometry of intracellular Ca2+ concentration ([Ca2+]i). The administration of cyclopiazonic acid (CPA), a reversible sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump blocker in the ER, caused an increase in [Ca2+]i. Moreover, CPA induced SOCE was suppressed by the administration of a Ca2+ free Krebs solution and the transient receptor potential canonical 6 (TRPC6) selective blockers 2-APB, ML-9 and GsMTx-4 but not Pico145, which blocks TRPC1/4/5. Administration of TRPC6 channel agonist 1-oleoyl-2-acetyl-sn-glycerol (OAG) and flufenamic acid elicited Ca2+ entry. Moreover, our RT-PCR analyses detected mRNAs for TRPC6 in brown adipose tissues. In addition, western blot analyses showed the expression of the TRPC6 protein. Thus, TRPC6 is one of the Ca2+ pathways involved in SOCE. These modes of Ca2+ entry provide the basis for heat production via activation of Ca2+-dependent dehydrogenase and the expression of uncoupling protein 1 (UCP1). Enhancing thermogenic metabolism in brown adipocytes may serve as broad therapeutic utility to reduce obesity and metabolic syndrome.
Zobrazit více v PubMed
Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. PubMed DOI
Berridge MJ. Inositol trisphophate and calcium signalling. Nature. 1993;361:315–325. doi: 10.1038/361315a0. PubMed DOI
Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992;355:353–356. doi: 10.1038/355353a0. PubMed DOI
Parekh AB. Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. J Physiol. 2003;547:333–348. doi: 10.1113/jphysiol.2002.034140. PubMed DOI PMC
Putney JW., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. doi: 10.1016/0143-4160(86)90026-6. PubMed DOI
Hayato R, Higure Y, Kuba M, Nagai H, Yamashita H, Kuba K. β3-Adrenergic activation of sequential Ca2+ release from mitochondria and the endoplasmic reticulum and the subsequent Ca2+ entry in rodent brown adipocytes. Cell Calcium. 2011;49:400–414. doi: 10.1016/j.ceca.2011.02.011. PubMed DOI
Zhao J, Cannon B, Nedergaard J. Thermogenesis is beta3- but not beta1-adrenergically mediated in rat brown fat cells, even after cold acclimation. Am J Physiol Regul Integr Comp Physiol. 1998;275:R2002–R2011. doi: 10.1152/ajpregu.1998.275.6.R2002. PubMed DOI
Granneman JG. Norepinephrine and BRL37344 stimulate adenylate cyclase by different receptors in rat brown adipose tissue. J Pharmacol Exp Ther. 1990;254:508–513. PubMed
Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev. 1984;64:1–64. doi: 10.1152/physrev.1984.64.1.1. PubMed DOI
Trayhurn P. Brown adipose tissue and nutritional energetics - where are we now? Proc Nutr Soc. 1989;48:165–175. doi: 10.1079/PNS19890026. PubMed DOI
Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1999;1415:271–296. doi: 10.1016/S0005-2736(98)00232-6. PubMed DOI
Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404:652–660. doi: 10.1038/35007527. PubMed DOI
Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol. 2000;529:3–10. doi: 10.1111/j.1469-7793.2000.00003.x. PubMed DOI PMC
Lee SC, Nuccitelli R, Pappone PA. Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block. Am J Physiol. 1993;264:C217–C228. doi: 10.1152/ajpcell.1993.264.1.C217. PubMed DOI
Nånberg E, Putney J., Jr Alpha1-adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Lett. 1986;195:319–322. doi: 10.1016/0014-5793(86)80185-5. PubMed DOI
Omatsu-Kanbe M, Matsuura H. Inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes. J Physiol. 1999;521:601–615. doi: 10.1111/j.1469-7793.1999.00601.x. PubMed DOI PMC
Kuba M, Higure Y, Susaki H, Hayato R, Kuba K. Bidirectional Ca2+ coupling of mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+ entries in rat brown adipocytes. Am J Physiol Cell Physiol. 2007;292:C896–C908. doi: 10.1152/ajpcell.00649.2005. PubMed DOI
de Meis L, Ketzer LA, da Costa RM, de Andrade IR, Marlene Benchimol M. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+ PLoS One. 2010;5:e9439. doi: 10.1371/journal.pone.0009439. PubMed DOI PMC
Guarnieri AR, Benson TW, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue. Mol Pharmacol. 2022;102:51–59. doi: 10.1124/molpharm.121.000465. PubMed DOI PMC
Wolfrum C, Kiehlmann E, Pelczar P. TRPC1 regulates brown adipose tissue activity in a PPARγ-dependent manner. Am J Physiol Endocrinol Metab. 2018;315:E825–E832. doi: 10.1152/ajpendo.00170.2017. PubMed DOI
Sukumar P, Sedo A, Li J, Wilson LA, O’Regan D, Lippiat JD, Porter KE, et al. Constitutively Active TRPC Channels of Adipocytes Confer a Mechanism for Sensing Dietary Fatty Acids and Regulating Adiponectin. Circ Res. 2012;111:191–200. doi: 10.1161/CIRCRESAHA.112.270751. PubMed DOI PMC
Lu W, Wang J, Shimoda LA, Sylvester JT. Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2008;295:L104–L113. doi: 10.1152/ajplung.00058.2008. PubMed DOI PMC
Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 2006;98:1528–1537. doi: 10.1161/01.RES.0000227551.68124.98. PubMed DOI
Trebak M, Bird GS, McKay RR, Putney JW., Jr Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem. 2002;277:21617–21623. doi: 10.1074/jbc.M202549200. PubMed DOI
Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–458. doi: 10.1038/bmt.2012.244. PubMed DOI PMC
Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. 2-aminoetho-xydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem. 2004;279:35741–35748. doi: 10.1074/jbc.M404164200. PubMed DOI
Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci. 2004;24:5177–5182. doi: 10.1523/JNEUROSCI.0934-04.2004. PubMed DOI PMC
Togashi K, Inada H, Tominaga M. Inhibition of the transient receptor potential cation channel TRPM2 by 2-amino-ethoxydiphenyl borate (2-APB) Br J Pharmacol. 2008;153:1324–1330. doi: 10.1038/sj.bjp.0707675. PubMed DOI PMC
Chokshi R, Fruasaha P, Kozak JA. 2-Aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism. Channels. 2012;6:362–369. doi: 10.4161/chan.21628. PubMed DOI PMC
Lievremont JP, Bird GS, Putney JW., Jr Mechanism of inhibition of TRPC cation channels by 2-aminoetho-xydiphenylborane. Mol Pharmacol. 2005;68:758–762. doi: 10.1124/mol.105.012856. PubMed DOI
Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol. 2005;145:405–414. doi: 10.1038/sj.bjp.0706197. PubMed DOI PMC
Shi J, Takahashi S, Jin XH, Li YQ, Ito Y, Mori Y, Inoue R. Myosin light chain kinase-independent inhibition by ML-9 of murine TRPC6 channels expressed in HEK293 cells. Br J Pharmacol. 2007;152:122–131. doi: 10.1038/sj.bjp.0707368. PubMed DOI PMC
Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A. 2006;103:16586–16591. doi: 10.1073/pnas.0606894103. PubMed DOI PMC
Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259–263. doi: 10.1038/16711. PubMed DOI
Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, et al. The Transient Receptor Potential Protein Homologue TRP6 Is the Essential Component of Vascular alpha1-adrenoceptor-activated Ca2+-Permeable Cation Channel. Circ Res. 2001;88:325–332. doi: 10.1161/01.RES.88.3.325. PubMed DOI
Foster RR, Zadeh MAH, Welsh GI, Satchell SC, Ye Y, Mathieson PW, Bates DO, Saleem MA. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium. 2009;45:384–390. doi: 10.1016/j.ceca.2009.01.003. PubMed DOI
Semtner S, Schaefer M, Pinkenburg O, Plant TD. Potentiation of TRPC5 by protons. J Biol Chem. 2007;282:33868–33878. doi: 10.1074/jbc.M702577200. PubMed DOI
Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y. TRPC6 channels promote dendritic growth via the CAMKIV-CREB pathway. J Cell Sci. 2008;121:2301–2307. doi: 10.1242/jcs.026906. PubMed DOI
Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci. 2008;11:741–743. doi: 10.1038/nn.2127. PubMed DOI
Jia Y, Zhou J, Tai Y, Wang Y. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci. 2007;10:559–567. doi: 10.1038/nn1870. PubMed DOI
Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics. 2006;7:159. doi: 10.1186/1471-2164-7-159. PubMed DOI PMC
Wang Y, Falting JM, Mattsson CL, Holmstrom TE, Nedergaard J. In brown adipocytes, adrenergically induced beta(1)-/beta(3)-(Gs)-, alpha(2)-(Gi)- and alpha(1)-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res. 2013;319:2718–2727. doi: 10.1016/j.yexcr.2013.08.007. PubMed DOI
Bishnoi M, Kondepudi KK, Gupta A, Karmase A, Boparai RK. Expression of multiple Transient Receptor Potential channel genes in murine 3T3-L1 cell lines and adipose tissue. Pharmacol Rep. 2013;65:751–755. doi: 10.1016/S1734-1140(13)71055-7. PubMed DOI
Sun W, Uchida K, Suzuki Y, Zhou Y, Kim M, Takayama Y, Takahashi N, et al. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep. 2016;17:383–399. doi: 10.15252/embr.201540819. PubMed DOI PMC
Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch. 2008;455:1097–1103. doi: 10.1007/s00424-007-0359-3. PubMed DOI