Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
CZOPENSCREEN-LM2023052
Infrastructural projects funded by the Ministry of Education, Youth and Sports of the Czech Republic
EATRIS-CZ-LM2023053
Infrastructural projects funded by the Ministry of Education, Youth and Sports of the Czech Republic
LX22NPO5102
European Union - Next Generation EU from the Ministry of Education, Youth and Sports of the Czech Republic (Program EXCELES)
LX22NPO5107
European Union - Next Generation EU from the Ministry of Education, Youth and Sports of the Czech Republic (Program EXCELES)
Project TN02000109 - Personalised Medicine: From Translational Research into Biomedical Applications is co-financed with the state support of the Technology Agency of the Czech Republic as part of the National Centers of Competence Program
23-06301J
the Czech Science Foundation (GAČR)
PubMed
38530106
DOI
10.1002/med.22033
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, aging, antineoplastic, dementia, drug repurposing, neurodegenerative diseases,
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- demence * farmakoterapie MeSH
- lidé MeSH
- pozorovací studie jako téma MeSH
- přehodnocení terapeutických indikací léčivého přípravku * MeSH
- preklinické hodnocení léčiv MeSH
- protinádorové látky * farmakologie terapeutické užití chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protinádorové látky * MeSH
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Zobrazit více v PubMed
Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. 2022;7(2):e105‐e125.
Alzheimer's Association. 2020 Alzheimer's disease facts and figures. Alzheimer's Dement. 2020;16(3):391‐460.
NIH National Institute on Aging. What are the signs of Alzheimer's disease? Nat Ins Aging. https://www.nia.nih.gov/health/what-are-signs-alzheimers-disease (2017).
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626‐638.
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2016;18(4):437‐446.
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet commission. The Lancet. 2020;396(10248):413‐446.
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Front Neurosci. 2018;12:25.
Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and Tau with cognition in preclinical Aalzheimer disease: a longitudinal study. JAMA Neurol. 2019;76(8):915‐924.
Schäfer A, Chaggar P, Thompson TB, Goriely A, Kuhl E. Predicting brain atrophy from tau pathology: a summary of clinical findings and their translation into personalized models. Brain Multiphysics. 2021;2:100039.
Tanner JA, Rabinovici GD. Relationship between Tau and cognition in the evolution of Alzheimer's disease: new insights from Tau PET. J Nucl Med. 2021;62(5):612‐613.
Melzer TR, Stark MR, Keenan RJ, et al. Beta amyloid deposition is not associated with cognitive impairment in parkinson's disease. Front Neurol. 2019;10:391.
Dani M, Wood M, Mizoguchi R, et al. Tau aggregation correlates with amyloid deposition in both mild cognitive impairment and Alzheimer's disease subjects. J Alzheimer's Dis. 2019;70(2):455‐465.
Haeberlein SB, von Hehn C, Tian Y, et al. Emerge and engage topline results: phase 3 studies of aducanumab in early Alzheimer's disease. Alzheimer's Dement. 2020;16(S9):e047259.
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med. 2023;388:9‐21.
Lowe SL, Duggan Evans C, Shcherbinin S, et al. Donanemab (LY3002813) phase 1b study in alzheimer's disease: rapid and sustained reduction of brain amyloid measured by florbetapir F18 imaging. J Prevent Alzheimer's Dis. 2021;8(4):414‐424.
Commissioner O of the. FDA Grants Accelerated Approval for Alzheimer's Drug. FDA. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug (2021).
Commissioner O of the. FDA Grants Accelerated Approval for Alzheimer's Disease Treatment. FDA. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment (2023).
Grabowska ME, Huang A, Wen Z, Li B, Wei W‐Q. Drug repurposing for Alzheimer's disease from 2012–2022—a 10‐year literature review. Front Pharmacol. 2023;14. https://doi.org/10.3389/fphar.2023.1257700
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, autoimmunity and neurodegenerative diseases, therapeutics and beyond. Curr Neuropharmacol. 2024;22(6):1080‐1109.
Ancidoni A, Bacigalupo I, Remoli G, et al. Anticancer drugs repurposed for alzheimer's disease: a systematic review. Alzheimer's Res Ther. 2021;13(1):96.
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int. 2020;140:140104841.
Dahiya M, Kumar A, Yadav M, Dhakla P, Tushir S. Therapeutic Targeting of Antineoplastic Drugs in Alzheimer's Disease: Discovered in Repurposed Agents. In: Sobti RC, Lal SK, Goyal RK, eds., Drug repurposing for emerging infectious diseases and cancer. Springer Nature Singapore, 329‐345.
Liu W, Wang G, Wang Z, Wang G, Huang J, Liu B. Repurposing small‐molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discov Today. 2022;27(7):1994‐2007.
Migliore L, Coppedè F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res Rev Mutat Res. 2002;512(2):135‐153.
Plun‐Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW. Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet. 2010;6(12):e1001257.
Klus P, Cirillo D, Botta Orfila T, Tartaglia GG. Neurodegeneration and cancer: where the disorder prevails. Sci Rep. 2015;5(1):15390.
Callari M, Sola M, Magrin C, et al. Cancer‐specific association between Tau (MAPT) and cellular pathways, clinical outcome, and drug response. Sci Data. 2023;10(1):637.
Zabłocka A, Kazana W, Sochocka M, et al. Inverse correlation between Alzheimer's disease and cancer: short overview. Mol Neurobiol. 2021;58(12):6335‐6349.
Requejo‐Aguilar R. Cdk5 and aberrant cell cycle activation at the core of neurodegeneration. Neural Regen Res. 2023;18(6):1186.
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep. 2024;37:37101625.
Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev. 2012;133(4):118‐126.
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and alzheimer's inverse correlation: an immunogenetic analysis. Mol Neurobiol. 2023;60(6):3086‐3099.
Zhang T, Li N, Sun C, Jin Y, Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Mol Med. 2020;12(5):e11845.
Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post‐mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4(1):22.
Pickford F, Masliah E, Britschgi M, et al. The autophagy‐related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest. 2008;118(6):2190‐2199.
Carugo A, Minelli R, Sapio L, et al. p53 is a master regulator of proteostasis in SMARCB1‐Deficient malignant rhabdoid tumors. Cancer Cell. 2019;35(2):204‐220.
Mrakovcic M, Fröhlich LF. p53‐mediated molecular control of autophagy in tumor cells. Biomolecules, 2018;8(2):14.
Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biol. 2008;10:676‐687.
Gal J, Ström A‐L, Kilty R, Zhang F, Zhu H. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis *. J Biol Chem. 2007;282(15):11068‐11077.
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin‐proteasome pathway substrates. Mol Cell. 2009;33(4):517‐527.
Yuan F, Sun Q, Zhang S, et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci. 2022;12(1):20.
Katsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Oxidative Toxicol. 2016;1:154‐161.
Hedna R, Kovacic H, Pagano A, et al. Tau protein as therapeutic target for cancer? Focus on glioblastoma. Cancers. 2022;14(21):5386.
Yang J, Shen N, Shen J, Yang Y, Li H‐L. Complicated role of post‐translational modification and protease‐cleaved fragments of tau in Alzheimer's disease and other tauopathies. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03867-x
Tsang JYS, Lee MA, Chan T‐H, et al. Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. EBioMedicine. 2018;38:89‐99.
Olivera‐Santa Catalina M, Caballero‐Bermejo M, Argent R, et al. Hyperosmotic stress induces tau proteolysis by Caspase‐3 activation in SH‐SY5Y cells. J Cell Biochem. 2016;117(12):2781‐2790.
Zuo Y, Liu H, Lin L, et al. A new metal ion chelator attenuates human tau accumulation‐induced neurodegeneration and memory deficits in mice. Exp Neurol. 2024;373:373114657.
Roy S, Gumulec J, Kumar A, et al. The effect of Benzothiazolone‐2 on the expression of Metallothionein‐3 in modulating Alzheimer's disease. Brain Behav. 2017;7(9):e00799.
Qian J, Xu K, Yoo J, Chen TT, Andrews G, Noebels JL. Knockout of Zn transporters Zip‐1 and Zip‐3 attenuates seizure‐Induced CA1 neurodegeneration. J Neurosci. 2011;31(1):97‐104.
Lanza V, Milardi D, Di Natale G, Pappalardo G. Repurposing of copper(II)‐chelating drugs for the treatment of neurodegenerative diseases. Curr Med Chem. 2018;25(4):525‐539.
Han J, Du Z, Lim MH. Mechanistic insight into the design of chemical tools to control multiple pathogenic features in Alzheimer's disease. Acc Chem Res. 2021;54(20):3930‐3940.
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol. 2021;20(11):956‐968.
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's disease. Biomedicines. 2023;11(4):1161.
Wang L, Yin Y‐L, Liu X‐Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener. 2020;9(1):10.
Di Natale G, Sabatino G, Sciacca MFM, Tosto R, Milardi D, Pappalardo G. Aβ and Tau interact with metal ions, lipid membranes and peptide‐based amyloid inhibitors: are these common features relevant in Alzheimer's disease? Molecules. 2022;27(16):5066.
Sugimoto R, Lee L, Tanaka Y, et al. Zinc deficiency as a general feature of cancer: a review of the literature. Biol Trace Elem Res. 2024;202(5):1937‐1947.
Bendellaa M, Lelièvre P, Coll J‐L, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: from altered metabolism to therapeutic applications. Int J Cancer. 2024;154(1):7‐20.
Lin S, Yang H. Ovarian cancer risk according to circulating zinc and copper concentrations: A meta‐analysis and Mendelian randomization study. Clin Nutr. 2021;40(4):2464‐2468.
Religa D, Strozyk D, Cherny RA, et al. Elevated cortical zinc in Alzheimer disease. Neurology. 2006;67(1):69‐75.
Liu Y, Nguyen M, Robert A, Meunier B. Metal ions in Alzheimer's disease: a key role or not? Acc Chem Res. 2019;52(7):2026‐2035.
Grabrucker S, Jannetti L, Eckert M, et al. Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain. 2014;137(1):137‐152.
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378.
Hureau C. Can the level of copper in the hippocampus witness type‐II diabetes versus Alzheimer's disease? EBioMedicine. 2023;87:104403.
Ressnerova A, Raudenska M, Holubova M, et al. Zinc and copper homeostasis in head and neck cancer: review and meta‐analysis. Curr Med Chem. 2016;23(13):1304‐1330.
Fang A‐P, Chen P‐Y, Wang X‐Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong liver cancer cohort. Int J Cancer. 2019;144(11):2823‐2832.
Li T, Shi L, Wei W, Xu J, Liu Q. The trace that is valuable: serum copper and copper to zinc ratio for survival prediction in younger patients with newly diagnosed acute myeloid leukaemia. BMC Cancer. 2023;23(1):14.
Giampietro R, Spinelli F, Contino M, Colabufo NA. The pivotal role of copper in neurodegeneration: a new strategy for the therapy of neurodegenerative disorders. Mol Pharmaceutics. 2018;15(3):808‐820.
Attanasio F, De Bona P, Cataldo S, et al. Copper(ii) and zinc(ii) dependent effects on Aβ42 aggregation: a CD, Th‐T and SFM study. New J Chem. 2013;37(4):1206‐1215.
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell. 2015;6(2):88‐100.
Basak T, Kanwar RK. Iron imbalance in cancer: intersection of deficiency and overload. Cancer Med. 2022;11(20):3837‐3853.
Basuli D, Tesfay L, Deng Z, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017;36(29):4089‐4099.
Das N, Raymick J, Sarkar S. Role of metals in Alzheimer's disease. Metab Brain Dis. 2021;36(7):1627‐1639.
Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P. Aluminum, copper, iron and zinc differentially alter amyloid‐Aβ1–42 aggregation and toxicity. Int J Biochem Cell Biol. 2011;43(6):877‐885.
Fasae KD, Abolaji AO, Faloye TR, et al. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: limitations, and current and future perspectives. J Trace Elem Med Biol. 2021;67:67126779.
Botella LM. Drug repurposing as a current strategy in medicine discovery. Med Fam SEMERGEN. 48(8).
Latif K, Ullah A, Shkodina AD, et al. Drug reprofiling history and potential therapies against Parkinson's disease. Front Pharmacol. 2022;13.
De Rosa MC, Purohit R, García‐Sosa AT. Drug repurposing: a nexus of innovation, science, and potential. Sci Rep. 2023;13(1):17887.
Rudrapal Mithun, Khairnar ShubhamJ, Jadhav AnilG. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In: Badria Farid A, ed. Drug repurposing. Rijeka: IntechOpen.
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discovery. 2019;18(1):41‐58.
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: threats and issues. Front Pharmacol. 2022;13:1007315.
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res. 2022;22(1):970.
Weth FR, Hoggarth GB, Weth AF, et al. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer. 2024;130:703‐715.
Dorahy G, Chen JZ, Balle T. Computer‐aided drug design towards new psychotropic and neurological drugs. Molecules. 2023;28(3):1324.
Zong N, Wen A, Moon S, et al. Computational drug repurposing based on electronic health records: a scoping review. NPJ Digit Med. 2022;5(1):77.
Liu R, Wei L, Zhang P. A deep learning framework for drug repurposing via emulating clinical trials on real‐world patient data. Nat Mach Intell. 2021;3(1):68‐75.
Vieira FG, Venugopalan S, Premasiri AS, et al. A machine‐learning based objective measure for ALS disease severity. NPJ Digit Med. 2022;5(1):45.
Battista T, Pascarella G, Staid DS, et al. Known drugs identified by structure‐based virtual screening are able to bind Sigma‐1 receptor and increase growth of huntington disease patient‐derived cells. Int J Mol Sci. 2021;22(3):1293.
Parolo S, Mariotti F, Bora P, Carboni L, Domenici E. Single‐cell‐led drug repurposing for Alzheimer's disease. Sci Rep. 2023;13(1):222.
Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117(19):12415‐12474.
Schake P, Dishnica K, Kaiser F, Leberecht C, Haupt VJ, Schroeder M. An interaction‐based drug discovery screen explains known SARS‐CoV‐2 inhibitors and predicts new compound scaffolds. Sci Rep. 2023;13(1):9204.
Scotti L, Scotti M. Computer aided drug design studies in the discovery of secondary metabolites targeted against age‐related neurodegenerative diseases. Curr Top Med Chem. 2015;15(21):2239‐2252.
De Simone G, Sardina DS, Gulotta MR, Perricone U. KUALA: a machine learning‐driven framework for kinase inhibitors repositioning. Sci Rep. 2022;12(1):17877.
Pun FW, Liu BHM, Long X, et al. Identification of therapeutic targets for amyotrophic lateral sclerosis using PandaOmics – an AI‐enabled biological target discovery platform. Front Aging Neurosci. 2022;14.
Osterloh IH. The Discovery and Development of Viagra® (sildenafil citrate). In: Dunzendorfer U, Ed, Sildenafil. Birkhäuser, 1‐13.
Mucke HA. The case of galantamine: repurposing and late blooming of a cholinergic drug. Future Sci OA. 2015;1(4).
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673‐683.
Commissioner O of the. FDA Approves First Treatment for COVID‐19. FDA. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (2020, accessed January 30, 2024).
Halford B. Is drug repurposing worth the effort? Chemical & Engineering News. 2021;99(3).
Gupta H, Girma B, Jenkins JS, Kaufman SE, Lee CA, Kaye AD. Milnacipran for the treatment of fibromyalgia. Health Psychol Res. 2021;9(1):25532.
Birks JS, Chong LY, Grimley Evans J. Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev. 2015;9(9):CD001191.
Deardorff WJ, Feen E, Grossberg GT. The use of cholinesterase inhibitors across all stages of Alzheimer's disease. Drugs Aging. 2015;32(7):537‐547.
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev. 2018;6(6):CD001190‐CD001190.
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev. 2019;3(3):CD003154.
Deardorff WJ, Grossberg GT. A fixed‐dose combination of memantine extended‐release and donepezil in the treatment of moderate‐to‐severe Alzheimer's disease. Drug Des Devel Ther. 2016;10:103267‐103279.
National Institute for Health and Care Excellence. Dementia: assessment, management and support for people living with dementia and their carers. NICE Guideline [NG97]NICE.
Cucos CA, Dobre M, Dragnea EM, Manda G, Milanesi E. Increased MYD88 blood transcript in a mouse model of Alzheimer's disease. BMC Neurosci. 2022;23(1):13.
Walsh S, King E, Brayne C. France removes state funding for dementia drugs. BMJ. 2019;367:l6930.
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537(7618):50‐56.
Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid‐β. Sci Rep. 2018;8(1):6412.
Linse S, Scheidt T, Bernfur K, et al. Kinetic fingerprints differentiate the mechanisms of action of anti‐Aβ antibodies. Nat Struct Mol Biol. 2020;27(12):1125‐1133.
Hooker JM. FDA approval of aducanumab divided the community but also connected and united it. ACS Chem Neurosci. 2021;12(15):2716‐2717.
Mullard A. Landmark Alzheimer's drug approval confounds research community. Nature. 2021;594(7863):309‐310.
Nisticò R, Borg JJ. Aducanumab for Alzheimer's disease: a regulatory perspective. Pharmacol Res. 2021;171:171105754.
Walsh S, Merrick R, Milne R, Brayne C. Aducanumab for Alzheimer's disease? BMJ. 2021;374:n1682.
Whittington MD, Campbell JD, Rind D, Fluetsch N, Lin GA, Pearson SD. Cost‐effectiveness and value‐based pricing of aducanumab for patients with early alzheimer disease. Neurology. 2022;98(9):e968.
Alexander GC, Knopman DS, Emerson SS, et al. Revisiting FDA approval of aducanumab. N Engl J Med. 2021;385(9):769‐771.
Schlander M, Hernandez‐Villafuerte K, Cheng C‐Y, Mestre‐Ferrandiz J, Baumann M. How much does it cost to research and develop a new drug? A systematic review and assessment. Pharmacoeconomics. 2021;39(11):1243‐1269.
Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009‐2018. JAMA. 2020;323(9):844‐853.
Cummings JL, Goldman DP, Simmons‐Stern NR, Ponton E. The costs of developing treatments for Alzheimer's disease: A retrospective exploration. Alzheimer's Dementia. 2022;18(3):469‐477.
Jutkowitz E, Kane RL, Gaugler JE, MacLehose RF, Dowd B, Kuntz KM. Societal and family lifetime cost of dementia: implications for policy. J Am Geriatr Soc. 2017;65(10):2169‐2175.
Hoffman M. Biogen announces 50% drop in aducanumab pricing amid feedback on costs. Neurol Live. 2021. https://www.neurologylive.com/view/biogen-50-percent-drop-aducanumab-price-feedback-costs
Andrews M, Tousi B, Sabbagh MN. 5HT6 antagonists in the treatment of Alzheimer's dementia: current progress. Neurol Ther. 2018;7(1):51‐58.
Lawlor B, Segurado R, Kennelly S, et al. for the NILVAD Study Group Nilvadipine in mild to moderate Alzheimer disease: a randomised controlled trial. PLoS Med. 2018;15(9):e1002660.
Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat Rev Drug Discov. 2015;14(12):815‐816.
Butlen‐Ducuing F, Pétavy F, Guizzaro L, et al. Challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat Rev Drug Discov. 2016;15(12):813‐814.
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology. 2017;120:11‐19.
Brown DG, Wobst HJ, Kapoor A, Kenna LA, Southall N. Clinical development times for innovative drugs. Nat Rev Drug Discov.
Sahragardjoonegani B, Beall RF, Kesselheim AS, Hollis A. Repurposing existing drugs for new uses: a cohort study of the frequency of FDA‐granted new indication exclusivities since 1997. J Pharm Policy Pract. 2021;14(1):3.
Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534:314‐316.
Rodriguez S, Hug C, Todorov P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun. 2021;12(1):1033.
Advani D, Kumar P. Therapeutic targeting of repurposed anticancer drugs in Alzheimer's disease: using the multiomics approach. ACS Omega. 2021;6(21):13870‐13887.
Roe CM, Fitzpatrick AL, Xiong C, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;74(2):106‐112.
Driver JA, Beiser A, Au R, et al. Inverse association between cancer and alzheimer's disease: results from the Framingham Heart Study. BMJ. 2012;344:e1442.
Musicco M, Adorni F, Di Santo S, et al. Inverse occurrence of cancer and alzheimer disease: a population‐based incidence study. Neurology. 2013;81(4):322‐328.
White RS, Lipton RB, Hall CB, Steinerman JR. Nonmelanoma skin cancer is associated with reduced Alzheimer disease risk. Neurology. 2013;80(21):1966‐1972.
Frain L, Swanson D, Cho K, et al. Association of cancer and Alzheimer's disease risk in a national cohort of veterans. Alzheimer's Dementia. 2017;13(12):1364‐1370.
Schmidt SAJ, Ording AG, Horváth‐Puhó E, Sørensen HT, Henderson VW. Non‐melanoma skin cancer and risk of Alzheimer's disease and all‐cause dementia. PLoS One. 2017;12(2):e0171527.
Ibler E, Tran G, Orrell KA, et al. Inverse association for diagnosis of Alzheimer's disease subsequent to both melanoma and non‐melanoma skin cancers in a large, urban, single‐centre, Midwestern US patient population. J Eur Acad Dermatol Venereol. 2018;32(11):1893‐1896.
Robinson D, Garmo H, Van Hemelrijck M, et al. Androgen deprivation therapy for prostate cancer and risk of dementia. BJU Int. 2019;124(1):87‐92.
Ospina‐Romero M, Abdiwahab E, Kobayashi L, et al. Rate of memory change before and after cancer diagnosis. JAMA Network Open. 2019;2(6):e196160.
Sun M, Wang Y, Sundquist J, Sundquist K, Ji J. The association between cancer and dementia: a national cohort study in Sweden. Front Oncol. 2020;10:1073.
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age‐associated diverging derailment of shared pathways. Mol Psychiatry. 2021;26(1):280‐295.
Mezencev R, Chernoff YO. Risk of alzheimer's disease in cancer patients: analysis of mortality data from the US SEER population‐based registries. Cancers. 2020;12(4):796.
Akushevich I, Yashkin AP, Kravchenko J, Kertai MD. Chemotherapy and the risk of Alzheimer's disease in colorectal cancer survivors: evidence from the Medicare system. JCO Oncol Pract. 2021;17. doi:10.1200/OP.20.00729
Chiu R‐H, Lu S‐R, Liang F‐W, Lin C‐L, Ho C‐H, Hsiao P‐C. Risk of dementia in colorectal cancer patients receiving chemotherapy: a nationwide cohort study. Cancer Epidemiol. 2022;5:76102083.
Branigan GL, Soto M, Neumayer L, Rodgers K, Brinton RD. Association between hormone‐modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Network Open. 2020;3(3):e201541.
Sun L‐M, Chen H‐J, Liang J‐A, Kao C‐H. Long‐term use of tamoxifen reduces the risk of dementia: a nationwide population‐based cohort study. QJM. 2016;109(2):103‐109.
Nead KT, Sinha S, Nguyen PL. Androgen deprivation therapy for prostate cancer and dementia risk: a systematic review and meta‐analysis. Prostate Cancer Prostatic Dis. 2017;20(3):259‐264.
Tae BS, Jeon BJ, Shin SH, Choi H, Bae JH, Park JY. Correlation of androgen deprivation therapy with cognitive dysfunction in patients with prostate cancer: a nationwide Population‐Based study using The National health insurance service database. Cancer Res Treatment. 2019;51(2):593‐602.
Mansour HM, Fawzy HM, El‐Khatib AS, Khattab MM. Repurposed anti‐cancer epidermal growth factor receptor inhibitors: mechanisms of neuroprotective effects in Alzheimer's disease. Neural Regen Res, 17(9):1913‐1918. doi:10.4103/1673-5374.332132
Newby D, Prieto‐Alhambra D, Duarte‐Salles T, et al. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: a multi‐national multi‐database case‐control study. Alzheimer's Res Ther. 2020;12(1):38.
Kern DM, Lovestone S, Cepeda MS. Treatment with TNF‐α inhibitors versus methotrexate and the association with dementia and Alzheimer's disease. Alzheimer's Dementia Trans Res Clin Interv. 2021;7(1):e12163.
Judge A, Garriga C, Arden NK, et al. Protective effect of antirheumatic drugs on dementia in rheumatoid arthritis patients. Alzheimer's Dementia Trans Res Clin Interv. 2017;3(4):612‐621.
Miller JH, Das V. Potential for treatment of neurodegenerative diseases with natural products or synthetic compounds that stabilize microtubules. Curr Pharm Des. 2020;26(35):4362‐4372.
Brunden KR, Lee VM‐Y, Smith AB, Trojanowski JQ, Ballatore C. Altered microtubule dynamics in neurodegenerative disease: therapeutic potential of microtubule‐stabilizing drugs. Neurobiol Dis. 2017;105:105328‐105335.
Fernandez‐Valenzuela JJ, Sanchez‐Varo R, Muñoz‐Castro C, et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep. 2020;10(1):14776.
Yu Z, Yang L, Yang Y, et al. Epothilone B benefits nigral dopaminergic neurons by attenuating microglia activation in the 6‐Hydroxydopamine lesion mouse model of parkinson's disease. Front Cell Neurosci. 2018;12. doi:10.3389/fncel.2018.00324
Killinger BA, Moszczynska A. Epothilone D prevents binge methamphetamine‐mediated loss of striatal dopaminergic markers. J Neurochem. 2016;136(3):510‐525.
Crume KP, O'Sullivan D, Miller JH, Northcote PT, La Flamme AC. Delaying the onset of experimental autoimmune encephalomyelitis with the microtubule‐stabilizing compounds, paclitaxel and peloruside A. J Leukoc Biol. 2009;86:86949‐86958.
Duggal P, Mehan S. Neuroprotective approach of anti‐cancer microtubule stabilizers against tauopathy associated dementia: current status of clinical and preclinical findings. J Alzheimer's Dis Reports. 2019;3(1):179‐218.
Tsai RM, Miller Z, Koestler M, et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI‐287 in patients with alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol. 2020;77(2):215‐224.
Qiang L, Yu W, Liu M, Solowska JM, Baas PW. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:21334‐21344.
Lo Y‐C, Cormier O, Liu T, et al. Pocket similarity identifies selective estrogen receptor modulators as microtubule modulators at the taxane site. Nat Commun. 2019;10(1):1033.
Corbel C, Zhang B, Le Parc A, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22(4):472‐482.
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol. 2019;131:131396‐131411.
Mullard A. The FDA approves a first farnesyltransferase inhibitor. Nat Rev Drug Discov. 2021;20(8):8.
Hernandez I, Luna G, Rauch JN, et al. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med. 2019;11(485):eaat3005.
Mansour HM, Fawzy HM, El‐Khatib AS, Khattab MM. Lapatinib ditosylate rescues memory impairment in d‐galactose/ovariectomized rats: potential repositioning of an anti‐cancer drug for the treatment of alzheimer's disease. Exp Neurol. 2021;341:341113697.
Cramer PE, Cirrito JR, Wesson DW, et al. ApoE‐directed therapeutics rapidly clear β‐amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503‐1506.
Fitz NF, Cronican AA, Lefterov I, Koldamova R. Comment on “ApoE‐directed therapeutics rapidly clear β‐amyloid and reverse deficits in AD mouse models.” Science. 2013;340(6135):924.
Hayes CD, Dey D, Palavicini JP, et al. Striking reduction of amyloid plaque burden in an Alzheimer's mouse model after chronic administration of carmustine. BMC Med. 2013;11:81.
Chu J, Lauretti E, Craige CP, Praticò D. Pharmacological modulation of GSAP reduces amyloid‐β levels and Tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles. J Alzheimer's Dis. 2014;41(3):729‐737.
Netzer WJ, Dou F, Cai D, et al. Gleevec inhibits β‐amyloid production but not notch cleavage. Proc Nat Acad Sci. 2003;100(21):12444‐12449.
Jahan I, Nayeem SM. Destabilization of Alzheimer's Aβ42 protofibrils with acyclovir, carmustine, curcumin, and tetracycline: insights from molecular dynamics simulations. New J Chem. 2021;45(45):21031‐21048.
O'Kane GM, Ezzat S, Joshua AM, et al. A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial. Br J Cancer. 2019;120(12):1113‐1119.
Sesti F, Feola T, Puliani G, et al. Sunitinib treatment for advanced paraganglioma: case report of a novel SDHD gene mutation variant and systematic review of the literature. Front Oncol. 2021;11:677983.
Huang L, Lin J, Xiang S, et al. Sunitinib, a clinically used anticancer drug, is a potent AChE inhibitor and attenuates cognitive impairments in mice. ACS Chem Neurosci. 2016;7(8):1047‐1056.
Cui W, Zhang Z‐J, Hu S‐Q, et al. Sunitinib produces neuroprotective effect via inhibiting nitric oxide overproduction. CNS Neurosci Ther. 2014;20(3):244‐252.
Hruba L, Polishchuk P, Das V, Hajduch M, Dzubak P. An identification of MARK inhibitors using high throughput MALDI‐TOF mass spectrometry. Biomed Pharmacother. 2022;146:146112549.
Annadurai N, Das V. Chapter 20 ‐ Microtubule affinity regulating kinase 4: A potential drug target from cancers to neurodegenerative diseases. In: Hassan MdI, Noor S, eds, Protein Kinase Inhibitors. Academic Press, 571‐596.
Piette F, Belmin J, Vincent H, et al. Masitinib as an adjunct therapy for mild‐to‐moderate Alzheimer's disease: a randomised, placebo‐controlled phase 2 trial. Alzheimer's Res Ther. 2011;3(2):16.
Mora JS, Bradley WG, Chaverri D, et al. Long‐term survival analysis of masitinib in amyotrophic lateral sclerosis. Ther Adv Neurol Disord. 2021;14:175628642110303.
Li T, Martin E, Abada Y, et al. Effects of chronic masitinib treatment in APPswe/PSEN1dE9 transgenic mice modeling alzheimer's disease. J Alzheimer's Dis. 2020;76(4):1339‐1345.
Dubois B, López‐Arrieta J, Lipschitz S, et al. for the AB09004 Study Group Investigators Masitinib for mild‐to‐moderate alzheimer's disease: results from a randomized, placebo‐controlled, phase 3, clinical trial. Alzheimer's Res Ther. 2023;15(1):39.
Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77(6):953‐971.
Gaikwad S, Puangmalai N, Bittar A, et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep. 2021;36(3):109419.
Kudlova N, De Sanctis JB, Hajduch M. Cellular senescence: molecular targets, biomarkers, and senolytic drugs. Int J Mol Sci. 2022;23(8):4168. doi:10.3390/ijms23084168
Raffaele M, Kovacovicova K, Biagini T, et al. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience. 2022;44(1):463‐483.
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline. Nature. 2018;562(7728):578‐582.
Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson's disease. Cell Rep. 2018;22(4):930‐940.
Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840.
Shaerzadeh F, Phan L, Miller D, et al. Microglia senescence occurs in both substantia nigra and ventral tegmental area. GLIA. 2020;68(11):2228‐2245.
Hu Y, Fryatt GL, Ghorbani M, et al. Replicative senescence dictates the emergence of disease‐associated microglia and contributes to Aβ pathology. Cell Rep. 2021;35(10):109228.
Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neurosci. 2019;22(5):719‐728.
Angom RS, Wang Y, Wang E, et al. VEGF receptor‐1 modulates amyloid β 1–42 oligomer‐induced senescence in brain endothelial cells. FASEB J. 2019;33(3):4626‐4637.
Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446‐456.
Krzystyniak A, Wesierska M, Petrazzo G, et al. Combination of dasatinib and quercetin improves cognitive abilities in aged male wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging. 2022;14(2):572‐595.
Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first‐in‐human, open‐label, pilot study. EBioMedicine. 2019;40:554‐563.
Merlini M, Wanner D, Nitsch RM. Tau pathology‐dependent remodelling of cerebral arteries precedes Alzheimer's disease‐related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131(5):737‐752.
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood‐brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci. 2021;15. https://www.frontiersin.org/articles/10.3389/fncel.2021.661838
Koster KP, Thomas R, Morris AW, Tai LM. Epidermal growth factor prevents oligomeric amyloid‐β induced angiogenesis deficits in vitro. J Cereb Blood Flow Metab. 2016;36(11):1865‐1871.
Alvarez‐Vergara MI, Rosales‐Nieves AE, March‐Diaz R, et al. Non‐productive angiogenesis disassembles Aß plaque‐associated blood vessels. Nat Commun. 2021;12(1):3098.
Riphagen JM, Ramakers IHGM, Freeze WM, et al. Linking APOE‐ε4, blood‐brain barrier dysfunction, and inflammation to Alzheimer's pathology. Neurobiol Aging. 2020;85:8596‐103.
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine. 2021;71:71103503.
Ansari MJ, Bokov D, Markov A, et al. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal. 2022;20(1):49.
Hu H, Chen Y, Tan S, et al. The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front Immunol. 2022;13. https://www.frontiersin.org/article/10.3389/fimmu.2022.802846
Maze I, Wenderski W, Noh K‐M, et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron. 2015;87(1):77‐94.
Benito E, Urbanke H, Ramachandran B, et al. HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest. 2015;125(9):3572‐3584.
Klein H‐U, McCabe C, Gjoneska E, et al. Epigenome‐wide study uncovers large‐scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains. Nature Neurosci. 2019;22(1):37‐46.
Li P, Marshall L, Oh G, et al. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nat Commun. 2019;10(1):2246.
Cuadrado‐Tejedor M, Garcia‐Barroso C, Sanzhez‐Arias J, et al. Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of alzheimer's disease. Clin Epigenetics. 2015;7:7108.
Cuadrado‐Tejedor M, Pérez‐González M, García‐Muñoz C, et al. Taking advantage of the selectivity of histone deacetylases and phosphodiesterase inhibitors to design better therapeutic strategies to treat alzheimer's disease. Front Aging Neurosci. 2019;11:11149.
Chen I‐C, Sethy B, Liou J‐P. Recent update of HDAC inhibitors in lymphoma. Front Cell Dev Biol. 2020;8. https://www.frontiersin.org/article/10.3389/fcell.2020.576391
Nakatsuka D, Izumi T, Tsukamoto T, et al. Histone deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 transgenic mouse model. Front Mol Neurosci. 2021;14. https://www.frontiersin.org/article/10.3389/fnmol.2021.782375
Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2(1):36.
Decourt B, Drumm‐Gurnee D, Wilson J, et al. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide for alzheimer's disease: results from a double‐blind, placebo‐controlled trial. Curr Alzheimer Res. 2017;14(4):403‐411.
Neymotin A, Petri S, Calingasan NY, et al. Lenalidomide (Revlimid®) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2009;220(1):191‐197.
Valera E, Spencer B, Fields JA, et al. Combination of alpha‐synuclein immunotherapy with anti‐inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun. 2017;5(1):2.
Valera E, Mante M, Anderson S, Rockenstein E, Masliah E. Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson's disease. J Neuroinflammation. 2015;12(1):93.
Argente‐Escrig H, Martinez JC, Gómez E, Balaguer A, Sevilla T, Bataller L. Lenalidomide induced reversible parkinsonism, dystonia, and dementia in subclinical Creutzfeldt‐Jakob disease. J Neurol Sci. 2018;396:393140‐393141.
Decourt B, Wilson J, Ritter A, et al. MCLENA‐1: A phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to alzheimer's disease. Open Access J Clin Trials. 2020;121:1‐13. doi:10.2147/OAJCT.S221914
Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments. Front Cell Dev Biol. 2019;7. https://www.frontiersin.org/articles/10.3389/fcell.2019.00313
Brigas HC, Ribeiro M, Coelho JE, et al. IL‐17 triggers the onset of cognitive and synaptic deficits in early stages of alzheimer's disease. Cell Rep, 36(9):109574. doi:10.1016/j.celrep.2021.109574
B. De Sanctis J, Mijares M, Suarez A, et al. Pharmacological properties of thalidomide and its analogues. Recent Patents Inflammation Allergy Drug Discov. 2010;4(2):144‐148.
Kim H‐J, Bae S‐C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti‐cancer drugs. Am J Transl Res. 2011;3(2):166‐179.
Ramalingam SS, Parise RA, Ramananthan RK, et al. Phase I and pharmacokinetic study of vorinostat, A histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res. 2007;13(12):3605‐3610.
Munkacsi AB, Hammond N, Schneider RT, et al. Normalization of hepatic homeostasis in the Npc1 mouse model of Niemann‐Pick type C disease treated with the histone deacetylase inhibitor vorinostat. J Biol Chem. 2017;292(11):4395‐4410.
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D'Arcangelo G. Neurodegeneration in Niemann‐pick type C disease: an updated review on pharmacological and Non‐Pharmacological approaches to counteract brain and cognitive impairment. Int J Mol Sci. 2021;22(12):6600.
Kim J. Pre‐Clinical neuroprotective evidences and plausible mechanisms of sulforaphane in alzheimer's disease. Int J Mol Sci. 2021;22(6):2929.
Calcabrini C, Maffei F, Turrini E, Fimognari C. Sulforaphane potentiates anticancer effects of doxorubicin and cisplatin and mitigates their toxic effects. Front Pharmacol. 2020;11. https://www.frontiersin.org/article/10.3389/fphar.2020.00567
Zhang J, Zhang R, Zhan Z, et al. Beneficial effects of sulforaphane treatment in alzheimer's disease May be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci. 2017;9. https://www.frontiersin.org/article/10.3389/fnagi.2017.00121
Janczura KJ, Volmar C‐H, Sartor GC, et al. Inhibition of HDAC3 reverses alzheimer's disease‐related pathologies in vitro and in the 3xTg‐AD mouse model. Proc Nat Acad Sci. 2018;115(47):E11148‐E11157.
Patnaik A, Zagrebelsky M, Korte M, Holz A. Signaling via the p75 neurotrophin receptor facilitates amyloid‐β‐induced dendritic spine pathology. Sci Rep. 2020;10(1):13322.
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in alzheimer's disease. Lancet Neurol. 2015;14(4):388‐405.
Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in alzheimer disease—a research prospectus. Nat Rev Neurol. 2021;17(11):689‐701.
Montero JC, Seoane S, Ocaña A, Pandiella A. Inhibition of src family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res. 2011;17(17):5546‐5552.
Markovic U, Bulla A, Leotta S, et al. Second‐line dasatinib therapy improved compliance and deep molecular responses in imatinib‐intolerant chronic myeloid leukemia patients. Anticancer Res. 2020;40(9):5313‐5317.
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial‐mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev. 2023;43(6):1878‐1945.
Pourteymour Fard Tabrizi F, Hajizadeh‐Sharafabad F, Vaezi M, Jafari‐Vayghan H, Alizadeh M, Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: a systematic review. J Ovarian Res. 2020;13(1):11.
Shah MA, Faheem HI, Hamid A, et al. The entrancing role of dietary polyphenols against the most frequent aging‐associated diseases. Med Res Rev. 2024;44(1):235‐274.
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246‐1256.
Saccon TD, Nagpal R, Yadav H, et al. Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol Series A. 2021;76(11):1895‐1905.
Romanenko M, Kholin V, Koliada A, Vaiserman A. Nutrition, gut microbiota, and Alzheimer's disease. Front Psychiatr. 2021;12. https://www.frontiersin.org/article/10.3389/fpsyt.2021.712673
Chen C, Liao J, Xia Y, et al. Gut microbiota regulate alzheimer's disease pathologies and cognitive disorders via PUFA‐associated neuroinflammation. Gut. 2022;71:2233‐2252.
Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta‐analysis of the parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinson's Dis. 2021;7(1):27.
Van Den Berge N, Ferreira N, Gram H, et al. Evidence for bidirectional and trans‐synaptic parasympathetic and sympathetic propagation of alpha‐synuclein in rats. Acta Neuropathol. 2019;138(4):535‐550.
Gonzales MM, Garbarino VR, Marques Zilli E, et al. Senolytic therapy to modulate the progression of alzheimer's disease (SToMP‐AD): A pilot clinical trial. J Prevent Alzheimer's Dis. 2022;9(1):22‐29.
Rauf A, Badoni H, Abu‐Izneid T, et al. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules. 2022;27(10):3194.
Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Aβ promotes CD38 expression in senescent microglia in Alzheimer's disease. Biol Res. 2022;55(1):10.
Blacher E, Dadali T, Bespalko A, et al. Alzheimer's disease pathology is attenuated in a CD38‐deficient mouse model. Ann Neurol. 2015;78(1):88‐103.
Michaleas S, Penninga E, Hovgaard D, et al. EMA review of daratumumab (Darzalex) for the treatment of adult patients newly diagnosed with multiple myeloma. Oncologist. 2020;25(12):1067‐1074.
Scheibe F, Ostendorf L, Prüss H, et al. Daratumumab for treatment‐refractory antibody‐mediated diseases in neurology. Eur J Neurol. 2022;29(6):1847‐1854.
Masarova L, Cortes JE, Patel KP, et al. Long‐term results of a phase 2 trial of nilotinib 400 mg twice daily in newly diagnosed patients with chronic‐phase chronic myeloid leukemia. Cancer. 2020;126(7):1448‐1459.
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c‐abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci Rep. 2014;4(1):4874.
Hebron ML, Javidnia M, Moussa CE‐H. Tau clearance improves astrocytic function and brain glutamate‐glutamine cycle. J Neurol Sci. 2018;391:39190‐39199.
Pagan F, Hebron M, Valadez EH, et al. Nilotinib effects in parkinson's disease and dementia with lewy bodies. J Parkinson's Dis. 2016;6(3):503‐517.
Pagan FL, Hebron ML, Wilmarth B, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77(3):309‐317.
Pagan FL, Wilmarth B, Torres‐Yaghi Y, et al. Long‐Term safety and clinical effects of nilotinib in parkinson's disease. Mov Disorders. 2021;36(3):740‐749.
Turner RS, Hebron ML, Lawler A, et al. Nilotinib effects on safety, tolerability, and biomarkers in alzheimer's disease. Ann Neurol. 2020;88(1):183‐194.
Simuni T, Fiske B, Merchant K, et al. Parkinson Study Group NILO‐PD Investigators and Collaborators Efficacy of nilotinib in patients with moderately advanced parkinson disease: A randomized clinical trial. JAMA Neurol. 2021;78(3):312‐320.
Marech I, Patruno R, Zizzo N, et al. Masitinib (AB1010), from canine tumor model to human clinical development: where we are? Crit Rev Oncol Hematol. 2014;91(1):98‐111.
Science AB AB Science announces that Phase 2B/3 study evaluating oral in Alzheimer's disease met its primary endpoint. GlobeNewswire News Room. https://www.globenewswire.com/news-release/2020/12/16/2145869/0/en/AB-Science-announces-that-Phase-2B-3-study-evaluating-oral-in-Alzheimer-s-disease-met-its-primary-endpoint.html (2020, Accessed July 20, 2022).
Lonskaya I, Hebron ML, Selby ST, Turner RS, Moussa CE‐H. Nilotinib and bosutinib modulate pre‐plaque alterations of blood immune markers and neuro‐inflammation in Alzheimer's disease models. Neuroscience. 2015;304:316‐327.
Kim J, Lee H, Park J‐H, Cha B‐Y, Hoe H‐S. Nilotinib modulates LPS‐induced cognitive impairment and neuroinflammatory responses by regulating P38/STAT3 signaling. J Neuroinflammation. 2022;19(1):187.
Carracedo M, Pawelzik S‐C, Artiach G, et al. The tyrosine kinase inhibitor nilotinib targets the discoidin domain receptor DDR2 in calcific aortic valve stenosis. Br J Pharmacol. 2022;179(19):4709‐4721. doi:10.1111/bph.15911
Pouwer MG, Pieterman EJ, Verschuren L, et al. The BCR‐ABL1 inhibitors imatinib and ponatinib decrease plasma cholesterol and atherosclerosis, and nilotinib and ponatinib activate coagulation in a translational mouse model. Front Cardiovasc Med. 2018;5. https://www.frontiersin.org/articles/10.3389/fcvm.2018.00055
Zeitelhofer M, Adzemovic MZ, Moessinger C, et al. Blocking PDGF‐CC signaling ameliorates multiple sclerosis‐like neuroinflammation by inhibiting disruption of the blood–brain barrier. Sci Rep. 2020;10(1):22383.
Jacobsen FA, Scherer AN, Mouritsen J, et al. A role for the Non‐Receptor tyrosine kinase Abl2/Arg in experimental neuroinflammation. J Neuroimmune Pharmacol. 2018;13(2):265‐276.
Shakil S. Molecular interaction of anti‐cancer ligands with human brain acetylcholinesterase. J Biomol Struct Dyn. 2022;40(5):2254‐2263.
Kawahara K, Suenobu M, Ohtsuka H, et al. Cooperative therapeutic action of retinoic acid receptor and retinoid X receptor agonists in a mouse model of alzheimer's disease. J Alzheimer's Dis. 2014;42(2):587‐605.
Qiao A, Li J, Hu Y, Wang J, Zhao Z. Reduction BACE1 expression via suppressing NF‐κB mediated signaling by tamibarotene in a mouse model of alzheimer's disease. IBRO Neurosci Rep. 2021;10:10153‐10160.
Li L, Qi X, Sun W, et al. Am80‐GCSF synergizes myeloid expansion and differentiation to generate functional neutrophils that reduce neutropenia‐associated infection and mortality. EMBO Mol Med. 2016;8(11):1340‐1359.
Naskar D, Teng F, Felix KM, Bradley CP, Wu H‐JJ. Synthetic retinoid AM80 ameliorates lung and arthritic autoimmune responses by inhibiting T follicular helper and Th17 cell responses.J Immunol. 2017;198(5):1855‐1864.
Passmore MJ. The cannabinoid receptor agonist nabilone for the treatment of dementia‐related agitation. Int J Geriatr Psychiatry. 2008;23(1):116‐117.
Herrmann N, Ruthirakuhan M, Gallagher D, et al. Randomized Placebo‐Controlled trial of nabilone for agitation in alzheimer's disease. Am J Geriatr Psychiatry. 2019;27(11):1161‐1173.
Ruthirakuhan M, Herrmann N, Andreazza AC, et al. 24S‐Hydroxycholesterol is associated with agitation severity in patients with Moderate‐to‐Severe alzheimer's disease: analyses from a clinical trial with nabilone. J Alzheimer's Dis. 2019;71(1):21‐31.
Ruthirakuhan MT, Herrmann N, Gallagher D, et al. Investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate‐to‐severe alzheimer's disease: study protocol for a cross‐over randomized controlled trial. Contemp Clin Trials Commun. 2019;15:15100385.
Burstein SH, Zurier RB. Cannabinoids, endocannabinoids, and related analogs in inflammation. AAPS J. 2009;11(1):109‐119.
Ruiz de Martín Esteban S, Benito‐Cuesta I, Terradillos I, et al. Cannabinoid CB2 receptors modulate microglia function and amyloid dynamics in a mouse model of alzheimer's disease. Front Pharmacol. 2022;13. https://www.frontiersin.org/articles/10.3389/fphar.2022.841766
Belgers V, Röttgering JG, Douw L, et al. Cannabinoids to improve health‐related quality of life in patients with neurological or oncological disease: a meta‐analysis. Cannabis Cannabinoid Res. 2023;8(1):41‐55.
Bosnjak Kuharic D, Markovic D, Brkovic T, et al. Cannabinoids for the treatment of dementia. Cochrane Database Syst Rev. 2021;9(9):CD012820.
Mansour HM, Fawzy HM, El‐Khatib AS, Khattab MM. Inhibition of mitochondrial pyruvate carrier 1 by lapatinib ditosylate mitigates Alzheimer's‐like disease in d‐galactose/ovariectomized rats. Neurochem Int. 2021;150:150105178.
Webber KM, Perry G, Smith MA, Casadesus G. The contribution of luteinizing hormone to Alzheimer disease pathogenesis. Clin Med Res. 2007;5(3):177‐183.
Bowen RL, Smith MA, Harris PLR, et al. Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer's disease pathology. J Neurosci Res. 2002;70(3):514‐518.
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re‐entry of post‐mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav. 2015;76:7663‐7680.
Bowen RL, Perry G, Xiong C, Smith MA, Atwood CS. A clinical study of lupron depot in the treatment of women with alzheimer's disease: preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks. J Alzheimer's Dis. 2015;44(2):549‐560.
Butler T, Goldberg JD, Galvin JE, et al. Rationale, study design and implementation of the LUCINDA trial: leuprolide plus cholinesterase inhibition to reduce neurologic decline in Alzheimer's. Contemp Clin Trials. 2021;107:107106488.
Jiang T, Yu J‐T, Zhu X‐C, et al. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology. 2014;85:121‐130.
Nohara T, Tsuji M, Oguchi T, et al. Neuroprotective potential of raloxifene via G‐protein‐coupled estrogen receptors in Aβ‐oligomer‐induced neuronal injury. Biomedicines. 2023;11(8):2135.
Du B, Ohmichi M, Takahashi K, et al. Both estrogen and raloxifene protect against β‐amyloid‐induced neurotoxicity in estrogen receptor α‐transfected PC12 cells by activation of telomerase activity via Akt cascade. J Endocrinol. 2004;183(3):605‐615.
Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with alzheimer disease: A randomized controlled pilot trial. Neurology. 2015;85(22):1937‐1944.
Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CEH. Tyrosine kinase inhibition increases functional parkin‐Beclin‐1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5(8):1247‐1262.
Das A, Ranadive N, Kinra M, Nampoothiri M, Arora D, Mudgal J. An overview on chemotherapy‐induced cognitive impairment and potential role of antidepressants. Curr Neuropharmacol. 2020;18(9):838‐851.
Matsos A, Johnston IN. Chemotherapy‐induced cognitive impairments: a systematic review of the animal literature. Neurosci Biobehav Rev. 2019;102:102382‐102399.
Squillace S, Niehoff ML, Doyle TM, et al. Sphingosine‐1‐phosphate receptor 1 activation in the central nervous system drives cisplatin‐induced cognitive impairment. J Clin Invest, 132(17):e157738. doi:10.1172/JCI157738.
Janes K, Little JW, Li C, et al. The development and maintenance of paclitaxel‐induced neuropathic pain require activation of the sphingosine 1‐phosphate receptor subtype 1*. J Biol Chem. 2014;289(30):21082‐21097.
Mohamed MR, Mohile SG, Juba KM, et al. Association of polypharmacy and potential drug‐drug interactions with adverse treatment outcomes in older adults with advanced cancer. Cancer. 2023;129(7):1096‐1104.
Feliu J, Heredia‐Soto V, Gironés R, et al. Can we avoid the toxicity of chemotherapy in elderly cancer patients? Crit Rev Oncol Hematol. 2018;131:13116‐13123.
Jiang Y, Mason M, Cho Y, et al. Tolerance to oral anticancer agent treatment in older adults with cancer: a secondary analysis of data from electronic health records and a pilot study of patient‐reported outcomes. BMC Cancer. 2022;22(1):950.
Wildiers H, de Glas NA. Anticancer drugs are not well tolerated in all older patients with cancer. Lancet Healthy Longevity. 2020;1(1):e43‐e47.
Corre R, Greillier L, Le Caër H, et al. Use of a comprehensive geriatric assessment for the management of elderly patients with advanced Non–Small‐Cell lung cancer: the phase III randomized ESOGIA‐GFPC‐GECP 08‐02 study. J Clin Oncol. 2016;34(13):1476‐1483.
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug‐resistant cancer. Nat Rev Cancer. 2018;18(7):452‐464.
Mehrabian A, Mashreghi M, Dadpour S, et al. Nanocarriers call the last shot in the treatment of brain cancers. Technol Cancer Res Treat. 2022;21:153303382210809.
Gabay M, Weizman A, Zeineh N, et al. Liposomal carrier conjugated to APP‐derived peptide for brain cancer treatment. Cell Mol Neurobiol. 2021;41(5):1019‐1029.
Morse SV, Mishra A, Chan TG, T. M., de Rosales R, Choi JJ. Liposome delivery to the brain with rapid short‐pulses of focused ultrasound and microbubbles. J Controll Release. 2022;341:341605‐341615.
Ballard P, Yates JWT, Yang Z, et al. Preclinical comparison of osimertinib with other EGFR‐TKIs in EGFR‐mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin Cancer Res. 2016;22(20):5130‐5140.
Karavasiloglou N, Pestoni G, Wanner M, Faeh D, Rohrmann S. Healthy lifestyle is inversely associated with mortality in cancer survivors: results from the Third National Health and Nutrition Examination Survey (NHANES III). PLoS One. 2019;14(6):e0218048.
Sun C, Li K, Xu H, et al. Association of healthy lifestyle score with all‐cause mortality and life expectancy: a city‐wide prospective cohort study of cancer survivors. BMC Med. 2021;19(1):158.
Cao Z, Xu C, Yang H, Li S, Wang Y. The role of healthy lifestyle in cancer incidence and temporal transitions to cardiometabolic disease. JACC CardioOncol. 2021;3(5):663‐674.
Dhana K, Franco OH, Ritz EM, et al. Healthy lifestyle and life expectancy with and without Alzheimer's dementia: population based cohort study. BMJ. 2022;377:e068390.
Bergengren O, Enblad AP, Garmo H, et al. Changes in lifestyle among prostate cancer survivors: a nationwide population‐based study. Psycho‐Oncol. 2020;29(10):1713‐1719.
Ching SSY, Mok ESB. Adoption of healthy lifestyles among Chinese cancer survivors during the first five years after completion of treatment. Ethn Health. 2022;27(1):137‐156.
Higashiyama N, Yamaguchi K, Yamamoto Y, et al. Development of healthy lifestyle consciousness index for gynecological cancer patients. Supp Care Cancer. 2022;30(9):7569‐7574.
Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer's disease: a review of the literature. Front Aging Neurosci. 2019;11. https://www.frontiersin.org/article/10.3389/fnagi.2019.00043
Dujardin S, Commins C, Lathuiliere A, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer's disease. Nature Med. 2020;26(8):1256‐1263.
Vogel JW, Iturria‐Medina Y, Strandberg OT, et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nat Commun. 2020;11(1):2612.
La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau‐PET. Sci Transl Med. 2020;12(524):eaau5732.
Xia C, Makaretz SJ, Caso C, et al. Association of in vivo [18F]AV‐1451 Tau PET imaging results with cortical atrophy and symptoms in typical and atypical alzheimer disease. JAMA Neurol. 2017;74(4):427‐436.
Habchi J, Arosio P, Perni M, et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. Sci Adv. 2016;2(2):e1501244.
Huy PDQ, Thai NQ, Bednarikova Z, et al. Bexarotene does not clear amyloid beta plaques but delays fibril growth: molecular mechanisms. ACS Chem Neurosci. 2017;8(9):1960‐1969.
Annadurai N, Malina L, Salmona M, et al. Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS J. 2022;289(7):1929‐1949.
DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481.
Hallinan GI, Vargas‐Caballero M, West J, Deinhardt K. Tau misfolding efficiently propagates between individual intact hippocampal neurons. J Neurosci. 2019;39(48):9623‐9632.
Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JCS. Reduced incidence of AD with NSAID but not H2 receptor antagonists. Neurology. 2002;59(6):880‐886.
Szekely CA, Breitner JCS, Fitzpatrick AL, et al. NSAID use and dementia risk in the cardiovascular health study*. Neurology. 2008;70(1):17‐24.
Bellozi PMQ, Lima IVA, Dória JG, et al. Neuroprotective effects of the anticancer drug NVP‐BEZ235 (dactolisib) on amyloid‐β 1–42 induced neurotoxicity and memory impairment. Sci Rep. 2016;6(1):25226.
Roper J, Richardson MP, Wang WV, et al. The dual PI3K/mTOR inhibitor NVP‐BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA Wild‐Type colorectal cancer. PLoS One. 2011;6(9):e25132.
Brunden KR, Zhang B, Carroll J, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci. 2010;30:13861‐13866.
Kanakkanthara A, Northcote PT, Miller JH. Peloruside A: a lead non‐taxoid‐site microtubule‐stabilizing agent with potential activity against cancer, neurodegeneration, and autoimmune disease. Nat Prod Rep. 2016;33(4):549‐561.
Konner J, Grisham RN, Park J, et al. Phase I clinical, pharmacokinetic, and pharmacodynamic study of KOS‐862 (Epothilone D) in patients with advanced solid tumors and lymphoma. Invest New Drugs. 2012;30(6):2294‐2302.
Barten DM, Fanara P, Andorfer C, et al. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule‐stabilizing agent BMS‐241027. J Neurosci. 2012;32(21):7137‐7145.
Taylor SA, Marrinan CH, Liu G, et al. Combining the farnesyltransferase inhibitor lonafarnib with paclitaxel results in enhanced growth inhibitory effects on human ovarian cancer models in vitro and in vivo. Gynecol Oncol. 2008;109(1):97‐106.
Wang J, Lian Y, Gu Y, et al. Synergistic effect of farnesyl transferase inhibitor lonafarnib combined with chemotherapeutic agents against the growth of hepatocellular carcinoma cells. Oncotarget. 2017;8(62):105047‐105060. doi:10.18632/oncotarget.22086
Das V, Miller JH. Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid‐induced Tau phosphorylation. Eur J Neurosci. 2012;35:351705‐351717.
Meyer CJ, Krauth M, Wick MJ, et al. Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymic nu/nu mouse model. Mol Cancer Ther. 2015;14(8):1816‐1823.
van Dyck CH, Nygaard HB, Chen K, et al. Effect of AZD0530 on cerebral metabolic decline in alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;76(10):1219‐1229.
Green TP, Fennell M, Whittaker R, et al. Preclinical anticancer activity of the potent, oral src inhibitor AZD0530. Mol Oncol. 2009;3(3):248‐261.
Chen X, Jiang Z, Zhou C, et al. Activation of Nrf2 by sulforaphane inhibits high glucose‐induced progression of pancreatic cancer via AMPK dependent signaling. Cell Physiol Biochem. 2018;50(3):1201‐1215.
Pledgie‐Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type–specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007;6(3):1013‐1021.
Frydoonfar HR, McGrath DR, Spigelman AD. Sulforaphane inhibits growth of a colon cancer cell line. Colorectal Dis. 2004;6(1):28‐31.
Goldfine A, Faulkner R, Sadashivam V, et al. Results of a phase 1 dose‐ranging trial, and design of a phase 2 trial, of K0706, a novel C‐Abl tyrosine kinase inhibitor for Parkinson's disease. (P2.8‐047). Neurology. 2019;92(15):P2.8‐047.
Cortes JE, Saikia T, Kim D‐W, et al. Phase 1 trial of vodobatinib, a novel oral BCR‐ABL1 tyrosine kinase inhibitor (TKI): activity in CML chronic phase patients failing TKI therapies including ponatinib. Blood. 2020;136(1):51‐52.
Antelope O, Vellore NA, Pomicter AD, et al. BCR‐ABL1 tyrosine kinase inhibitor K0706 exhibits preclinical activity in Philadelphia chromosome‐positive leukemia. Exp Hematol. 2019;77:7736‐7740.
Havrdova E, Horakova D, Kovarova I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord. 2015;8(1):31‐45.
James LC, Hale G, Waldman H, Bloomer AC. 1.9 Å structure of the therapeutic antibody CAMPATH‐1H fab in complex with a synthetic peptide antigen. J Mol Biol. 1999;289(2):293‐301.
De Stefano N, Giorgio A, Battaglini M, et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Multiple Sclerosis J. 2018;24(2):222‐226.
Shahani N, Gourie‐Devi M, Nalini A, Raju TR. Cyclophosphamide attenuates the degenerative changes induced by CSF from patients with amyotrophic lateral sclerosis in the neonatal rat spinal cord. J Neurol Sci. 2001;185(2):109‐118.
Uenaka T, Satake W, Cha P‐C, et al. In silico drug screening by using genome‐wide association study data repurposed dabrafenib, an anti‐melanoma drug, for Parkinson's disease. Hum Mol Genet. 2018;27(22):3974‐3985.
Le Pichon CE, Dominguez SL, Solanoy H, et al. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS. PLoS One. 2013;8(4):e62342.
Rando A, de la Torre M, Martinez‐Muriana A, et al. Chemotherapeutic agent 5‐fluorouracil increases survival of SOD1 mouse model of ALS. PLoS One. 2019;14(1):e0210752.
Stark JW, Josephs L, Dulak D, Clague M, Sadiq SA. Safety of long‐term intrathecal methotrexate in progressive forms of MS. Ther Adv Neurol Disord. 2019;12:175628641989236.
Fabis‐Pedrini MJ, Carroll WM, Kermode AG. Efficacy and safety of mitoxantrone use in aggressive multiple sclerosis (P3.414). Neurology. 2018;90(15):P3.414. doi:10.1212/WNL.90.15_supplement.P3.414
Zhang B, Maiti A, Shively S, et al. Microtubule‐binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Nat Acad Sci. 2005;102:227‐231.
Javidnia M, Hebron ML, Xin Y, Kinney NG, Moussa CE‐H. Pazopanib reduces phosphorylated tau levels and alters astrocytes in a mouse model of Tauopathy. J Alzheimer's Dis. 2017;60(2):461‐481.
Airas L, Nylund M, Mannonen I, Matilainen M, Sucksdorff M, Rissanen E. Rituximab in the treatment of multiple sclerosis in the hospital district of southwest Finland. Mult Scler Relat Disord. 2020;40:40101980.
Shudo K, Kagechika H, Yamazaki N, Igarashi M, Tateda C. A synthetic retinoid Am80 (Tamibarotene) rescues the memory deficit caused by scopolamine in a passive avoidance paradigm. Biol Pharm Bull. 2004;27(11):1887‐1889.
Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood–brain barrier to treat brain metastases. Int J Mol Sci, 21(1):22. doi:10.3390/ijms21010022
Das V, Hajdúch M. Randomizing for Alzheimer's disease drug trials should consider the cancer history of participants. Brain. 2023;146(10):e75‐e76.