• This record comes from PubMed

Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems

. 2024 Feb 23 ; 9 (3) : . [epub] 20240223

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FacEdu 2024 No. 2126 University of Hradec Kralove, Faculty of Education

This paper introduces the Botox Optimization Algorithm (BOA), a novel metaheuristic inspired by the Botox operation mechanism. The algorithm is designed to address optimization problems, utilizing a human-based approach. Taking cues from Botox procedures, where defects are targeted and treated to enhance beauty, the BOA is formulated and mathematically modeled. Evaluation on the CEC 2017 test suite showcases the BOA's ability to balance exploration and exploitation, delivering competitive solutions. Comparative analysis against twelve well-known metaheuristic algorithms demonstrates the BOA's superior performance across various benchmark functions, with statistically significant advantages. Moreover, application to constrained optimization problems from the CEC 2011 test suite highlights the BOA's effectiveness in real-world optimization tasks.

See more in PubMed

El-kenawy E.-S.M., Khodadadi N., Mirjalili S., Abdelhamid A.A., Eid M.M., Ibrahim A. Greylag Goose Optimization: Nature-inspired optimization algorithm. Expert Syst. Appl. 2024;238:122147. doi: 10.1016/j.eswa.2023.122147. DOI

Singh N., Cao X., Diggavi S., Başar T. Decentralized multi-task stochastic optimization with compressed communications. Automatica. 2024;159:111363. doi: 10.1016/j.automatica.2023.111363. DOI

Liberti L., Kucherenko S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005;12:263–285. doi: 10.1111/j.1475-3995.2005.00503.x. DOI

Koc I., Atay Y., Babaoglu I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022;112:104783. doi: 10.1016/j.engappai.2022.104783. DOI

Trojovský P., Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:149. doi: 10.3390/biomimetics8020149. PubMed DOI PMC

Kashan A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014;16:171–200. doi: 10.1016/j.asoc.2013.12.005. DOI

De Armas J., Lalla-Ruiz E., Tilahun S.L., Voß S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022;21:265–287. doi: 10.1007/s11047-020-09837-9. DOI

Dehghani M., Montazeri Z., Dehghani A., Malik O.P., Morales-Menendez R., Dhiman G., Nouri N., Ehsanifar A., Guerrero J.M., Ramirez-Mendoza R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11:1286. doi: 10.3390/app11031286. DOI

Yang X.-S., Koziel S., Leifsson L. Computational Optimization, Modelling and Simulation: Smart Algorithms and Better Models. Procedia Comput. Sci. 2012;9:852–856. doi: 10.1016/j.procs.2012.04.091. DOI

Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI

Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; Perth, WA, Australia: IEEE; 1995. pp. 1942–1948.

Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI

Karaboga D., Basturk B. International Fuzzy Systems Association World Congress. Springer; Berlin/Heidelberg, Germany: 2007. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems; pp. 789–798.

Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. DOI

Al-Baik O., Alomari S., Alssayed O., Gochhait S., Leonova I., Dutta U., Malik O.P., Montazeri Z., Dehghani M. Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2024;9:65. doi: 10.3390/biomimetics9020065. PubMed DOI PMC

Chopra N., Ansari M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022;198:116924. doi: 10.1016/j.eswa.2022.116924. DOI

Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI

Dehghani M., Montazeri Z., Trojovská E., Trojovský P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023;259:110011. doi: 10.1016/j.knosys.2022.110011. DOI

Braik M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021;174:114685. doi: 10.1016/j.eswa.2021.114685. DOI

Ghasemi M., Rahimnejad A., Hemmati R., Akbari E., Gadsden S.A. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array. 2021;11:100074. doi: 10.1016/j.array.2021.100074. DOI

Braik M., Hammouri A., Atwan J., Al-Betar M.A., Awadallah M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. DOI

Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Abdollahzadeh B., Gharehchopogh F.S., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI

Abdel-Basset M., Mohamed R., Zidan M., Jameel M., Abouhawwash M. Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023;415:116200. doi: 10.1016/j.cma.2023.116200. DOI

Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Jiang Y., Wu Q., Zhu S., Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. DOI

Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI

Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. DOI

Dehghani M., Montazeri Z., Bektemyssova G., Malik O.P., Dhiman G., Ahmed A.E.M. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:470. doi: 10.3390/biomimetics8060470. PubMed DOI PMC

Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI

Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI

De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. DOI

Koza J.R., Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Volume 1 MIT Press; Cambridge, MA, USA: 1992.

Reynolds R.G. An introduction to cultural algorithms; Proceedings of the Third Annual Conference on Evolutionary Programming; San Diego, CA, USA. 24–26 February 1994; Singapore: World Scientific Publishing; 1994. pp. 131–139.

Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI

Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI

Dehghani M., Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2:1720. doi: 10.1007/s42452-020-03511-6. DOI

Dehghani M., Montazeri Z., Dhiman G., Malik O., Morales-Menendez R., Ramirez-Mendoza R.A., Dehghani A., Guerrero J.M., Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI

Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI

Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. DOI

Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. DOI

Faramarzi A., Heidarinejad M., Stephens B., Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020;191:105190. doi: 10.1016/j.knosys.2019.105190. DOI

Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI

Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI

Cuevas E., Oliva D., Zaldivar D., Pérez-Cisneros M., Sossa H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012;182:40–55. doi: 10.1016/j.ins.2010.12.024. DOI

Pereira J.L.J., Francisco M.B., Diniz C.A., Oliver G.A., Cunha S.S., Jr., Gomes G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021;170:114522. doi: 10.1016/j.eswa.2020.114522. DOI

Wei Z., Huang C., Wang X., Han T., Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI

Kaveh A., Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI

Eskandar H., Sadollah A., Bahreininejad A., Hamdi M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI

Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI

Wei Z., Ke P., Shigang L., Yagang W. Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. 2023;213:394–417.

Askari Q., Younas I., Saeed M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst. 2020;195:105709. doi: 10.1016/j.knosys.2020.105709. DOI

Trojovská E., Dehghani M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022;12:14861. doi: 10.1038/s41598-022-19313-2. PubMed DOI PMC

Al-Betar M.A., Alyasseri Z.A.A., Awadallah M.A., Abu Doush I. Coronavirus herd immunity optimizer (CHIO) Neural Comput. Appl. 2021;33:5011–5042. doi: 10.1007/s00521-020-05296-6. PubMed DOI PMC

Dehghani M., Mardaneh M., Guerrero J.M., Malik O.P., Ramirez-Mendoza R.A., Matas J., Vasquez J.C., Parra-Arroyo L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI

Ayyarao T.L., RamaKrishna N., Elavarasam R.M., Polumahanthi N., Rambabu M., Saini G., Khan B., Alatas B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI

Trojovský P., Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;8:e976. doi: 10.7717/peerj-cs.976. PubMed DOI PMC

Mohamed A.W., Hadi A.A., Mohamed A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020;11:1501–1529. doi: 10.1007/s13042-019-01053-x. DOI

Dehghani M., Mardaneh M., Malik O. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020;8:57–64.

Dehghani M., Trojovská E., Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022;12:17387. doi: 10.1038/s41598-022-22458-9. PubMed DOI PMC

Braik M., Ryalat M.H., Al-Zoubi H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022;34:409–455. doi: 10.1007/s00521-021-06392-x. DOI

Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI

Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI

Dehghani M., Montazeri Z., Saremi S., Dehghani A., Malik O.P., Al-Haddad K., Guerrero J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020;13:216–225. doi: 10.22266/ijies2020.0831.19. DOI

Dehghani M., Montazeri Z., Givi H., Guerrero J.M., Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294. doi: 10.22266/ijies2020.1031.26. DOI

Dehghani M., Montazeri Z., Malik O.P., Ehsanifar A., Dehghani A. OSA: Orientation search algorithm. International Journal of Industrial Electronics. Control. Optim. 2019;2:99–112.

Dehghani M., Montazeri Z., Malik O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019;32:871–882. doi: 10.35378/gujs.484643. DOI

Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554. doi: 10.22266/ijies2021.0630.46. DOI

Zeidabadi F.A., Dehghani M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.

Yao L., Yuan P., Tsai C.-Y., Zhang T., Lu Y., Ding S. ESO: An enhanced snake optimizer for real-world engineering problems. Expert Syst. Appl. 2023;230:120594. doi: 10.1016/j.eswa.2023.120594. DOI

Hong J., Shen B., Xue J., Pan A. A vector-encirclement-model-based sparrow search algorithm for engineering optimization and numerical optimization problems. Appl. Soft Comput. 2022;131:109777. doi: 10.1016/j.asoc.2022.109777. DOI

Wei F., Zhang Y., Li J. Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems. Expert Syst. Appl. 2024;248:123444. doi: 10.1016/j.eswa.2024.123444. DOI

Dressler D., Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil. Rehabil. 2007;29:1761–1768. doi: 10.1080/09638280701568296. PubMed DOI

Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., Camilli P.D., Südhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365:160–163. doi: 10.1038/365160a0. PubMed DOI

Small R. Botulinum toxin injection for facial wrinkles. Am. Fam. Physician. 2014;90:168–175. PubMed

Pant M., Radha T., Singh V.P. A simple diversity guided particle swarm optimization; Proceedings of the 2007 IEEE Congress on Evolutionary Computation; Singapore. 25–28 September 2007; Piscataway, NJ, USA: IEEE; 2007. pp. 3294–3299.

Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.

Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016

Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin/Heidelberg, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.

Das S., Suganthan P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Jadavpur University; Kolkata, India: Nanyang Technological University; Singapore: 2010. pp. 341–359.

Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI

Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.

Mezura-Montes E., Coello C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...