Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FacEdu 2024 No. 2126
University of Hradec Kralove, Faculty of Education
PubMed
38534822
PubMed Central
PMC10967787
DOI
10.3390/biomimetics9030137
PII: biomimetics9030137
Knihovny.cz E-resources
- Keywords
- Botox, exploitation, exploration, human-inspired, metaheuristic, optimization,
- Publication type
- Journal Article MeSH
This paper introduces the Botox Optimization Algorithm (BOA), a novel metaheuristic inspired by the Botox operation mechanism. The algorithm is designed to address optimization problems, utilizing a human-based approach. Taking cues from Botox procedures, where defects are targeted and treated to enhance beauty, the BOA is formulated and mathematically modeled. Evaluation on the CEC 2017 test suite showcases the BOA's ability to balance exploration and exploitation, delivering competitive solutions. Comparative analysis against twelve well-known metaheuristic algorithms demonstrates the BOA's superior performance across various benchmark functions, with statistically significant advantages. Moreover, application to constrained optimization problems from the CEC 2011 test suite highlights the BOA's effectiveness in real-world optimization tasks.
See more in PubMed
El-kenawy E.-S.M., Khodadadi N., Mirjalili S., Abdelhamid A.A., Eid M.M., Ibrahim A. Greylag Goose Optimization: Nature-inspired optimization algorithm. Expert Syst. Appl. 2024;238:122147. doi: 10.1016/j.eswa.2023.122147. DOI
Singh N., Cao X., Diggavi S., Başar T. Decentralized multi-task stochastic optimization with compressed communications. Automatica. 2024;159:111363. doi: 10.1016/j.automatica.2023.111363. DOI
Liberti L., Kucherenko S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005;12:263–285. doi: 10.1111/j.1475-3995.2005.00503.x. DOI
Koc I., Atay Y., Babaoglu I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022;112:104783. doi: 10.1016/j.engappai.2022.104783. DOI
Trojovský P., Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:149. doi: 10.3390/biomimetics8020149. PubMed DOI PMC
Kashan A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014;16:171–200. doi: 10.1016/j.asoc.2013.12.005. DOI
De Armas J., Lalla-Ruiz E., Tilahun S.L., Voß S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022;21:265–287. doi: 10.1007/s11047-020-09837-9. DOI
Dehghani M., Montazeri Z., Dehghani A., Malik O.P., Morales-Menendez R., Dhiman G., Nouri N., Ehsanifar A., Guerrero J.M., Ramirez-Mendoza R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11:1286. doi: 10.3390/app11031286. DOI
Yang X.-S., Koziel S., Leifsson L. Computational Optimization, Modelling and Simulation: Smart Algorithms and Better Models. Procedia Comput. Sci. 2012;9:852–856. doi: 10.1016/j.procs.2012.04.091. DOI
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; Perth, WA, Australia: IEEE; 1995. pp. 1942–1948.
Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Karaboga D., Basturk B. International Fuzzy Systems Association World Congress. Springer; Berlin/Heidelberg, Germany: 2007. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems; pp. 789–798.
Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. DOI
Al-Baik O., Alomari S., Alssayed O., Gochhait S., Leonova I., Dutta U., Malik O.P., Montazeri Z., Dehghani M. Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2024;9:65. doi: 10.3390/biomimetics9020065. PubMed DOI PMC
Chopra N., Ansari M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022;198:116924. doi: 10.1016/j.eswa.2022.116924. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Dehghani M., Montazeri Z., Trojovská E., Trojovský P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023;259:110011. doi: 10.1016/j.knosys.2022.110011. DOI
Braik M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021;174:114685. doi: 10.1016/j.eswa.2021.114685. DOI
Ghasemi M., Rahimnejad A., Hemmati R., Akbari E., Gadsden S.A. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array. 2021;11:100074. doi: 10.1016/j.array.2021.100074. DOI
Braik M., Hammouri A., Atwan J., Al-Betar M.A., Awadallah M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Abdollahzadeh B., Gharehchopogh F.S., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI
Abdel-Basset M., Mohamed R., Zidan M., Jameel M., Abouhawwash M. Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023;415:116200. doi: 10.1016/j.cma.2023.116200. DOI
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Jiang Y., Wu Q., Zhu S., Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. DOI
Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. DOI
Dehghani M., Montazeri Z., Bektemyssova G., Malik O.P., Dhiman G., Ahmed A.E.M. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:470. doi: 10.3390/biomimetics8060470. PubMed DOI PMC
Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. DOI
Koza J.R., Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Volume 1 MIT Press; Cambridge, MA, USA: 1992.
Reynolds R.G. An introduction to cultural algorithms; Proceedings of the Third Annual Conference on Evolutionary Programming; San Diego, CA, USA. 24–26 February 1994; Singapore: World Scientific Publishing; 1994. pp. 131–139.
Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI
Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Dehghani M., Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2:1720. doi: 10.1007/s42452-020-03511-6. DOI
Dehghani M., Montazeri Z., Dhiman G., Malik O., Morales-Menendez R., Ramirez-Mendoza R.A., Dehghani A., Guerrero J.M., Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. DOI
Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. DOI
Faramarzi A., Heidarinejad M., Stephens B., Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020;191:105190. doi: 10.1016/j.knosys.2019.105190. DOI
Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI
Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI
Cuevas E., Oliva D., Zaldivar D., Pérez-Cisneros M., Sossa H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012;182:40–55. doi: 10.1016/j.ins.2010.12.024. DOI
Pereira J.L.J., Francisco M.B., Diniz C.A., Oliver G.A., Cunha S.S., Jr., Gomes G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021;170:114522. doi: 10.1016/j.eswa.2020.114522. DOI
Wei Z., Huang C., Wang X., Han T., Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI
Kaveh A., Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI
Eskandar H., Sadollah A., Bahreininejad A., Hamdi M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Wei Z., Ke P., Shigang L., Yagang W. Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. 2023;213:394–417.
Askari Q., Younas I., Saeed M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst. 2020;195:105709. doi: 10.1016/j.knosys.2020.105709. DOI
Trojovská E., Dehghani M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022;12:14861. doi: 10.1038/s41598-022-19313-2. PubMed DOI PMC
Al-Betar M.A., Alyasseri Z.A.A., Awadallah M.A., Abu Doush I. Coronavirus herd immunity optimizer (CHIO) Neural Comput. Appl. 2021;33:5011–5042. doi: 10.1007/s00521-020-05296-6. PubMed DOI PMC
Dehghani M., Mardaneh M., Guerrero J.M., Malik O.P., Ramirez-Mendoza R.A., Matas J., Vasquez J.C., Parra-Arroyo L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI
Ayyarao T.L., RamaKrishna N., Elavarasam R.M., Polumahanthi N., Rambabu M., Saini G., Khan B., Alatas B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI
Trojovský P., Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;8:e976. doi: 10.7717/peerj-cs.976. PubMed DOI PMC
Mohamed A.W., Hadi A.A., Mohamed A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020;11:1501–1529. doi: 10.1007/s13042-019-01053-x. DOI
Dehghani M., Mardaneh M., Malik O. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020;8:57–64.
Dehghani M., Trojovská E., Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022;12:17387. doi: 10.1038/s41598-022-22458-9. PubMed DOI PMC
Braik M., Ryalat M.H., Al-Zoubi H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022;34:409–455. doi: 10.1007/s00521-021-06392-x. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Dehghani M., Montazeri Z., Saremi S., Dehghani A., Malik O.P., Al-Haddad K., Guerrero J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020;13:216–225. doi: 10.22266/ijies2020.0831.19. DOI
Dehghani M., Montazeri Z., Givi H., Guerrero J.M., Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294. doi: 10.22266/ijies2020.1031.26. DOI
Dehghani M., Montazeri Z., Malik O.P., Ehsanifar A., Dehghani A. OSA: Orientation search algorithm. International Journal of Industrial Electronics. Control. Optim. 2019;2:99–112.
Dehghani M., Montazeri Z., Malik O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019;32:871–882. doi: 10.35378/gujs.484643. DOI
Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554. doi: 10.22266/ijies2021.0630.46. DOI
Zeidabadi F.A., Dehghani M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.
Yao L., Yuan P., Tsai C.-Y., Zhang T., Lu Y., Ding S. ESO: An enhanced snake optimizer for real-world engineering problems. Expert Syst. Appl. 2023;230:120594. doi: 10.1016/j.eswa.2023.120594. DOI
Hong J., Shen B., Xue J., Pan A. A vector-encirclement-model-based sparrow search algorithm for engineering optimization and numerical optimization problems. Appl. Soft Comput. 2022;131:109777. doi: 10.1016/j.asoc.2022.109777. DOI
Wei F., Zhang Y., Li J. Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems. Expert Syst. Appl. 2024;248:123444. doi: 10.1016/j.eswa.2024.123444. DOI
Dressler D., Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil. Rehabil. 2007;29:1761–1768. doi: 10.1080/09638280701568296. PubMed DOI
Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., Camilli P.D., Südhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365:160–163. doi: 10.1038/365160a0. PubMed DOI
Small R. Botulinum toxin injection for facial wrinkles. Am. Fam. Physician. 2014;90:168–175. PubMed
Pant M., Radha T., Singh V.P. A simple diversity guided particle swarm optimization; Proceedings of the 2007 IEEE Congress on Evolutionary Computation; Singapore. 25–28 September 2007; Piscataway, NJ, USA: IEEE; 2007. pp. 3294–3299.
Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.
Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016
Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin/Heidelberg, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.
Das S., Suganthan P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Jadavpur University; Kolkata, India: Nanyang Technological University; Singapore: 2010. pp. 341–359.
Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.
Mezura-Montes E., Coello C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.