Chiral resolution of cationic piperazine derivatives by capillary electrophoresis using sulfated β-cyclodextrin

. 2024 Sep ; 45 (17-18) : 1479-1486. [epub] 20240404

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38576224

Grantová podpora
19-23033S Czech Science Foundation

This research focuses on the development and validation of a capillary electrophoresis (CE) method for the chiral separation of three H1-antihistamine drugs chlorcyclizine, norchlorcyclizine, and neobenodine using sulfated β-cyclodextrin (S-β-CD) as the chiral selector. The study explores various factors influencing the separation efficiency, including CD concentration, organic modifier content, voltage application, and buffer pH. Optimal conditions were identified as a 100 mM phosphate buffer (pH 6.0) with 34 mg mL-1 S-β-CD and 40% (v/v) methanol. The method demonstrated excellent linearity in calibration curves, with coefficients of determination exceeding 0.99 for each enantiomer. Precision studies revealed good intra- and inter-day precision for migration times and peak areas. The limits of detection and quantification for the analytes were within the ranges of 5.9-11.4 and 18-34.6 µmol L-1, respectively. Overall, the developed CE method offers a robust and precise approach for the chiral separation of H1-antihistamine drugs, holding promise for pharmaceutical applications.

Zobrazit více v PubMed

Chankvetadze B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. TrAC, Trends Anal Chem. 2021;143:116332.

Peluso P, Chankvetadze B. The molecular bases of chiral recognition in 2‐(benzylsulfinyl) benzamide enantioseparation. Anal Chim Acta. 2021;1141:194–205.

Xu Y, Li A, Xue S, Ding S, Zhang Q. Chiral separation by capillary electrokinetic chromatography with hydrophobic deep eutectic solvents as pseudo‐stationary phases. Talanta. 2023;260:124556.

García‐Cansino L, Saz J, García M, Marina M. Modelling the simultaneous chiral separation of a group of drugs by electrokinetic chromatography using mixtures of cyclodextrins. J Chromatogr A. 2022;1681:463444.

Hu S, Zhang M, Li F, Breadmore MC. β‐Cyclodextrin‐copper(II) complex as chiral selector in capillary electrophoresis for the enantioseparation of β‐blockers. J Chromatogr A. 2019;1596:233–240.

Benkovics G, Fejős I, Darcsi A, Varga E, Malanga M, Fenyvesi É, et al. Single‐isomer carboxymethyl‐γ‐cyclodextrin as chiral resolving agent for capillary electrophoresis. J Chromatogr A. 2016;1467:445–453.

Zhang Q, Qi X, Feng C, Tong S, Rui M. Three chiral ionic liquids as additives for enantioseparation in capillary electrophoresis and their comparison with conventional modifiers. J Chromatogr A. 2016;1462:146–152.

Ranzuglia GA, Manzi SJ, Gomez M, Belardinelli RE, Pereyra VD. An analytical model for enantioseparation process in capillary electrophoresis. Physica A Stat Mech Appl. 2017;487:153–163.

Cucinotta V, Contino A, Giuffrida A, Maccarrone G, Messina M. Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A. 2010;1217:953–967.

Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76–92.

Lang JC, Armstrong DW. Chiral surfaces: the many faces of chiral recognition. Curr Opin Colloid Interface Sci. 2017;32:94–107.

Chankvetadze B, Scriba GK. Cyclodextrins as chiral selectors in capillary electrophoresis: recent trends in mechanistic studies. TrAC, Trends Anal Chem. 2023;160:116987.

Scriba GK. Chiral recognition in separation science—an update. J Chromatogr A. 2016;1467:56–78.

Ho YH, Wu HL, Wu SM, Chen SH, Kou HS. Quantitative enantiomeric analysis of chlorcyclizine, hydroxyzine, and meclizine by capillary electrophoresis. Anal Bioanal Chem. 2003;376:859–863.

Chong CR, Sullivan DJ. New uses of old drugs. Nature. 2007;448:645–646.

Schafer A, Cheng H, Xiong R, Soloveva V, Retterer C, Mo F, et al. Repurposing potential of 1st generation H1‐specific antihistamines as anti‐filovirus therapeutics. Antiviral Res. 2018;157:47–56.

Hu Z, Rolt A, Hu X, Ma CD, Le DJ, Park SB, et al. Chlorcyclizine inhibits viral fusion of hepatitis C virus entry by directly targeting HCV envelope glycoprotein 1. Cell Chem Biol. 2020;27:780–92.e5.

He S, Xiao J, Dulcey AE, Lin B, Rolt A, Hu Z, et al. Discovery, optimization, and characterization of novel chlorcyclizine derivatives for the treatment of hepatitis C virus infection. J Med Chem. 2016;59:841–853.

Santos FR, Nunes DA, Lima WG, Davyt D, Santos LL, Taranto AG, et al. Identification of Zika virus NS2B‐NS3 protease inhibitors by structure‐based virtual screening and drug repurposing approaches. J Chem Inf Model. 2019;60:731–737.

Li Y, Touret F, de Lamballerie X, Nguyen M, Laurent M, Benoit‐Vical F, et al. Hybrid molecules based on an emodin scaffold. Synthesis and activity against SARS‐CoV‐2 and Plasmodium. Org Biomol Chem. 2023;21:7382–7394.

Kaljurand M, Mazina‐Šinkar J. Portable capillary electrophoresis as a green analytical technology. TrAC, Trends Anal Chem. 2022;157:116811.

Fejős I, Varga E, Benkovics G, Darcsi A, Malanga M, Fenyvesi É, et al. Comparative evaluation of the chiral recognition potential of single‐isomer sulfated beta‐cyclodextrin synthesis intermediates in non‐aqueous capillary electrophoresis. J Chromatogr A. 2016;1467:454–462.

Casy A. Chemistry and structure–activity relationships of synthetic anti‐histaminics. Handb Exp Pharmacol. 2013;18:175–214.

Salgado A, Chankvetadze B. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J Chromatogr A. 2016;1467:95–144.

Fanali S, Chankvetadze B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis. 2019;40:2420–2437.

Ma X, Du Y, Sun X, Liu J, Huang Z. Synthesis and application of amino alcohol‐derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis. J Chromatogr A. 2019;1601:340–349.

Singh G, Singh PK. Stimulus‐responsive supramolecular host–guest assembly of a cationic pyrene derivative with sulfated β‐cyclodextrin. Langmuir. 2019;35:14628–14638.

Quirino JP, Terabe S. Sample stacking of cationic and anionic analytes in capillary electrophoresis. J Chromatogr A. 2000;902:119–135.

John AS, Sidek MM, Thang LY, Sami S, Tey HY, See HH. Online sample preconcentration techniques in nonaqueous capillary and microchip electrophoresis. J Chromatogr A. 2021;1638:461868.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...