Magnetic Resonance Imaging in Prostate Cancer Screening: A Systematic Review and Meta-Analysis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, systematický přehled, metaanalýza
PubMed
38576242
PubMed Central
PMC10998247
DOI
10.1001/jamaoncol.2024.0734
PII: 2817308
Knihovny.cz E-zdroje
- MeSH
- časná detekce nádoru * metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- nádory prostaty * diagnostické zobrazování patologie diagnóza MeSH
- prostatický specifický antigen krev MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
- Názvy látek
- prostatický specifický antigen MeSH
IMPORTANCE: Prostate magnetic resonance imaging (MRI) is increasingly integrated within the prostate cancer (PCa) early detection pathway. OBJECTIVE: To systematically evaluate the existing evidence regarding screening pathways incorporating MRI with targeted biopsy and assess their diagnostic value compared with prostate-specific antigen (PSA)-based screening with systematic biopsy strategies. DATA SOURCES: PubMed/MEDLINE, Embase, Cochrane/Central, Scopus, and Web of Science (through May 2023). STUDY SELECTION: Randomized clinical trials and prospective cohort studies were eligible if they reported data on the diagnostic utility of prostate MRI in the setting of PCa screening. DATA EXTRACTION: Number of screened individuals, biopsy indications, biopsies performed, clinically significant PCa (csPCa) defined as International Society of Urological Pathology (ISUP) grade 2 or higher, and insignificant (ISUP1) PCas detected were extracted. MAIN OUTCOMES AND MEASURES: The primary outcome was csPCa detection rate. Secondary outcomes included clinical insignificant PCa detection rate, biopsy indication rates, and the positive predictive value for the detection of csPCa. DATA SYNTHESIS: The generalized mixed-effect approach with pooled odds ratios (ORs) and random-effect models was used to compare the MRI-based and PSA-only screening strategies. Separate analyses were performed based on the timing of MRI (primary/sequential after a PSA test) and cutoff (Prostate Imaging Reporting and Data System [PI-RADS] score ≥3 or ≥4) for biopsy indication. RESULTS: Data were synthesized from 80 114 men from 12 studies. Compared with standard PSA-based screening, the MRI pathway (sequential screening, PI-RADS score ≥3 cutoff for biopsy) was associated with higher odds of csPCa when tests results were positive (OR, 4.15; 95% CI, 2.93-5.88; P ≤ .001), decreased odds of biopsies (OR, 0.28; 95% CI, 0.22-0.36; P ≤ .001), and insignificant cancers detected (OR, 0.34; 95% CI, 0.23-0.49; P = .002) without significant differences in the detection of csPCa (OR, 1.02; 95% CI, 0.75-1.37; P = .86). Implementing a PI-RADS score of 4 or greater threshold for biopsy selection was associated with a further reduction in the odds of detecting insignificant PCa (OR, 0.23; 95% CI, 0.05-0.97; P = .048) and biopsies performed (OR, 0.19; 95% CI, 0.09-0.38; P = .01) without differences in csPCa detection (OR, 0.85; 95% CI, 0.49-1.45; P = .22). CONCLUSION AND RELEVANCE: The results of this systematic review and meta-analysis suggest that integrating MRI in PCa screening pathways is associated with a reduced number of unnecessary biopsies and overdiagnosis of insignificant PCa while maintaining csPCa detection as compared with PSA-only screening.
Centre for Translational Medicine Semmelweis University Budapest Hungary
Comprehensive Cancer Center Department of Urology Medical University of Vienna Vienna Austria
Department of Radiology Netherlands Cancer Institute Amsterdam the Netherlands
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Erasmus MC Rotterdam the Netherlands
Department of Urology Hospital Universitario La Paz Madrid Spain
Department of Urology Jagiellonian University Medical College Krakow Poland
Department of Urology La Croix du Sud Hospital Quint Fonsegrives France
Department of Urology Medical University of Silesia Zabrze Poland
Department of Urology Semmelweis University Budapest Hungary
Department of Urology St Antonius Hospital Utrecht the Netherlands
Department of Urology University of Texas Southwestern Medical Center Dallas
Department of Urology Weill Cornell Medical College New York New York
Department of Urology Yale School of Medicine New Haven Connecticut
Division of Surgery and Interventional Science University College London London England
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Karl Landsteiner Institute of Urology and Andrology Vienna Austria
The National Center for Diabetes Endocrinology and Genetics The University of Jordan Amman Jordan
Zobrazit více v PubMed
Ilic D, Djulbegovic M, Jung JH, et al. . Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ. 2018;362:k3519. doi:10.1136/bmj.k3519 PubMed DOI PMC
de Vos II, Meertens A, Hogenhout R, Remmers S, Roobol MJ; ERSPC Rotterdam Study Group . A detailed evaluation of the effect of prostate-specific antigen-based screening on morbidity and mortality of prostate cancer: 21-year follow-up results of the Rotterdam section of the European Randomised Study of Screening for Prostate Cancer. Eur Urol. 2023;84(4):426-434. PubMed
Mottet N, Cornford P, Bergh RCN, et al. . EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. Accessed March 15, 2023. https://uroweb.org/guidelines/prostate-cancer
National Comprehensive Cancer Network . Prostate cancer guideline version 4.2022. Accessed May 22, 2022. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459
Vickers A, O’Brien F, Montorsi F, et al. . Current policies on early detection of prostate cancer create overdiagnosis and inequity with minimal benefit. BMJ. 2023;381:e071082. doi:10.1136/bmj-2022-071082 PubMed DOI
Leapman MS, Wang R, Park H, et al. . Changes in prostate-specific antigen testing relative to the revised US Preventive Services Task Force recommendation on prostate cancer screening. JAMA Oncol. 2022;8(1):41-47. doi:10.1001/jamaoncol.2021.5143 PubMed DOI PMC
Drost FH, Osses DF, Nieboer D, et al. . Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev. 2019;4(4):CD012663. doi:10.1002/14651858.CD012663.pub2 PubMed DOI PMC
Schoots IG, Padhani AR. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. BJU Int. 2021;127(2):175-178. doi:10.1111/bju.15277 PubMed DOI PMC
Page MJ, McKenzie JE, Bossuyt PM, et al. . The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71. doi:10.1136/bmj.n71 PubMed DOI PMC
Higgins JPT, Thomas J, Chandler J, et al. . Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3. Cochrane; 2022.
Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015;13(3):147-153. doi:10.1097/XEB.0000000000000054 PubMed DOI
Turkbey B, Rosenkrantz AB, Haider MA, et al. . Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340-351. doi:10.1016/j.eururo.2019.02.033 PubMed DOI
Assel M, Sjoberg D, Elders A, et al. . Guidelines for reporting of statistics for clinical research in urology. Eur Urol. 2019;75(3):358-367. doi:10.1016/j.eururo.2018.12.014 PubMed DOI PMC
Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc. 2015;13(3):196-207. doi:10.1097/XEB.0000000000000065 PubMed DOI
Stijnen T, Hamza TH, Ozdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29(29):3046-3067. doi:10.1002/sim.4040 PubMed DOI
Sterne JAC, Sutton AJ, Ioannidis JPA, et al. . Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002. doi:10.1136/bmj.d4002 PubMed DOI
Higgins JP, Altman DG, Gøtzsche PC, et al. ; Cochrane Bias Methods Group; Cochrane Statistical Methods Group . The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928 PubMed DOI PMC
Sterne JA, Hernán MA, Reeves BC, et al. . ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919 PubMed DOI PMC
Eldred-Evans D, Tam H, Sokhi H, et al. . An evaluation of screening pathways using a combination of magnetic resonance imaging and prostate-specific antigen: results from the IP1-PROSTAGRAM Study. Eur Urol Oncol. 2023;6(3):295-302. doi:10.1016/j.euo.2023.03.009 PubMed DOI
Hugosson J, Månsson M, Wallström J, et al. ; GÖTEBORG-2 Trial Investigators . Prostate cancer screening with PSA and MRI followed by targeted biopsy only. N Engl J Med. 2022;387(23):2126-2137. doi:10.1056/NEJMoa2209454 PubMed DOI PMC
Arsov C, Albers P, Herkommer K, et al. . A randomized trial of risk-adapted screening for prostate cancer in young men—results of the first screening round of the PROBASE trial. Int J Cancer. 2022;150(11):1861-1869. doi:10.1002/ijc.33940 PubMed DOI
Eklund M, Jäderling F, Discacciati A, et al. ; STHLM3 Consortium . MRI-targeted or standard biopsy in prostate cancer screening. N Engl J Med. 2021;385(10):908-920. doi:10.1056/NEJMoa2100852 PubMed DOI
Nordström T, Discacciati A, Bergman M, et al. ; STHLM3 Study Group . Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol. 2021;22(9):1240-1249. doi:10.1016/S1470-2045(21)00348-X PubMed DOI
Nam RK, Wallis CJD, Stojcic-Bendavid J, et al. . A pilot study to evaluate the role of magnetic resonance imaging for prostate cancer screening in the general population. J Urol. 2016;196(2):361-366. doi:10.1016/j.juro.2016.01.114 PubMed DOI
Nam R, Patel C, Milot L, et al. . Prostate MRI versus PSA screening for prostate cancer detection (the MVP Study): a randomised clinical trial. BMJ Open. 2022;12(11):e059482. doi:10.1136/bmjopen-2021-059482 PubMed DOI PMC
Grenabo Bergdahl A, Wilderäng U, Aus G, et al. . Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the Göteborg randomised screening trial. Eur Urol. 2016;70(4):566-573. doi:10.1016/j.eururo.2015.12.006 PubMed DOI PMC
Alberts AR, Schoots IG, Bokhorst LP, et al. . Characteristics of prostate cancer found at fifth screening in the European Randomized Study of Screening for Prostate Cancer Rotterdam: can we selectively detect high-grade prostate cancer with upfront multivariable risk stratification and magnetic resonance imaging? Eur Urol. 2018;73(3):343-350. doi:10.1016/j.eururo.2017.06.019 PubMed DOI
Rannikko A, Leht M, Mirtti T, et al. . Population-based randomized trial of screening for clinically significant prostate cancer ProScreen: a pilot study. BJU Int. 2022;130(2):193-199. doi:10.1111/bju.15683 PubMed DOI PMC
Benafif S, Ni Raghallaigh H, McGrowder E, et al. . The BARCODE1 pilot: a feasibility study of using germline single nucleotide polymorphisms to target prostate cancer screening. BJU Int. 2022;129(3):325-336. doi:10.1111/bju.15535 PubMed DOI PMC
Segal N, Ber Y, Benjaminov O, et al. . Imaging-based prostate cancer screening among BRCA mutation carriers-results from the first round of screening. Ann Oncol. 2020;31(11):1545-1552. doi:10.1016/j.annonc.2020.06.025 PubMed DOI
Loeb S, Bjurlin MA, Nicholson J, et al. . Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65(6):1046-1055. doi:10.1016/j.eururo.2013.12.062 PubMed DOI PMC
Van Poppel H, Albreht T, Basu P, Hogenhout R, Collen S, Roobol M. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat Rev Urol. 2022;19(9):562-572. doi:10.1038/s41585-022-00638-6 PubMed DOI
Carlsson S, Aus G, Wessman C, Hugosson J. Anxiety associated with prostate cancer screening with special reference to men with a positive screening test (elevated PSA)—results from a prospective, population-based, randomised study. Eur J Cancer. 2007;43(14):2109-2116. doi:10.1016/j.ejca.2007.06.002 PubMed DOI
Loeb S, Vellekoop A, Ahmed HU, et al. . Systematic review of complications of prostate biopsy. Eur Urol. 2013;64(6):876-892. doi:10.1016/j.eururo.2013.05.049 PubMed DOI
Wallström J, Geterud K, Kohestani K, et al. . Prostate cancer screening with magnetic resonance imaging: results from the second round of the Göteborg Prostate Cancer Screening 2 Trial. Eur Urol Oncol. 2022;5(1):54-60. doi:10.1016/j.euo.2021.09.001 PubMed DOI
Panebianco V, Barchetti G, Simone G, et al. . Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur Urol. 2018;74(1):48-54. doi:10.1016/j.eururo.2018.03.007 PubMed DOI
Chubak J, Hubbard R. Defining and measuring adherence to cancer screening. J Med Screen. 2016;23(4):179-185. doi:10.1177/0969141316630766 PubMed DOI PMC
Krilaviciute A, Albers P, Lakes J, et al. . Adherence to a risk-adapted screening strategy for prostate cancer: first results of the PROBASE trial. Int J Cancer. 2023;152(5):854-864. doi:10.1002/ijc.34295 PubMed DOI
Roumier X, Azzouzi R, Valéri A, et al. . Adherence to an annual PSA screening program over 3 years for brothers and sons of men with prostate cancer. Eur Urol. 2004;45(3):280-285. doi:10.1016/j.eururo.2003.09.022 PubMed DOI
Callender T, Emberton M, Morris S, Pharoah PDP, Pashayan N. Benefit, harm, and cost-effectiveness associated with magnetic resonance imaging before biopsy in age-based and risk-stratified screening for prostate cancer. JAMA Netw Open. 2021;4(3):e2037657-e2037657. doi:10.1001/jamanetworkopen.2020.37657 PubMed DOI PMC
de Rooij M, Crienen S, Witjes JA, Barentsz JO, Rovers MM, Grutters JPC. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol. 2014;66(3):430-436. doi:10.1016/j.eururo.2013.12.012 PubMed DOI
Leapman MS, Thiel CL, Gordon IO, et al. . Environmental impact of prostate magnetic resonance imaging and transrectal ultrasound guided prostate biopsy. Eur Urol. 2023;83(5):463-471. doi:10.1016/j.eururo.2022.12.008 PubMed DOI
Hao S, Discacciati A, Eklund M, et al. . Cost-effectiveness of prostate cancer screening using magnetic resonance imaging or standard biopsy based on the STHLM3-MRI Study. JAMA Oncol. 2022;9(1):88-94. doi:10.1001/jamaoncol.2022.5252 PubMed DOI PMC
Faria R, Soares MO, Spackman E, et al. . Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the Prostate MR Imaging Study (PROMIS). Eur Urol. 2018;73(1):23-30. doi:10.1016/j.eururo.2017.08.018 PubMed DOI PMC
Wallström J, Geterud K, Kohestani K, et al. . Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI? results from the Göteborg prostate cancer screening 2 trial. Eur Radiol. 2021;31(11):8692-8702. doi:10.1007/s00330-021-07907-9 PubMed DOI PMC
Ng A, Khetrapal P, Kasivisvanathan V. Is it PRIME time for biparametric magnetic resonance imaging in prostate cancer diagnosis? Eur Urol. 2022;82(1):1-2. doi:10.1016/j.eururo.2022.02.021 PubMed DOI
Gatti M, Faletti R, Calleris G, et al. . Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom Radiol (NY). 2019;44(5):1883-1893. doi:10.1007/s00261-019-01934-3 PubMed DOI
Kuhl CK, Bruhn R, Krämer N, Nebelung S, Heidenreich A, Schrading S. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology. 2017;285(2):493-505. doi:10.1148/radiol.2017170129 PubMed DOI
Gaffney CD, Tin AL, Fainberg J, et al. . The oncologic risk of magnetic resonance imaging-targeted and systematic cores in patients treated with radical prostatectomy. Cancer. 2023;129(23):3790-3796. doi:10.1002/cncr.34981 PubMed DOI PMC