Preparation and Characterization of Multilayer NiTi Coatings by a Thermal Plasma Process
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22-20181 S
Czech Science Foundation
LM2023051
MEYS CR
CZ.02.1.01/0.0/0.0/16_019/0000760
EU
PubMed
38591569
PubMed Central
PMC10856652
DOI
10.3390/ma17030694
PII: ma17030694
Knihovny.cz E-resources
- Keywords
- characterization, deposition, thermal plasma process, thick NiTi coating,
- Publication type
- Journal Article MeSH
The deposition of multilayer coating of NiTi is carried out by a thermal plasma spraying process on a stainless steel substrate. The deposition of melted NiTi particles creates an adhesion layer on the substrate with the subsequent formation of multilayer coating with a certain thickness. Six layers of coating are created to achieve a certain thickness in terms of the sprayed sample. This paper aims to investigate multilayer NiTi coatings created through a thermal plasma process. The key variable feed rate was considered, as well as its effect on the microstructure characteristics. The shape memory effect associated with the coating properties was analyzed in detail. The variable feed rate was considered one of the most important parameters in the thermal plasma spraying process due to its ability to control the quality and compactness of the coating structure. The coatings were characterized by examining their microstructure, thermal, chemical, and microhardness. The indent marks were made/realized along the cross-section surface for the analysis of crack propagation resistance and wear properties. The coating's surface did not display segmentation crack lines. Nevertheless, the cross-sectional surfaces showed evidence of crack lines. There were eutectic zones of the interlamellar structure observed in the structure of the coating. The plasma-sprayed samples from thermo-mechanical analysis of the hysteresis curve provide strong confirmation of the shape memory effect.
See more in PubMed
Grilli M.L., Valerini D., Slobozeanu A.E., Postolnyi B.O., Balos S., Rizzo A., Piticescu R.R. Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications. Materials. 2021;14:1656. doi: 10.3390/ma14071656. PubMed DOI PMC
Barwinska I., Kopec M., Kukla D., Senderowski C., Kowalewski Z.L. Thermal Barrier Coatings for High-Temperature Performance of Nickel-Based Superalloys: A Synthetic Review. Coatings. 2023;13:769. doi: 10.3390/coatings13040769. DOI
Bakan E., Vaßen R. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. J. Therm. Spray Technol. 2017;26:992–1010. doi: 10.1007/s11666-017-0597-7. DOI
Falcón J.C.P., Echeverría A., Afonso C.R.M., Carrullo J.C.Z., Borrás V.A. Microstructure assessment at high temperature in NiCoCrAlY overlay coating obtained by laser metal deposition. J. Mater. Res. Technol. 2019;8:1761–1772. doi: 10.1016/j.jmrt.2018.12.006. DOI
Armstrong M., Mehrabi H., Naveed N. An overview of modern metal additive manufacturing technology. J. Manuf. Process. 2022;84:1001–1029. doi: 10.1016/j.jmapro.2022.10.060. DOI
Kohyama A., Grossbeck M.L., Piatti G. The application of austenitic stainless steels in advanced fusion systems: Current limitations and future prospects. Pt AJ. Nucl. Mater. 1992;191–194:37–44. doi: 10.1016/S0022-3115(09)80008-1. DOI
Frenzel J., George E.P., Dlouhy A., Somsen C., Wagner M.X., Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010;58:3444–3458. doi: 10.1016/j.actamat.2010.02.019. DOI
Bitzer M., Rauhut N., Mauer G., Bram M., Vaßen R., Buchkremer H.P., Stöver D., Pohl M. Cavitation-resistant NiTi coatings produced by low-pressure plasma spraying (LPPS) Wear. 2015;328–329:369–377. doi: 10.1016/j.wear.2015.03.003. DOI
Espitia L., Dong H., Li X.-Y., Pinedo C., Tschiptschin A. Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel. Wear. 2015;332–333:1070–1079. doi: 10.1016/j.wear.2014.12.009. DOI
Nie M.H., Jiang P.F., Zhou Y.X., Li Y.L., Zhang Z.H. Studies on the 316/NiTi functionally gradient ultra-thick coatings fabricated with directed energy deposition: Microstructure, crystallography and wear mechanism. Appl. Surf. Sci. 2023;630:157497. doi: 10.1016/j.apsusc.2023.157497. DOI
Farvizi M., Ebadzadeh T., Vaezi M., Yoon E., Kim Y.-J., Kang J., Kim H., Simchi A. Effect of starting materials on the wear performance of NiTi-based composites. Wear. 2015;334–335:35–43. doi: 10.1016/j.wear.2015.04.011. DOI
Chang F.T., Lo K.H., Man H.C. NiTi cladding on stainless steel by TIG surfacing process: Part I. Cavitation erosion behavior. Surf. Coat. Technol. 2003;172:308–315. doi: 10.1016/S0257-8972(03)00345-1. DOI
Oliveira J.P., Miranda R.M., Fernandes F.M. Welding and Joining of NiTi Shape Memory Alloys: A Review. Prog. Mater. Sci. 2017;88:412–466. doi: 10.1016/j.pmatsci.2017.04.008. DOI
Verschuur E.M.L., Homs M.Y.V., Steyerberg E.W., Haringsma J., Wahab P.J., Kuipers E.J., Siersema P.D. A new esophageal stent design (Niti-S stent) for the prevention of migration: A prospective study in 42 patients. Gastrointest. Endosc. 2006;63:134–140. doi: 10.1016/j.gie.2005.07.051. PubMed DOI
Alarcon E., Heller L., Chirani S.A., Šittner P., Kopeček J., Saint-Sulpice L., Calloch S. Fatigue performance of superelastic NiTi near stress-induced martensitic transformation. Int. J. Fatigue. 2017;95:76–89. doi: 10.1016/j.ijfatigue.2016.10.005. DOI
Frenzel J. On the Importance of Structural and Functional Fatigue in Shape Memory Technology. Shap. Mem. Superelasticity. 2020;6:213–222. doi: 10.1007/s40830-020-00281-3. DOI
Elahinia M., Moghaddam N.S., Andani M.T., Amerinatanzi A., Beth A.B., Reginald F.H. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016;83:630–663. doi: 10.1016/j.pmatsci.2016.08.001. DOI
Samal S., Zeman J., Habr S., Pacherová O., Chandra M., Kopeček J., Šittner P. Evaluation of Microstructure–Porosity–Hardness of Thermal Plasma-Sprayed NiTi Coating Layers. J. Manuf. Mater. Process. 2023;7:198. doi: 10.3390/jmmp7060198. DOI
Bolelli G., Cannillo V., Lugli C., Lusvarghi L., Manfredini T. Plasma-sprayed graded ceramic coatings on refractory materials for improved chemical resistance. J. Eur. Ceram. Soc. 2006;26:2561–2579. doi: 10.1016/j.jeurceramsoc.2005.07.066. DOI
Bonizzoni G., Vassallo E. Plasma physics and technology; industrial applications. Vaccum. 2002;64:327–336. doi: 10.1016/S0042-207X(01)00341-4. DOI
Singh S., Jinoop A.N., Palani I.A., Paul C.P., Tomar K.P., Prashanth K.G. Microstructure and mechanical properties of NiTi-SS bimetallic structures built using Wire Arc Additive Manufacturing. Mater. Lett. 2021;303:130499. doi: 10.1016/j.matlet.2021.130499. DOI
Hu L., Xue Y., Shi F. Intermetallic formation and mechanical properties of Ni-Ti diffusion couples. Mater. Des. 2017;130:175–182. doi: 10.1016/j.matdes.2017.05.055. DOI
Zhu J., Ding Z., Borisov E., Yao X., Brouwer J.C., Popovich A., Hermans M., Popovich V. Healing cracks in additively manufactured NiTi shape memory alloys. Virtual Phys. Prototyp. 2023;18:e2246437. doi: 10.1080/17452759.2023.2246437. DOI
Zou Z., Jia L., Yang L., Shan X., Luo L., Guo F., Zhao X., Xiao P. Role of internal oxidation on the failure of air plasma sprayed thermal barrier coatings with a double-layered bond coat. Surf. Coat. Technol. 2017;319:370–377. doi: 10.1016/j.surfcoat.2017.04.026. DOI
Samal S. Study of porosity on titania slag obtained by conventional sintering and thermal plasma process. JOM. 2016;68:3000–3005. doi: 10.1007/s11837-016-2031-x. DOI
Dhiman R., McDonald A.G., Chandra S. Predicting splat morphology in a thermal spray process. Surf. Coat. Technol. 2007;201:7789–7801. doi: 10.1016/j.surfcoat.2007.03.010. DOI
Mulero M.A., Zapata J., Vilar R., Martınez V., Gadow R. Automated image inspection system to quantify thermal spray splat morphology. Surf. Coat. Technol. 2015;278:1–11. doi: 10.1016/j.surfcoat.2015.07.065. DOI
Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI
Velmurugan C., Senthilkumar V., Biswas K., Yadav S. Densification and microstructural evolution of spark plasma sintered NiTi shape memory alloy. Adv. Powder Technol. 2018;29:2456–2462. doi: 10.1016/j.apt.2018.06.026. DOI
Samal S., Sulovský M., Kopeček J., Šittner P. Deposition and characterization of plasma sprayed NiTi powder on stainless steel and graphite substrate. Mater. Chem. Phys. 2023;307:128146. doi: 10.1016/j.matchemphys.2023.128146. DOI
Zhe X.Y., Li X.H., Wang Q., Zhang Y., Song X.D. Substrate temperature dependence of splat morphology for plasma-sprayed cast iron on aluminum surface. Surf. Coat. Technol. 2015;283:234–240. doi: 10.1016/j.surfcoat.2015.10.073. DOI
Yu Z.X., Huang J.B., Wang W.Z., Yu J.Y., Wu L.M. Deposition and properties of a multilayered thermal barrier coating. Surf. Coat. Technol. 2016;288:126–134. doi: 10.1016/j.surfcoat.2016.01.001. DOI
Zhai H., Ou M., Cui S., Li W., Zhang X., Cheng B., He D., Li X., Cai A. Characterizations the deposition behavior and mechanical properties of detonation sprayed Fe-based amorphous coatings. J. Mater. Res. Technol. 2022;18:2506–2518. doi: 10.1016/j.jmrt.2022.03.140. DOI
Samal S., Kopeček J., Šittner P. Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel. Materials. 2022;15:8598. doi: 10.3390/ma15238598. PubMed DOI PMC
Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis. ASTM; West Conshohocken, PA, USA: 2019.