Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36500094
PubMed Central
PMC9738793
DOI
10.3390/ma15238598
PII: ma15238598
Knihovny.cz E-zdroje
- Klíčová slova
- NiTi, plasma process, stainless steel substrate, thick layer,
- Publikační typ
- časopisecké články MeSH
Interfacial adhesion of thick NiTi coating on substrate stainless steel is investigated here. NiTi coating was deposited on the substrate by using the thermal plasma spraying method. Deposition of NiTi coating was carried out by using various levels of input power under an Ar atmosphere. Multiple coating layers were deposited on the stainless steel surface for a specific thickness. The cross-section of the plasma-sprayed samples were prepared and characterized by using various techniques. The hardness of the coating layers on the surface and cross-section was examined. The thickness of the coating increased with the increase in power. No cracks were detected in the interface for the NiTi coating deposited at 12 kW power. However minor pores were observed at some regions along the interface at the sample prepared at 9 kW power. A good-quality coating layer was formed at the interface of the substrate. Primary phases of austenite and martensite were confirmed from the EBSD and XRD investigations. There was the presence of intermetallic and oxide phases in the coating layers. A less heat-affected zone of 10 µm of along the interface was confirmed without any diffusion of elements from the substrate to the coating layers. There was homogenous distribution elemental composition of Ni and Ti throughout the coating layers.
Zobrazit více v PubMed
Deuis R.L., Yellup J.M., Subramanian C. Metal-matrix composite coatings by PTA surfacing. Compos. Sci. Technol. 1998;58:299–309. doi: 10.1016/S0266-3538(97)00131-0. DOI
Bourithis E., Tazedakis A., Papadimitriou G.J. A study on the surface treatment of “Calmax” tool steel by a plasma transferred arc (PTA) process. Mater. Process. Technol. 2002;128:169–177. doi: 10.1016/S0924-0136(02)00447-8. DOI
Samal S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017;142:3131–3150. doi: 10.1016/j.jclepro.2016.10.154. DOI
Ozel S., Kurt B., Somunkiran I., Orhan N. Microstructural characteristic of NiTi coating on stainless steel by plasma transferred arc process. Surf. Coat. Technol. 2008;202:3633–3637. doi: 10.1016/j.surfcoat.2008.01.006. DOI
Samal S. Thermal Plasma Processing of Materials: High-Temperature Applications. Elsevier; Amsterdam, The Netherlands: 2022. pp. 512–525.
Sui J.H., Gao Z.Y., Cai W., Zhang Z.G. Corrosion behavior of NiTi alloys coated with diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2007;452–453:518–523. doi: 10.1016/j.msea.2006.10.159. DOI
Paro J.A., Gustafsson T.E., Koskinen J.J. Drilling of conventional cast stainless steel with HIPed NiTi coating. Mater. Process. Technol. 2004;153–154:622–629. doi: 10.1016/j.jmatprotec.2004.04.100. DOI
Samal S., Blanco I. An Overview of Thermal Plasma Arc Systems for Treatment of Various Wastes in Recovery of Metals. Materials. 2022;15:683. doi: 10.3390/ma15020683. PubMed DOI PMC
Cheng F.T., Lo K.H., Man H.C. NiTi cladding on stainless steel by TIG surfacing process: Part I. Cavitation erosion behavior. Surf. Coat. Technol. 2003;172:308–315. doi: 10.1016/S0257-8972(03)00345-1. DOI
Kwok C.T., Cheng F.T., Man H.C. Laser surface modification of UNS S31603 stainless steel. Part I: Microstructures and corrosion characteristics. Mater. Sci. Eng. A. 2000;290:55–73. doi: 10.1016/S0921-5093(00)00929-1. DOI
Cheng F.T., Kwok C.T., Man H.C. Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance. Surf. Coat. Technol. 2001;139:14–24. doi: 10.1016/S0257-8972(00)01103-8. DOI
Ostovan F., Shafiei E., Toozandehjani M., Mohamed I., Soltani M. On the role of molybdenum on the microstructural, mechanical and corrosion properties of the GTAW AISI 316 stainless steel welds. J. Mater. Res. Technol. 2021;13:2115–2125. doi: 10.1016/j.jmrt.2021.05.095. DOI
Venkatesu S., Gangaraju M., Bhaskar S., Naidu B.V. A study of laser beam welding, gas tungsten arc welding, and high-temperature brazing processes on micro hardness and tensile strength of AISI type 316 stainless steel. Procedia Comput. Sci. 2018;133:10–18. doi: 10.1016/j.procs.2018.07.003. DOI
Amiri E., Ostovan F., Toozandehjani M., Shafiei E., Mohamed I.F. Study and selection of most appropriate filler rod for GTAW of S32750 super duplex steel joints: A comprehensive study on microstructural, mechanical and corrosion properties. Mater. Chem. Phys. 2021;270:124839. doi: 10.1016/j.matchemphys.2021.124839. DOI
Ostovan F., Hasanzadeh E., Toozandehjani M., Shafiei E., Jamaluddin K., Amrin A. Microstructure, Hardness and Corrosion Behavior of Gas Tungsten Arc Welding Clad Inconel 625 Super Alloy over A517 Carbon Steel Using ERNiCrMo3 Filler Metal. JMEPEG. 2020;29:6919–6930. doi: 10.1007/s11665-020-05178-x. DOI
Bram M., Ahmad-Khanlou A., Buchkremer H.P., Stöver D. Vacuum plasma spraying of NiTi protection layers. Mater. Lett. 2002;57:647. doi: 10.1016/S0167-577X(02)00847-9. DOI
Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI
Samal S., Molnárová O., Průša F., Kopeček J., Heller L., Šittner P., Škodová M., Abate L., Blanco I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021;11:1802. doi: 10.3390/app11041802. DOI
Samal S., Cibulková J., Čtvrtlík R., Tomáštík J., Václavek L., Kopeček J., Šittner P. Tribological Behavior of NiTi Alloy Produced by Spark Plasma Sintering Method. Coatings. 2021;11:1246. doi: 10.3390/coatings11101246. DOI
Ni W., Cheng Y., Grummon D.S. Wear resistant self-healing tribological surfaces by using hard coatings on NiTi shape memory alloys. Surf. Coat. Technol. 2006;201:1053–1057. doi: 10.1016/j.surfcoat.2006.01.067. DOI
Wu S.K., Lin H.C., Chen C.C. A study on the machinability of a Ti49.6Ni50.4 shape memory alloy. Mater. Lett. 1999;40:27–32. doi: 10.1016/S0167-577X(99)00044-0. DOI
Wang H.M., Cao F., Cai L.X., Tang H.B., Yu R.L., Zhang L.Y. Microstructure and tribological properties of laser clad Ti2Ni3Si/NiTi intermetallic coatings. Acta Mater. 2003;51:6319–6327. doi: 10.1016/S1359-6454(03)00465-8. DOI
Zhao T., Li Y., Zhao X.J. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. Mech. Behav. Biomed. Mater. 2012;13:174–184. doi: 10.1016/j.jmbbm.2012.04.004. PubMed DOI
Giacomelli F.C., Giacomelli C., De Oliveira A.G., Spinelli A. Effect of electrolytic ZrO2 coatings on the breakdown potential of NiTi wires used as endovascular implants. Mater. Lett. 2005;59:754–758. doi: 10.1016/j.matlet.2004.11.015. DOI
Kaur N., Kaur D. Room temperature nanoindentation creep of nano-grained NiTiW shape memory alloy thin films. Surf. Coat. Technol. 2014;260:260–265. doi: 10.1016/j.surfcoat.2014.07.090. DOI
Brabazon D., editor. Encyclopedia of Materials: Composites. Elsevier; Amsterdam, The Netherlands: 2021. Ragan Adamovic, Fatima Zivic, Hardness and Non-Destructive Testing (NDT) of Ceramic Matrix Composites (CMCs) pp. 183–201. DOI
Weiss H. Adhesion of advanced overlay coatings: Mechanisms and quantitative assessment. Surf. Coat. Technol. 1995;71:201–207. doi: 10.1016/0257-8972(94)01022-B. DOI
Arciniegas A., Casals J., Manero Pena J., Gil F.J. Study of hardness and wear behavior of NiTi shape memory alloys. J. Alloys Comp. 2008;460:213–219. doi: 10.1016/j.jallcom.2007.05.069. DOI
de Araújo C.J., da Silva N.J., Silva M.M., Gonzalez C.H. A comparative study of Ni-Ti and Ni-Ti-Cu shape memory alloy processed by plasma melting and injection molding. Mater. Des. 2011;32:4925–4930. doi: 10.1016/j.matdes.2011.05.051. DOI
Li P., Karaca H.E., Cheng Y.-T. Spherical indentation of NiTi-based shape memory alloys. J. Alloys Compd. 2015;651:724–730. doi: 10.1016/j.jallcom.2015.07.280. DOI
Preparation and Characterization of Multilayer NiTi Coatings by a Thermal Plasma Process