An Overview of Thermal Plasma Arc Systems for Treatment of Various Wastes in Recovery of Metals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35057401
PubMed Central
PMC8781779
DOI
10.3390/ma15020683
PII: ma15020683
Knihovny.cz E-zdroje
- Klíčová slova
- metal, minerals, recycling, thermal plasma, waste,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Thermal plasma systems are being used for the recovery of metals from complex waste and minerals. The latter contain multiphase metals in various forms that are extremely tedious to separate. Thermal plasma arc melts the waste and minerals for qualitative plasma products for powder industries. In this overview, we briefly report a description of the various thermal plasma systems and their uses in recovering metal from metal-containing materials in the form of waste or minerals. Various plasma arc systems, such as transferred, nontransferred, and extended arc, have enabled the development of an efficient and environmentally friendly way to recover valuable metals from industrial wastes such as red mud and minerals such as ilmenite.
Zobrazit více v PubMed
Samal S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017;142:3131–3150. doi: 10.1016/j.jclepro.2016.10.154. DOI
Punčochář M., Ruj B., Chatterj P.K. Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Eng. 2012;42:420–430. doi: 10.1016/j.proeng.2012.07.433. DOI
Samal S. Utilization of Red Mud as a Source for Metal Ions—A Review. Materials. 2021;14:2211. doi: 10.3390/ma14092211. PubMed DOI PMC
Mombelli D., Barella S., Gruttadauria A., Mapelli C. Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge. Appl. Sci. 2019;9:4902. doi: 10.3390/app9224902. DOI
Samal S., Molnárová O., Průša F., Kopeček J., Heller L., Šittner P., Škodová M., Abate L., Blanco I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021;11:1802. doi: 10.3390/app11041802. DOI
Samal S. Synthesis of TiO2 nanoparticles from ilmenite through the mechanism of vapor-phase reaction process by thermal plasma technology. J. Mater. Eng. Perform. 2018;27:2622–2628. doi: 10.1007/s11665-017-3060-5. DOI
Ramachandran K., Kikukawa N. Plasma in-flight treatment of electroplating sludge. Vacuum. 2000;59:244–251. doi: 10.1016/S0042-207X(00)00276-1. DOI
Cortez R., Zaghloul H.H., Stephenson L.D., Smith E.D., Wood J.W., Cahil D.G. Laboratory Scale Thermal Plasma Arc Vitrification Studies of Heavy Metal-Laden Waste. J. Air Waste Manag. Assoc. 1996;46:1075–1080. doi: 10.1080/10473289.1996.10467543. PubMed DOI
Szałatkiewicz J. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor. Materials. 2016;9:683. doi: 10.3390/ma9080683. PubMed DOI PMC
Wang Q., Yan J.H., Chi Y., Li X.D., Lu S.Y. Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere. 2010;78:626–630. doi: 10.1016/j.chemosphere.2009.10.035. PubMed DOI
Mombelli D., Mapelli C., Barella S., Gruttadauria A., Agona M.R., Pisu M., Viola A. Characterization of cast iron and slag produced by red muds reduction via Arc Transferred Plasma (ATP) reactor under different smelting conditions. J. Environ. Chem. Eng. 2020;8:104293. doi: 10.1016/j.jece.2020.104293. DOI
Szałatkiewicz J. Metals content in printed circuit boards waste. Pol. J. Environ. Stud. 2014;23:2365–2369.
Mohai I., Szépvölgyi J., Károly Z., Mohai M., Toth M., Babievskaya I.Z., Krenev V.A. Reduction of Metallurgical Wastes in an RF Thermal Plasma Reactor. Plasma Chem. Plasma Process. 2001;21:547–563. doi: 10.1023/A:1012099018031. DOI
Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI
Cho S., Shim H., So K., Kim S., Samal S., Park D., Kim H. Synthesis of nanosized glass powders using non-transferred dc thermal plasma process. Adv. Appl. Ceram. 2013;112:288–293. doi: 10.1179/1743676112Y.0000000074. DOI
Samal S., Park D.W. Nano-particle synthesis of titanium oxides from ilmenite in a thermal plasma reactor. Chem. Eng. Res. Des. 2012;90:548–554. doi: 10.1016/j.cherd.2011.08.011. DOI
Spores R., Pfender E. Flow Structure of a Turbulent Thermal Plasma Jet. Surf. Coat. Technol. 1989;37:251–270. doi: 10.1016/0257-8972(89)90107-2. DOI
Pfender E., Fincke J., Spores R. Entrainment of Cold Gas into Thermal Plasma Jets. Plasma Chem. Plasma Process. 1991;11:529–543. doi: 10.1007/BF01447164. DOI
Taylor P.R., Pirzada S.A. Thermal plasma processing of materials: A review. Adv. Perform. Mater. 1994;1:35–50. doi: 10.1007/BF00705312. DOI
Brossa M., Pfender E. Probe Measurements in Thermal Plasma Jets. Plasma Chem. Plasma Process. 1988;8:75–90. doi: 10.1007/BF01016932. DOI
Capetti A., Pfender E. Probe Measurements in Argon Plasma Jets Operated in Ambient Argon. Plasma Chem. Plasma Process. 1989;9:329–341. doi: 10.1007/BF01054288. DOI
Samal S., Kim D.W., Kim K.S., Park D.W. Direct synthesis of TiO2 nanoparticles by using the solid-state precursor TiH2 powder in a thermal plasma reactor. Chem. Eng. Res. Des. 2012;90:1074–1081. doi: 10.1016/j.cherd.2011.10.020. DOI
Samal S. Thermal Plasma Processing of Materials: High Temperature Applications. In: Caballero F.G., editor. Encyclopedia of Materials: Metals and Alloys. Volume 1. Elsevier; Oxford, UK: 2022. p. 512.
Mukherjee P.S., Samal S., Mukherjee T.K. In-flight thermal plasma processing of pre-reduced ilmenite. Trans. Indian Inst. Met. 2006;59:353–358.
Young R.M., Pfender E. A Novel Approach for Introducing Particulate Matter into Thermal Plasmas: The Triple-Cathode Arc. Plasma Chem. Plasma Process. 1989;9:465–481. doi: 10.1007/BF01023914. DOI
Lee S., Lee J., Kim W., Hwang N.-M. Plasma Etching Behavior of YOF Coating Deposited by Suspension Plasma Spraying in Inductively Coupled CHF3/Ar Plasma. Coatings. 2020;10:1023. doi: 10.3390/coatings10111023. DOI
Chyou Y.P., Pfender E. Behavior of Particulates in Thermal Plasma Flows. Plasma Chem. Plasma Process. 1989;9:45–71. doi: 10.1007/BF01015826. DOI
Heberlein J., Murphy A. Thermal plasma waste treatment. J. Phys. D Appl. Phys. 2008;4:053001. doi: 10.1088/0022-3727/41/5/053001. DOI
Mitrasinovic A., Pershin L., Wen J.Z., Mostaghimi J. Recovery of Cu and Valuable metals from E-waste using thermal plasma treatment. JOM. 2011;63:24. doi: 10.1007/s11837-011-0132-0. DOI
Samal S. Thermal Plasma Processing of Ilmenite. Springer Briefs in Applied Sciences and Technology; Springer; Cham, Switzerland: 2018. Introduction and Preview. DOI
Szałatkiewicz J., Szewczyk R., Budny E., Missala T., Winiarski W. Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas. Proc. Eng. 2013;57:1100–1108. doi: 10.1016/j.proeng.2013.04.139. DOI
Rath S.S., Jayasankar K., Satapathy B.K., Mishra B.K., Mukherjee P.S. Kinetics and statistical behaviour of iron recovery from red mud using plasma arc furnace. High Temp. Mater. Proc. 2011;30:211–215. doi: 10.1515/htmp.2011.031. DOI
Bidini G., Fantozzi F., Bartocci P., D’Alessandro B., D’Amico M., Laranci P., Scozza E., Zagaroli M. Recovery of precious metals from scrap printed circuit boards through pyrolysis. J. Anal. Appl. Pyrolysis. 2015;111:140–147. doi: 10.1016/j.jaap.2014.11.020. DOI
Rath S.S., Pany A., Jayasankar K., Mitra A.K., Kumar C.S., Mukjerjee P.S. Statistical modeling studies of iron recovery from red mud using thermal plasma. Plasma Sci. Technol. 2013;15:459. doi: 10.1088/1009-0630/15/5/13. DOI
Valeev D., Zinoveev D., Kondratiev A., Lubyanoi D., Pankratov D. Reductive Smelting of Neutralized Red Mud for Iron Recovery and Produced Pig Iron for Heat-Resistant Castings. Metals. 2020;10:32. doi: 10.3390/met10010032. DOI
Yugeswaran S., Ananthapadmanabhan P.V., Lusvarghi L. Zircon dissociation in air plasma through a low power transferred arc plasma torch. Ceram. Int. 2015;41:265–273. doi: 10.1016/j.ceramint.2014.08.068. DOI
Zunkel A.D. Electric Arc Fumace Dust management: A review of technologies. Iron Steel Eng. 1997;74:3.
Drouet M.G. Conference Proceedings—Italian Physical Society. Editrice Compositori; Bologna, Italy: 1993. High temperature processes for industrial waste treatment and valorisation; p. 77.
Hoffeiner W., Eschenbach R.C. Treatment of Processing Waste with Thermal Plasma; Proceedings of the 1994 TMS Annual Meeting; San Francisco, CA, USA. 28 February–3 March 1994.
Meng L., Zhong Y., Guo L., Wang Z., Chen K., Guo Z. High temperature centrifugal separation of Cu from waste printed circuit boards. J. Clean. Prod. 2018;199:831–839. doi: 10.1016/j.jclepro.2018.07.129. DOI
Godfrey B., Loretto M.H. Origins of heterogeneities in plasma melted ingots of γ-TiAl. Mater. Sci. Eng. A. 1999;266:115–122. doi: 10.1016/S0921-5093(99)00038-6. DOI
Balliett R.W. A New Plasma Arc Furnace with Helium Recycle and Purification; Proceedings of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials; Pittsburgh, PA, USA. 9 September 1991.
Eschenbach R.C. Plasma arc systems for waste treatment and metal recovery. JOM. 1996;48:49–52. doi: 10.1007/BF03222968. DOI
Stenkvist S.E., Bowman B. Plasma Technology in Metallurgical Processing. The Iron and Steel Society of AIME; Warrendale, PA, USA: 1987. High-power, graphite-cathode DC arc plasma properties and practical applications for steelmaking and ferroalloys processing; pp. 103–109. Chapter 8B.
Curr T.R., Barcza N.A., Maske U.K., Mooney J.F. The design and operation of transferred-arc plasma systems for pyrometallurgical applications; Proceedings of the 6th International Symposium on Plasma Chemistry; Montreal, QC, Canada. 24–28 July 1983; pp. 175–180.
Samal S., Mukherjee P.S., Mukherjee T.K. Thermal plasma processing of ilmenite: A review. Trans. Inst. Min. Metall. Sect. C. 2010;119:116–123. doi: 10.1179/174328509X481891. DOI
Barcza N.A., Curr T.R., Jones R.T. Metallurgy of open-bath plasma processes. Pure Appl. Chem. 1990;62:1761–1772. doi: 10.1351/pac199062091761. DOI
Bester J.A., de Beer J.A., Rohwer H.E. Metallic zirconium production by hydrogen reduction of ZrCl4 in a transferred arc torch; Proceedings of the 2nd European Congress on ‘Thermal Plasma Processes’; Paris, France. 7–9 September 1992; 8p
Schoukens A.F.S., Curr T.R. The production of manganese ferroalloys in transferred-arc plasma systems; Proceedings of the 41st Electric Furnace Conference, Pittsburgh Meeting; Warrendale, PA, USA. 28–31 March 1982; London, UK: The Iron and Steel Society, AIME; 1982. pp. 161–171.
Muller H.G., Koch E., Dosaj V.D., Wellbeloved D. Examples of plasma potential for industrial application; Proceedings of the ISPC-9 Workshop on ‘Industrial Plasma Applications’; Pugnochiuso, Italy. 9–10 September 1989; p. 50.
Samal S. Synthesis and characterization of Titanium slag from ilmenite by thermal plasma processing. JOM. 2016;68:2349–2358. doi: 10.1007/s11837-016-1817-1. DOI
Samal S., Mohapatra B.K., Mukherjee P.S., Chatterjee S.K. Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production. J. Alloys Compd. 2009;474:484–489. doi: 10.1016/j.jallcom.2008.06.121. DOI
Kim K.S., Kim T.H. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. Appl. Phys. 2019;125:070901. doi: 10.1063/1.5060977. DOI
Fu Z., Hao Z., Che Y., Shu Y., He J. Facile synthesis of nano-particles attached spherical Ti-6Al-4V powder based on plasma spheroidization. J. Alloys Compd. 2021;858:158313. doi: 10.1016/j.jallcom.2020.158313. DOI
Zhu H., Tong H., Yang F., Cheng C. Plasma-assisted preparation and characterization of spherical stainless steel powders. J. Mater. Process. Technol. 2018;252:559–566. doi: 10.1016/j.jmatprotec.2017.10.010. DOI
Maric R., Fukui T., Ohara S., Yoshida H., Nishimura M., Inagaki T., Miura K. Powder prepared by spray pyrolysis as an electrode material for solid oxide fuel cells. J. Mater. Sci. 2000;35:1397–1404. doi: 10.1023/A:1004754729231. DOI
Mostaghimi J., Boulos M.I. Thermal Plasma Sources: How Well are They Adopted to Process Needs? Plasma Chem. Plasma Process. 2015;35:421–436. doi: 10.1007/s11090-015-9616-y. DOI
Bendix D., Hebecker D. Energy recovery from waste and plasma conversion. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2003;7:435–454. doi: 10.1615/HighTempMatProc.v7.i4.20. DOI
Suzuki M., Ichihashi T., Jote A., Nishio S., Kawagoe S. Application of reactive plasma to nuclear waste treatment—Possibility of separation of Zr–Nb alloy by reactive thermal plasma treatment. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Processes. 2003;7:475–485. doi: 10.1615/HighTempMatProc.v7.i4.40. DOI
Suzuki M., Kadowaki M., Windarto H., Mori S. Comparison of different types of plasma in radioactive decontamination process. Mater. Sci. Forum. 2005;502:321–326. doi: 10.4028/www.scientific.net/MSF.502.321. DOI
Fiedler J., Lietz E., Bendix D., Hebecker D. Experimental and numerical investigations of a plasma reactor for the thermal destruction of medical waste. J. Phys. D Appl. Phys. 2004;37:1031–1040. doi: 10.1088/0022-3727/37/7/013. DOI
Murphy A.B., Farmer A.J.D., Horrigan E.C., McAllister T. Plasma destruction of ozone depleting substances. Plasma Chem. Plasma Process. 2002;22:371–385. doi: 10.1023/A:1015365032020. DOI
Sekiguchi H., Honda T., Kanzawa A. Thermal plasma decomposition of chlorofluorocarbons. Plasma Chem. Plasma Process. 1993;13:463–478. doi: 10.1007/BF01465876. DOI
Chapman C.D., Cowx P.M. Tetronics process for the treatment of electric arc furnace dust. Steel Times. 1991;219:301–304.
Mustoe T.N., Liang F.W. The power of plasma: Commercialization and the environment; Proceedings of the International Conference Incineration and Thermal Treatment Technologies; Orlando, FL, USA. 10–14 May 1999.
Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel