An Overview of Thermal Plasma Arc Systems for Treatment of Various Wastes in Recovery of Metals

. 2022 Jan 17 ; 15 (2) : . [epub] 20220117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35057401

Thermal plasma systems are being used for the recovery of metals from complex waste and minerals. The latter contain multiphase metals in various forms that are extremely tedious to separate. Thermal plasma arc melts the waste and minerals for qualitative plasma products for powder industries. In this overview, we briefly report a description of the various thermal plasma systems and their uses in recovering metal from metal-containing materials in the form of waste or minerals. Various plasma arc systems, such as transferred, nontransferred, and extended arc, have enabled the development of an efficient and environmentally friendly way to recover valuable metals from industrial wastes such as red mud and minerals such as ilmenite.

Zobrazit více v PubMed

Samal S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017;142:3131–3150. doi: 10.1016/j.jclepro.2016.10.154. DOI

Punčochář M., Ruj B., Chatterj P.K. Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Eng. 2012;42:420–430. doi: 10.1016/j.proeng.2012.07.433. DOI

Samal S. Utilization of Red Mud as a Source for Metal Ions—A Review. Materials. 2021;14:2211. doi: 10.3390/ma14092211. PubMed DOI PMC

Mombelli D., Barella S., Gruttadauria A., Mapelli C. Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge. Appl. Sci. 2019;9:4902. doi: 10.3390/app9224902. DOI

Samal S., Molnárová O., Průša F., Kopeček J., Heller L., Šittner P., Škodová M., Abate L., Blanco I. Net-Shape NiTi Shape Memory Alloy by Spark Plasma Sintering Method. Appl. Sci. 2021;11:1802. doi: 10.3390/app11041802. DOI

Samal S. Synthesis of TiO2 nanoparticles from ilmenite through the mechanism of vapor-phase reaction process by thermal plasma technology. J. Mater. Eng. Perform. 2018;27:2622–2628. doi: 10.1007/s11665-017-3060-5. DOI

Ramachandran K., Kikukawa N. Plasma in-flight treatment of electroplating sludge. Vacuum. 2000;59:244–251. doi: 10.1016/S0042-207X(00)00276-1. DOI

Cortez R., Zaghloul H.H., Stephenson L.D., Smith E.D., Wood J.W., Cahil D.G. Laboratory Scale Thermal Plasma Arc Vitrification Studies of Heavy Metal-Laden Waste. J. Air Waste Manag. Assoc. 1996;46:1075–1080. doi: 10.1080/10473289.1996.10467543. PubMed DOI

Szałatkiewicz J. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor. Materials. 2016;9:683. doi: 10.3390/ma9080683. PubMed DOI PMC

Wang Q., Yan J.H., Chi Y., Li X.D., Lu S.Y. Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere. 2010;78:626–630. doi: 10.1016/j.chemosphere.2009.10.035. PubMed DOI

Mombelli D., Mapelli C., Barella S., Gruttadauria A., Agona M.R., Pisu M., Viola A. Characterization of cast iron and slag produced by red muds reduction via Arc Transferred Plasma (ATP) reactor under different smelting conditions. J. Environ. Chem. Eng. 2020;8:104293. doi: 10.1016/j.jece.2020.104293. DOI

Szałatkiewicz J. Metals content in printed circuit boards waste. Pol. J. Environ. Stud. 2014;23:2365–2369.

Mohai I., Szépvölgyi J., Károly Z., Mohai M., Toth M., Babievskaya I.Z., Krenev V.A. Reduction of Metallurgical Wastes in an RF Thermal Plasma Reactor. Plasma Chem. Plasma Process. 2001;21:547–563. doi: 10.1023/A:1012099018031. DOI

Samal S., Tyc O., Cizek J., Klecka J., Lukáč F., Molnárová O., de Prado E., Weiss Z., Kopeček J., Heller L., et al. Fabrication of Thermal Plasma Sprayed NiTi Coatings Possessing Functional Properties. Coatings. 2021;11:610. doi: 10.3390/coatings11050610. DOI

Cho S., Shim H., So K., Kim S., Samal S., Park D., Kim H. Synthesis of nanosized glass powders using non-transferred dc thermal plasma process. Adv. Appl. Ceram. 2013;112:288–293. doi: 10.1179/1743676112Y.0000000074. DOI

Samal S., Park D.W. Nano-particle synthesis of titanium oxides from ilmenite in a thermal plasma reactor. Chem. Eng. Res. Des. 2012;90:548–554. doi: 10.1016/j.cherd.2011.08.011. DOI

Spores R., Pfender E. Flow Structure of a Turbulent Thermal Plasma Jet. Surf. Coat. Technol. 1989;37:251–270. doi: 10.1016/0257-8972(89)90107-2. DOI

Pfender E., Fincke J., Spores R. Entrainment of Cold Gas into Thermal Plasma Jets. Plasma Chem. Plasma Process. 1991;11:529–543. doi: 10.1007/BF01447164. DOI

Taylor P.R., Pirzada S.A. Thermal plasma processing of materials: A review. Adv. Perform. Mater. 1994;1:35–50. doi: 10.1007/BF00705312. DOI

Brossa M., Pfender E. Probe Measurements in Thermal Plasma Jets. Plasma Chem. Plasma Process. 1988;8:75–90. doi: 10.1007/BF01016932. DOI

Capetti A., Pfender E. Probe Measurements in Argon Plasma Jets Operated in Ambient Argon. Plasma Chem. Plasma Process. 1989;9:329–341. doi: 10.1007/BF01054288. DOI

Samal S., Kim D.W., Kim K.S., Park D.W. Direct synthesis of TiO2 nanoparticles by using the solid-state precursor TiH2 powder in a thermal plasma reactor. Chem. Eng. Res. Des. 2012;90:1074–1081. doi: 10.1016/j.cherd.2011.10.020. DOI

Samal S. Thermal Plasma Processing of Materials: High Temperature Applications. In: Caballero F.G., editor. Encyclopedia of Materials: Metals and Alloys. Volume 1. Elsevier; Oxford, UK: 2022. p. 512.

Mukherjee P.S., Samal S., Mukherjee T.K. In-flight thermal plasma processing of pre-reduced ilmenite. Trans. Indian Inst. Met. 2006;59:353–358.

Young R.M., Pfender E. A Novel Approach for Introducing Particulate Matter into Thermal Plasmas: The Triple-Cathode Arc. Plasma Chem. Plasma Process. 1989;9:465–481. doi: 10.1007/BF01023914. DOI

Lee S., Lee J., Kim W., Hwang N.-M. Plasma Etching Behavior of YOF Coating Deposited by Suspension Plasma Spraying in Inductively Coupled CHF3/Ar Plasma. Coatings. 2020;10:1023. doi: 10.3390/coatings10111023. DOI

Chyou Y.P., Pfender E. Behavior of Particulates in Thermal Plasma Flows. Plasma Chem. Plasma Process. 1989;9:45–71. doi: 10.1007/BF01015826. DOI

Heberlein J., Murphy A. Thermal plasma waste treatment. J. Phys. D Appl. Phys. 2008;4:053001. doi: 10.1088/0022-3727/41/5/053001. DOI

Mitrasinovic A., Pershin L., Wen J.Z., Mostaghimi J. Recovery of Cu and Valuable metals from E-waste using thermal plasma treatment. JOM. 2011;63:24. doi: 10.1007/s11837-011-0132-0. DOI

Samal S. Thermal Plasma Processing of Ilmenite. Springer Briefs in Applied Sciences and Technology; Springer; Cham, Switzerland: 2018. Introduction and Preview. DOI

Szałatkiewicz J., Szewczyk R., Budny E., Missala T., Winiarski W. Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas. Proc. Eng. 2013;57:1100–1108. doi: 10.1016/j.proeng.2013.04.139. DOI

Rath S.S., Jayasankar K., Satapathy B.K., Mishra B.K., Mukherjee P.S. Kinetics and statistical behaviour of iron recovery from red mud using plasma arc furnace. High Temp. Mater. Proc. 2011;30:211–215. doi: 10.1515/htmp.2011.031. DOI

Bidini G., Fantozzi F., Bartocci P., D’Alessandro B., D’Amico M., Laranci P., Scozza E., Zagaroli M. Recovery of precious metals from scrap printed circuit boards through pyrolysis. J. Anal. Appl. Pyrolysis. 2015;111:140–147. doi: 10.1016/j.jaap.2014.11.020. DOI

Rath S.S., Pany A., Jayasankar K., Mitra A.K., Kumar C.S., Mukjerjee P.S. Statistical modeling studies of iron recovery from red mud using thermal plasma. Plasma Sci. Technol. 2013;15:459. doi: 10.1088/1009-0630/15/5/13. DOI

Valeev D., Zinoveev D., Kondratiev A., Lubyanoi D., Pankratov D. Reductive Smelting of Neutralized Red Mud for Iron Recovery and Produced Pig Iron for Heat-Resistant Castings. Metals. 2020;10:32. doi: 10.3390/met10010032. DOI

Yugeswaran S., Ananthapadmanabhan P.V., Lusvarghi L. Zircon dissociation in air plasma through a low power transferred arc plasma torch. Ceram. Int. 2015;41:265–273. doi: 10.1016/j.ceramint.2014.08.068. DOI

Zunkel A.D. Electric Arc Fumace Dust management: A review of technologies. Iron Steel Eng. 1997;74:3.

Drouet M.G. Conference Proceedings—Italian Physical Society. Editrice Compositori; Bologna, Italy: 1993. High temperature processes for industrial waste treatment and valorisation; p. 77.

Hoffeiner W., Eschenbach R.C. Treatment of Processing Waste with Thermal Plasma; Proceedings of the 1994 TMS Annual Meeting; San Francisco, CA, USA. 28 February–3 March 1994.

Meng L., Zhong Y., Guo L., Wang Z., Chen K., Guo Z. High temperature centrifugal separation of Cu from waste printed circuit boards. J. Clean. Prod. 2018;199:831–839. doi: 10.1016/j.jclepro.2018.07.129. DOI

Godfrey B., Loretto M.H. Origins of heterogeneities in plasma melted ingots of γ-TiAl. Mater. Sci. Eng. A. 1999;266:115–122. doi: 10.1016/S0921-5093(99)00038-6. DOI

Balliett R.W. A New Plasma Arc Furnace with Helium Recycle and Purification; Proceedings of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials; Pittsburgh, PA, USA. 9 September 1991.

Eschenbach R.C. Plasma arc systems for waste treatment and metal recovery. JOM. 1996;48:49–52. doi: 10.1007/BF03222968. DOI

Stenkvist S.E., Bowman B. Plasma Technology in Metallurgical Processing. The Iron and Steel Society of AIME; Warrendale, PA, USA: 1987. High-power, graphite-cathode DC arc plasma properties and practical applications for steelmaking and ferroalloys processing; pp. 103–109. Chapter 8B.

Curr T.R., Barcza N.A., Maske U.K., Mooney J.F. The design and operation of transferred-arc plasma systems for pyrometallurgical applications; Proceedings of the 6th International Symposium on Plasma Chemistry; Montreal, QC, Canada. 24–28 July 1983; pp. 175–180.

Samal S., Mukherjee P.S., Mukherjee T.K. Thermal plasma processing of ilmenite: A review. Trans. Inst. Min. Metall. Sect. C. 2010;119:116–123. doi: 10.1179/174328509X481891. DOI

Barcza N.A., Curr T.R., Jones R.T. Metallurgy of open-bath plasma processes. Pure Appl. Chem. 1990;62:1761–1772. doi: 10.1351/pac199062091761. DOI

Bester J.A., de Beer J.A., Rohwer H.E. Metallic zirconium production by hydrogen reduction of ZrCl4 in a transferred arc torch; Proceedings of the 2nd European Congress on ‘Thermal Plasma Processes’; Paris, France. 7–9 September 1992; 8p

Schoukens A.F.S., Curr T.R. The production of manganese ferroalloys in transferred-arc plasma systems; Proceedings of the 41st Electric Furnace Conference, Pittsburgh Meeting; Warrendale, PA, USA. 28–31 March 1982; London, UK: The Iron and Steel Society, AIME; 1982. pp. 161–171.

Muller H.G., Koch E., Dosaj V.D., Wellbeloved D. Examples of plasma potential for industrial application; Proceedings of the ISPC-9 Workshop on ‘Industrial Plasma Applications’; Pugnochiuso, Italy. 9–10 September 1989; p. 50.

Samal S. Synthesis and characterization of Titanium slag from ilmenite by thermal plasma processing. JOM. 2016;68:2349–2358. doi: 10.1007/s11837-016-1817-1. DOI

Samal S., Mohapatra B.K., Mukherjee P.S., Chatterjee S.K. Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production. J. Alloys Compd. 2009;474:484–489. doi: 10.1016/j.jallcom.2008.06.121. DOI

Kim K.S., Kim T.H. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. Appl. Phys. 2019;125:070901. doi: 10.1063/1.5060977. DOI

Fu Z., Hao Z., Che Y., Shu Y., He J. Facile synthesis of nano-particles attached spherical Ti-6Al-4V powder based on plasma spheroidization. J. Alloys Compd. 2021;858:158313. doi: 10.1016/j.jallcom.2020.158313. DOI

Zhu H., Tong H., Yang F., Cheng C. Plasma-assisted preparation and characterization of spherical stainless steel powders. J. Mater. Process. Technol. 2018;252:559–566. doi: 10.1016/j.jmatprotec.2017.10.010. DOI

Maric R., Fukui T., Ohara S., Yoshida H., Nishimura M., Inagaki T., Miura K. Powder prepared by spray pyrolysis as an electrode material for solid oxide fuel cells. J. Mater. Sci. 2000;35:1397–1404. doi: 10.1023/A:1004754729231. DOI

Mostaghimi J., Boulos M.I. Thermal Plasma Sources: How Well are They Adopted to Process Needs? Plasma Chem. Plasma Process. 2015;35:421–436. doi: 10.1007/s11090-015-9616-y. DOI

Bendix D., Hebecker D. Energy recovery from waste and plasma conversion. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2003;7:435–454. doi: 10.1615/HighTempMatProc.v7.i4.20. DOI

Suzuki M., Ichihashi T., Jote A., Nishio S., Kawagoe S. Application of reactive plasma to nuclear waste treatment—Possibility of separation of Zr–Nb alloy by reactive thermal plasma treatment. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Processes. 2003;7:475–485. doi: 10.1615/HighTempMatProc.v7.i4.40. DOI

Suzuki M., Kadowaki M., Windarto H., Mori S. Comparison of different types of plasma in radioactive decontamination process. Mater. Sci. Forum. 2005;502:321–326. doi: 10.4028/www.scientific.net/MSF.502.321. DOI

Fiedler J., Lietz E., Bendix D., Hebecker D. Experimental and numerical investigations of a plasma reactor for the thermal destruction of medical waste. J. Phys. D Appl. Phys. 2004;37:1031–1040. doi: 10.1088/0022-3727/37/7/013. DOI

Murphy A.B., Farmer A.J.D., Horrigan E.C., McAllister T. Plasma destruction of ozone depleting substances. Plasma Chem. Plasma Process. 2002;22:371–385. doi: 10.1023/A:1015365032020. DOI

Sekiguchi H., Honda T., Kanzawa A. Thermal plasma decomposition of chlorofluorocarbons. Plasma Chem. Plasma Process. 1993;13:463–478. doi: 10.1007/BF01465876. DOI

Chapman C.D., Cowx P.M. Tetronics process for the treatment of electric arc furnace dust. Steel Times. 1991;219:301–304.

Mustoe T.N., Liang F.W. The power of plasma: Commercialization and the environment; Proceedings of the International Conference Incineration and Thermal Treatment Technologies; Orlando, FL, USA. 10–14 May 1999.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel

. 2022 Dec 02 ; 15 (23) : . [epub] 20221202

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...