Utilization of Red Mud as a Source for Metal Ions-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33923091
PubMed Central
PMC8123361
DOI
10.3390/ma14092211
PII: ma14092211
Knihovny.cz E-zdroje
- Klíčová slova
- fly ash, metal ion recovery, mineralogical, red mud, reduced slag, resources,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
An overview is presented on the prospective use of red mud as a resource in this review. Various scopes are suggested for the utilization of red mud to maintain a sustainable environment. The potential use of red mud covers the valuable metal recovery that could emphasize the use of red mud as a resource. Red mud could act as reduced slag in the metallurgical field for the extraction of minerals and metals for upscale application. Although many studies have revealed the potential utilization of red mud, most of them are only limited to a lab-scale basis. Therefore, a large-scale investigation on recycling of red mud for the extraction in the area of the metal recovery section will draw attention to the extensive use of red mud. Metal ions of major elements Fe (44 wt.%), Al (18.2 wt.%), Si (14.3 wt.%), Ti (9.3 wt.%), Na (6.2 wt.%), Ca (4.4 wt.%) as major elements and of Mg, V, Mn, Cr, K as minor elements and rare earth elements such as Ce (102 mg/kg), La (56 mg/kg), Sc (47 mg/kg), Nd (45 mg/kg), Sm (9 mg/kg). Moreover, an appropriate in-house metal recovery facility with the alumina industry will come out as a cost-benefit analysis.
Zobrazit více v PubMed
Rai S., Bahadure S., Chaddha M.J., Agnihotri A. Disposal Practices and Utilization of Red Mud (Bauxite Residue): A Review in Indian Context and Abroad. J. Sustain. Metall. 2020;6:1. doi: 10.1007/s40831-019-00247-5. DOI
Menzies N. Seawater Neutralization of Alkaline Bauxite residue and Implications for revegetation. J. Environ. Qual. 2004;33:1877. doi: 10.2134/jeq2004.1877. PubMed DOI
Yang Z., Mocadlo R., Zhao M., Sisson R.D., Jr., Tao M., Liang J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr. Build. Mat. 2019;221:308. doi: 10.1016/j.conbuildmat.2019.06.034. DOI
Samal S. Effect of high temperature on the microstructural evolution of fiber reinforced geopolymer composite. Heliyon. 2019;5:e01779. doi: 10.1016/j.heliyon.2019.e01779. PubMed DOI PMC
Catauro M., Tranquillo E., Barrino F., Dal Poggetto G., Blanco I., Cicala G., Ognibene G., Recca G. Mechanical and thermal properties of fly ash-filled geopolymers. J. Therm. Anal. Calorim. 2019;138:3267. doi: 10.1007/s10973-019-08612-y. DOI
Samal S., Ray A.K., Bandopadhyay A. Proposal for resources, utilization and processes of red mud in India—A review. Int. J. Miner. Process. 2013;118:43. doi: 10.1016/j.minpro.2012.11.001. DOI
Hammond K., Mishra B., Apelian D., Blanpain B. CR3 communication: Red mud—A resource or a waste? JOM. 2013;65:340. doi: 10.1007/s11837-013-0560-0. DOI
Tulsidas H., Gabriel S., Kiegiel K., Haneklaus N. Uranium resources in EU phosphate rock imports. Resour. Policy. 2019;61:151–155. doi: 10.1016/j.resourpol.2019.02.012. DOI
Yao L., Gao W., Ma X., Fu H. Properties Analysis of Asphalt Binders Containing Bayer Red Mud. Materials. 2020;13:1122. doi: 10.3390/ma13051122. PubMed DOI PMC
Borra C.R., Pontikes Y., Binnemans K.T., Gerven V. Leaching of rare earths from bauxite residue (red mud) Miner. Eng. 2015;76:20–27. doi: 10.1016/j.mineng.2015.01.005. DOI
Choe G., Kang S., Kang H. Mechanical Properties of Concrete Containing Liquefied Red Mud Subjected to Uniaxial Compression Loads. Materials. 2020;13:854. doi: 10.3390/ma13040854. PubMed DOI PMC
Ortega J.M., Cabeza M., Tenza-Abril A.J., Real-Herraiz T., Climent M.Á., Sánchez I. Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars. Appl. Sci. 2019;9:984. doi: 10.3390/app9050984. DOI
Wang P., Liu D.-Y. Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization. Materials. 2012;5:1800–1810. doi: 10.3390/ma5101800. DOI
Choe G., Kang S., Kang H. Characterization of Slag Cement Mortar Containing Nonthermally Treated Dried Red Mud. Appl. Sci. 2019;9:2510. doi: 10.3390/app9122510. DOI
Rao P.P. The characteristics and genesis discussion of fracture in dry red mud disposal yard. Ind. Const. 2010;40:73–77.
Chen X., Guo Y., Ding S., Zhang H., Xia F., Wang J., Zhou M. Utilization of red mud in geopolymer-based previous concrete with function of adsorption of heavy metal ions. J. Clean. Prod. 2019;207:789. doi: 10.1016/j.jclepro.2018.09.263. DOI
Ascensao G., Seabra M.P., Aguiar B.J. Labrincha. J.A. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J. Clean. Prod. 2017;148:23. doi: 10.1016/j.jclepro.2017.01.150. DOI
Mahinroosta M., Karimi Z., Allahverdi A. Recycling of red mud for value-added applications: A comprehensive Review. Encyl. Renew. Sust. Mat. 2020;2:561.
Guo Y.-H., Gao J.-J., Xu H.-J., Zhao K., Shi X.-F. Nuggets production by direct reduction of high Iron red mud. J. Iron Steel Res. Int. 2013;20:24–27. doi: 10.1016/S1006-706X(13)60092-8. DOI
Kumar R., Srivastava J., Premchand P. Utilization of iron values of red mud for metallurgical applications. [(accessed on 10 April 2021)];Environ. Waste Manag. 1998 :108–119. Available online: https://core.ac.uk/download/pdf/297716085.pdf.
Kumar S., Kumar R., Bandopadhyay A. Innovative methodologies for the utilization of wastes from metallurgical and allied industries. Resour. Conserv. Recycl. 2006;48:301–314. doi: 10.1016/j.resconrec.2006.03.003. DOI
Jayasankar K., Ray P.K., Chaubey A.K., Padhi A., Satapathy B.K., Mukherjee P.S. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 2012;19:679–684. doi: 10.1007/s12613-012-0613-3. DOI
Lim K., Shon B. Metal Components (Fe, Al and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves. Int. J. Emerg. Technol. Adv. Eng. 2015;5:25–32.
Voßenkaul D., Birich A., Müller N., Stoltz N., Friedrich B. Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. J. Sustain. Metall. 2017;3:79–89. doi: 10.1007/s40831-016-0084-2. DOI
Schwarzenbach G., Muehlebach J., Mueller K. Peroxo complexes of titanium. Inorg. Chem. 1970;9:2381–2390. doi: 10.1021/ic50093a001. DOI
Antonijević M., Dimitrijević M., Janković Z. Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy. 1997;46:71–83. doi: 10.1016/S0304-386X(96)00096-5. DOI
Yagmurlu B., Dittrich C., Friedrich B. Precipitation Trends of Scandium in Synthetic Red Mud Solutions with Different Precipitation Agents. J. Sustain. Metall. 2017;3:90–98. doi: 10.1007/s40831-016-0098-9. DOI
Khairul M.A., Zanganeh J., Moghtaderi B. The composition, recycling and utilisation of bayer red mud. Resour. Conserv. Recycl. 2019;141:483–498. doi: 10.1016/j.resconrec.2018.11.006. DOI
Sutar H., Mishra S.C., Sahoo S.K., Maharana H. Progress of red mud utilization: An overview. Am. Chem. Sci. J. 2014;4:255–279. doi: 10.9734/ACSJ/2014/7258. DOI
Rickhov V., Botalov M., Kirilov E., Kirilov S., Semenishchev V., Bunkov G., Smyshlyaev D. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy. 1997;45:249–259.
Wang W., Pranolo Y., Cheng C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol. 2013;108:96–102. doi: 10.1016/j.seppur.2013.02.001. DOI
Ning G., Zhang B., Liu C., Li S., Ye Y., Jiang M. Large-Scale Consumption and Zero-Waste Recycling Method of Red Mud in Steel Making Process. Minerals. 2018;8:102. doi: 10.3390/min8030102. DOI
Pascual J., Corpas F., López-Beceiro J., Benítez-Guerrero M., Artiaga R. Thermal characterization of a Spanish red mud. J. Therm. Anal. Calorim. 2009;96:407–412. doi: 10.1007/s10973-008-9230-9. DOI
Mauskar J. Assessement of Utilization of Industrial Solid Waste in Cement Manufacturing. Central Pollution Control board; Delhi, India: 2006.
Pratt K.C., Christoverson V. Hydrogenatation of a model hydrogen-donor system using activated red mud catalyst. Fuel. 1982;61:460–462. doi: 10.1016/0016-2361(82)90072-2. DOI
Halász J., Hodos M., Hannus I., Tasi G., Kiricsi I. Catalytic detoxification of C2-chlorohydrocarbons over iron-containing oxide and zeolite catalysts. Colloids Surf. A. 2005;265:171–177. doi: 10.1016/j.colsurfa.2005.03.030. DOI
Rivera R., Ulenaers B., Ounoughene G., Binnemans K., Gerven T. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner. Eng. 2018;119:82–92. doi: 10.1016/j.mineng.2018.01.023. DOI
Koumanova B., Drame M., Popangelova M. Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer’s process. Resour. Conserv. Recy. 1997;19:11–20. doi: 10.1016/S0921-3449(96)01158-5. DOI
Pera J., Boumaza R., Ambroise J. Development of a pozzolanic pigment from red mud. Cem. Concr. Res. 1997;27:1513–1522. doi: 10.1016/S0008-8846(97)00162-2. DOI
Collazo A., Fernández D., Izquierdo M., Nóvoa X.R., Pérez C. Evaluation of red mud as surface treatment for carbon steel painting. Prog. Org. Coat. 2005;52:351–358. doi: 10.1016/j.porgcoat.2004.06.008. DOI
Park S.J., Jun B.R. Improvement of red mud polymer-matrix nanocomposites by red mud surface treatment. J. Colloid Interface Sci. 2005;284:204–209. doi: 10.1016/j.jcis.2004.09.074. PubMed DOI
Chunming G., Nanr Y. Effect of phosphate on the hydration of alkali-activated red mud–slag cementitious material. Cem. Concr. Res. 2000;30:1013–1016.
Ochsenkuhn P.M., Lyberropulu T., Ochsenkuhn K.M., Parissakis G. Recovery of lanthanides and yttrium from red mud by selective leaching. Anal. Chim. Acta. 1996;319:249–254. doi: 10.1016/0003-2670(95)00486-6. DOI
Wang S., Boyjoo Y., Choueib A., Zhu Z.H. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 2005;39:129–138. doi: 10.1016/j.watres.2004.09.011. PubMed DOI
Smith N.J., Buchanan V.E., Oliver G. The potential application of red mud in the production of castings. Mater. Sci. Eng. A. 2006;420:250–253. doi: 10.1016/j.msea.2006.01.038. DOI
Li P., Miser D.E., Rabiei S., Yadav R.T., Hajaligol M.R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B. 2003;43:151–162. doi: 10.1016/S0926-3373(02)00297-7. DOI
Lopez E., Soto B., Arias M., Nunez A., Rubinos D., Barral T. Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 1998;32:1314–1322. doi: 10.1016/S0043-1354(97)00326-6. DOI
Altundoğan H.S., Altundoğan S., Tümen F., Bildik M. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag. 2000;20:761–767. doi: 10.1016/S0956-053X(00)00031-3. PubMed DOI
Komnitsas K., Bartzas G., Paspaliaris I. Efficiency of limestone and red mud barriers: Laboratory column studies. Miner. Eng. 2004;17:183–194. doi: 10.1016/j.mineng.2003.11.006. DOI
Bertocchi A.F., Ghiani M., Peretti R., Zucca A. Red mud and fly ash for mine sites contaminated with As, Cd, Cu, Pb and Zn. J. Hazard. Mater. 2006;134:112–119. doi: 10.1016/j.jhazmat.2005.10.043. PubMed DOI
Genc H., Tjell J.C., McConchie D., Schuiling O. Adsorption of arsenate from water using neutralized red mud. Colloid Interface Sci. 2003;264:327–334. doi: 10.1016/S0021-9797(03)00447-8. PubMed DOI
Yalcin N., Sevinc V. Utilization of bauxite waste in ceramic glazes. Ceram. Int. 2000;26:485–490. doi: 10.1016/S0272-8842(99)00083-8. DOI
Kumar A., Kumar S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mat. 2013;38:865. doi: 10.1016/j.conbuildmat.2012.09.013. DOI
Chen X., Lu A., Qu G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int. 2013;39:1923. doi: 10.1016/j.ceramint.2012.08.042. DOI
Samal S., Ray A.K., Bandopadhyay A. Characterization and microstructure observation of sintered red mud–fly ash mixtures at various elevated temperatures. J. Clean. Prod. 2015;101:368. doi: 10.1016/j.jclepro.2015.04.010. DOI
Lothenbach B., Scrivener K., Hooton R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011;41:1244–1256. doi: 10.1016/j.cemconres.2010.12.001. DOI
Samal S. Study of Porosity on Titania Slag Obtained by Conventional Sintering and Thermal Plasma Process. JOM. 2016;68:3000. doi: 10.1007/s11837-016-2031-x. DOI
Blanco I., Cicala G., Tosto C., Recca G., Dal Poggetto G., Catauro M. Kinetic study of the thermal dehydration of fly ash filled Geopolymers. Macromol. Symp. 2020 doi: 10.1002/masy.201900052. accepted. DOI
Samal S. High temperature oxidation of Metals. InTech Open. 2016;6:101–121. doi: 10.5772/63000. DOI
Samal S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017;142:3131. doi: 10.1016/j.jclepro.2016.10.154. DOI
Samal S. Thermal Plasma Processing of Materials: High Temperature Applications. Elsevier; Amsterdam, The Netherlands: 2020. DOI
Gomez E., Amutha Rani D., Cheeseman C.R., Deegan D., Wise M., Boccaccini A.R. Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mat. 2009;161:614. doi: 10.1016/j.jhazmat.2008.04.017. PubMed DOI
Xiaoming L., Na Z. Utilization of red mud in cement production: A review. Waste Manag. Res. 2011;29:1053. doi: 10.1177/0734242X11407653. PubMed DOI
Sglavo V.M., Campostrini R., Maurina S., Carturan G., Monagheddu M., Budroni G., Cocco G. Bauxite “red mud” in the ceramic industry. Part 1: Thermal behavior. J. Eur. Ceram. Soc. 2000;20:235. doi: 10.1016/S0955-2219(99)00088-6. DOI
Chen R., Cai G., Dong X., Mi D., Puppala A.J., Duan W. Mechanical properties and micro mechanism of loess roadbed filling using by product red mud as a partial alternative. Constr. Build. Mater. 2019;216:188. doi: 10.1016/j.conbuildmat.2019.04.254. DOI
Alam S., Das S.K., Rao B.H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Constr. Build. Mater. 2019;211:932. doi: 10.1016/j.conbuildmat.2019.03.261. DOI
Samal S., Thanh N.P., Marvalova B., Petrikova I. Thermal characterization of metakaolin-based geopolymer. JOM. 2017;69:2480–2484. doi: 10.1007/s11837-017-2555-8. DOI
Jakob A., Stucki S., Kuhn P. Evaporation of hevy-metals during the heat treament of municipal solid waste incinerator fly ash. Environ. Sci. Technol. 1995;29:2429. doi: 10.1021/es00009a040. PubMed DOI
Tang W.C., Wang Z., Liu Y., Cui H.Z. Influence of red mud on fresh and hardened properties of self-compacting concrete. Construct. Build. Mater. 2018;178:288. doi: 10.1016/j.conbuildmat.2018.05.171. DOI
Patel S., Pal B. Current status of industrial waste: Red mud an overview. [(accessed on 10 April 2021)];Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2015 4:1–16. Available online: https://www.ijltemas.in/DigitalLibrary/Vol.4Issue8/01-16.pdf.
Xue S.G., Zhu F., Kong X.F., Wu C., Huang L., Huang N., Hartley W. A review of the characterization and revegetation of bauxite residues (Red mud) Environ. Sci. Pollut. Res. 2016;23:1120. doi: 10.1007/s11356-015-4558-8. PubMed DOI
Geng C., Liu J., Wu S., Jia Y., Du B., Yu S. Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. J. Hazard. Mater. 2020;384:121315. doi: 10.1016/j.jhazmat.2019.121315. PubMed DOI
Geng C., Chen C., Shi X., Wu S., Jia Y., Du B., Liu J. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process. Resour. Conserv. Recycl. 2020;154:104600. doi: 10.1016/j.resconrec.2019.104600. DOI
Okada T., Tomikawa H. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities. J. Environ. Manag. 2016;166:147. doi: 10.1016/j.jenvman.2015.10.010. PubMed DOI
Liu Y., Zhao B., Tang Y., Wan P., Chen Y., Lv Z. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochim. Acta. 2014;588:11. doi: 10.1016/j.tca.2014.04.027. DOI
Giannopoulou I., Dimas D., Maragkos I., Panias D. Utilization of metallurgical solid by-products for the development of inorganic polymeric construction materials. Glob. NEST J. 2009;11:127–136.
Geng C., Wang H., Hu W., Li L., Shi C. Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation. J. Iron Steel Res. Int. 2017;24:991. doi: 10.1016/S1006-706X(17)30145-0. DOI
Hu H., Liu H., Zhang Q., Zhang P., Li A., Yao H., Naruse I. Sintering characteristics of CaO-rich municipal solid waste incineration fly ash through the addition of Si/Al-rich ash residues. J. Mater. Cycles. Waste. 2016;18:340. doi: 10.1007/s10163-014-0341-z. DOI
Kang S., Kang H., Lee B. Effects of Adding Neutralized Red Mud on the Hydration Properties of Cement Paste. Materials. 2020;13:4107. doi: 10.3390/ma13184107. PubMed DOI PMC
Cardenia C., Balomenos E., Panias D. Optimization of Microwave Reductive Roasting Process of Bauxite Residue. Metals. 2020;10:1083. doi: 10.3390/met10081083. DOI
Keller V., Stopić S., Xakalashe B., Ma Y., Ndlovu S., Mwewa B., Simate G.S., Friedrich B. Effectiveness of Fly Ash and Red Mud as Strategies for Sustainable Acid Mine Drainage Management. Minerals. 2020;10:707. doi: 10.3390/min10080707. DOI
Chaikin L., Shoppert A., Valeev D., Loginova I., Napol’skikh J. Concentration of Rare Earth Elements (Sc, Y, La, Ce, Nd, Sm) in Bauxite Residue (Red Mud) Obtained by Water and Alkali Leaching of Bauxite Sintering Dust. Minerals. 2020;10:500. doi: 10.3390/min10060500. DOI
Nie Q., Li Y., Wang G., Bai B. Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions. Appl. Sci. 2020;10:2993. doi: 10.3390/app10092993. DOI
Vigneshwaran S., Uthayakumar M., Arumugaprabu V. Potential use of industrial waste-red mud in developing hybrid composites: A waste management approach. J. Clean. Prod. 2020;276:124278. doi: 10.1016/j.jclepro.2020.124278. DOI
Singh S., Aswath M.U., Ranganath R.V. Performance assessment of bricks and prisms: Red mud based geopolymer composite. J. Build. Eng. 2020;32:101462. doi: 10.1016/j.jobe.2020.101462. DOI
Liu D.-Y., Wu C.-S. Stockpiling and Comprehensive Utilization of Red Mud Research Progress. Materials. 2012;5:1232–1246. doi: 10.3390/ma5071232. DOI
Laskou M., Andreou G. Rare earth elements distribution and REE-minerals from the Parnassos–Ghiona bauxite deposits, Greece; Proceedings of the 7th Biennial SGA Meeting on Mineral Exploration and Sustainable Development; Athens, Greece. 24–28 August 2003; pp. 89–92.
Samal S. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite. Powder Technol. 2020;366:43–51.
Samal S., Vlach J., Kolinova M., Kavan P. Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials III. The American Ceramic Society; Columbus, OH, USA: 2017. Micro-computed tomography characterization of isotropic filler distribution in magnetorheological elastomeric composites.
Samal S., Škodová M., Blanco I. Effects of filler distribution on magnetorheological silicon-based composites. Materials. 2019;12:3017. doi: 10.3390/ma12183017. PubMed DOI PMC
Alkan G., Yagmurlu B., Cakmakoglu S., Hertel T., Kaya S., Gronen L., Stopic S., Frierich B. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation. Sci. Rep. 2018;8:5676. doi: 10.1038/s41598-018-24077-9. PubMed DOI PMC
Vind J., Malfliet A., Blanpain B., Tsakiridis P.E., Tkaczyk A.H., Vassiliadou V., Panias D. Rare Earth Element Phases in Bauxite Residue. Minerals. 2018;8:77. doi: 10.3390/min8020077. DOI
Nie Q., Hu W., Huang B., Shu X., He Q. Synergistic utilization of red mud for flue-gas desulfurization and fly ash based geopolymer preparation. J. Hazard. Mater. 2019;369:503. doi: 10.1016/j.jhazmat.2019.02.059. PubMed DOI
Kaußen F.M., Friedrich B. Phase characterization and thermochemical simulation of (landfilled) bauxite residue (“red mud”) in different alkaline processes optimized for aluminum recovery. Hydrometallurgy. 2018;176:49–61. doi: 10.1016/j.hydromet.2018.01.006. DOI
Klauber C., Gräfe M., Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011;108:11–32. doi: 10.1016/j.hydromet.2011.02.007. DOI
Goodenough K.M., Wall F., Merriman D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 2018;27:201–216. doi: 10.1007/s11053-017-9336-5. DOI
Binnemans K., Jones P.T. Rare earths and the balance problem. J. Sustain. Metall. 2015;1:29–38. doi: 10.1007/s40831-014-0005-1. DOI
Konkanov M., Salem T., Jiao P., Niyazbekova R., Lajnef N. Environment-Friendly, Self-Sensing Concrete Blended with Byproduct Wastes. Sensors. 2020;20:1925. doi: 10.3390/s20071925. PubMed DOI PMC
Reid S., Tam J., Yang M., Azimi G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017;7:15252. doi: 10.1038/s41598-017-15457-8. PubMed DOI PMC
Samal S. Preparation of synthetic rutile from pre-treated ilmenite/Ti-rich slag with phenol and resorcinol leaching solutions. Hydrometallurgy. 2013;137:8–12. doi: 10.1016/j.hydromet.2013.04.003. DOI
Alkan G., Schier C., Gronen L., Stopic S., Friedrich B. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud) for Titanium Recovery. Metals. 2017;7:458. doi: 10.3390/met7110458. DOI
Sayan E., Bayramoglu M. Statistical modeling of sulfuric acid leaching of TiO2 from red mud. Hydrometallurgy. 2004;71:397–401. doi: 10.1016/S0304-386X(03)00113-0. DOI
Wang L., Sun N., Tang H., Sun W. A Review on Comprehensive Utilization of Red Mud and Prospect Analysis. Minerals. 2019;9:362. doi: 10.3390/min9060362. DOI
An Overview of Thermal Plasma Arc Systems for Treatment of Various Wastes in Recovery of Metals