Effect of high temperature on the microstructural evolution of fiber reinforced geopolymer composite
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
31193700
PubMed Central
PMC6538983
DOI
10.1016/j.heliyon.2019.e01779
PII: S2405-8440(18)37095-6
Knihovny.cz E-resources
- Keywords
- Civil engineering, Materials science, Mechanical engineering, Structural engineering,
- Publication type
- Journal Article MeSH
Physical evolution of geopolymeric minerals derived from metakaolin and synthesized with sodium, mixed-alkali and potassium activating solutions (Na- K) during thermal exposure. The geopolymer composites were prepared with 40 V% of fiber reinforcement such as carbon, E-glass, and basalt at the direction of in plain. Fiber reinforced geopolymer composites were exposed to the room and elevated temperatures inside the oven at air medium for a period of 30 min. The durability of the composites and internal structures with surface microstructures were examined after high temperature exposures. According to the results, geopolymer implied a prominent influence on the thermal shrinkage with the increasing of Si/Al ratios. This was attributed to the densification caused by reduction in porosity during dehydroxylation and sintering. In the case of carbon fiber reinforced composite shows transition in strength after 600 °C due to the oxide protective layer that increases the flexural strength and toughness of the composite. The flexural strength of the carbon reinforced composite increases from 17.8 to 55.8 MPa at 1000 °C. Whereas, E-glass reinforced composite shows expansion in a matrix with cage like structure helps in the sliding mechanism of fiber within the matrix, thus strength reduces towards high temperature. In case of basalt reinforces composite complete conversions into a ceramic like structure after exposure to high temperature. As a result, the crystalline nature of ceramic assists in toughened the composite structure with a brittle nature.
See more in PubMed
Davidovits J. Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 1991;37:1633–1656.
Duxson P., Fernández-Jiménez A., Provis J., Lukey G., Palomo A., van Deventer J.S.J. Geopolymer technology: the current state of the art. J. Mater. Sci. 2007;42:2917–2933.
Embong R., Kusbiantoro A., Shafiq N., Nuruddin M.F. Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J. Clean. Prod. 2016;112:816–822.
He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453.
Kriven W.M. Geopolymer based composites. Encycl. Compr. Compos. Mater. II. 2018;5:269–280.
Mucsi G., Szenczi Á., Nagy S. Fiber reinforced geopolymer from the synergetic utilization of fly ash and waste tire. J. Clean. Prod. 2018;178:429–440.
Natali A., Manzi S., Bignozzi M.C. Novel fiber reinforced composite materials based on sustainable geopolymer matrix. Proc. Eng. 2011;21:1124–1131.
Novais R.M., Carvalheiras J., Seabra M.P., Pullar R.C., Labrincha J.A. Effective mechanical reinforcement of inorganic polymers using glass fiber waste. J. Clean. Prod. 2017;166:343–349.
Samal S., Kolinova M., Blanco I. The magneto-mechanical behavior of active components in iron-elastomer composite. J. Compos. Sci. 2018;2(3):54.
Samal Sneha, Vlach Jarmil, Kolinova Marcela, Pavel Kavan . Micro-computed tomography characterization of isotropic filler distribution in magnetorheological elastomeric composites. In: Ohji T., Singh M., Halbig M., Moon K., editors. Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials. 2017/1/4. pp. 57–69.
Perná I., Hanzlíček T. The solidification of aluminum production waste in geopolymer matrix. J. Clean. Prod. 2014;84:657–662.
Samal S., Thanh N.P., Petríková I., Marvalová B. Improved mechanical properties of various fabric reinforced geocmposite at elevated temperature. J. Metal. 2015;67(7):1478–1485.
Samal S., Marvalová B., Petríková I., Vallons K.A.M., Lomov S.V., Rahier H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2017;127:111–124.
Samal S., Reichmann D., Petrikova I., Marvalova B. Low velocity impact on fiber reinforced geocomposites. Appl. Mech. Mater. 2016;827:145–148.
Celerier H., Jouin J., Mathivet V., Tessier-Doyen N., Rossignol S. Composition and properties of phosphoric acid-based geopolymers. J. Non Crystall. Sol. 2018;493(1):94–98.
Kong D., Sanjayan J. Damage behavior of geopolymer composites exposed to elevated temperatures. Cement Concr. Compos. 2008;30:986–991.
Samal S., Thanh N.P., Marvalova B., Petrikova I. Thermal characterization of metakaolin-based geopolymer. JOM. 2017:1–5.
Samal S., Thanh N.P., Petríková I., Marvalová B., Vallons K.A.M., Lomov S.V. Correlation of microstructure and mechanical properties of various fabric reinforced geopolymer composites after exposure to elevated temperature. Ceram. Int. 2015;41(9):12115–12129.
Samal S., Kolinova M., Rahier H., Blanco I. Micro computed characterization of geo polymer composite under mechanical load. Appl. Sci. 2018
Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266.
Silva F.J., Thaumaturgo C. Fiber reinforcement and fracture response in geo polymeric mortars. Fatigue Fract. Eng. Mater. Struct. 2006;26:167–172.
Zhang Y.J., Li S., Wang Y.C., Xu D.L. Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J Non Crystall. Sol. 2012;358(1):620–624.
Arnoult M., Perronnet M., Autef A., Rossignol S. How to control the geopolymer setting time with the alkaline silicate solution. J. Non Crystall. Sol. 2018;495(1):59–66.
Samal Sneha, Kolinova Marcela, Rahier Hubert, Dal Poggetto Giovanni, Blanco I. Investigation of the internal structure of fiber reinforced geopolymer composite under mechanical impact: a micro computed tomography (μCT) study. Appl. Sci. 2019;9(3):516. 9 (3), 516-530.
Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J. Fire-resistant aluminosilicate composites. Fire Mater. 1997;21:67–73.
Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement Concr. Res. 2005;35:1233–1246.
Buchwald A., Hilbig H., Kaps C. Alkali-activated metakaolin-slag blends - performance and structure in dependence of their composition. J. Mater. Sci. 2007;42(9):3024–3303.
Kong D.L.Y., Sanjayan J.G. Effect of elevated temperatures on geopolymer paste, mortar, and concrete. Cement Concr. Res. 2010;40(2):334–339.
Palomo A., Grutzeck M.W., Blanco M.T. Alkali-activated fly ashes: a cement for the future. Cement Concr. Res. 1999;29(8):1323–1329.
Lolli F., Manzano H., Provis J.L., Bignozzi M.C., Masoero E. Atomistic simulations of geopolymer models: the impact of the disorder on structure and mechanics. ACS Appl. Mater. Interfaces. 2018 PubMed
Koleżyński A., Król M., Żychowicz M. The structure of geopolymers–Theoretical studies. J. Mol. Struct. 2018;1163:465–471.
Bakharev T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cement Concr. Res. 2006;36:1134–1147.
Barbosa V., McKenzie K. Thermal behavior of inorganic polymers and composites derives from sodium polysialate. Mater. Res. Bull. 2003;38:319–331.
Cheng T.W., Chiu J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210.
Giancaspro J., Balaguru P., Lyon R. Use of inorganic polymer to improve the fire response of balsa sandwich structures. J. Mater. Civ. Eng. 2006;18(3):390–397.
Giannopoulou I., Panias D. Fire resistant geopolymers synthesized from industrial wastes. World J. Eng. 2008;5(3):130–131.
Guerrieri M., Sanjayan J. Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. J. Fire Mater. 2010;34:163–175.
Hung T.D., Louda P., Kroisova D., Bortnovsky O., Xiem N.T. New generation of geopolymer composite for fire-resistance. In: Pavla Tesinova Dr., editor. Advances in Composite Materials – Analysis of Natural and Man-Made Materials. InTech; 2011. pp. 73–94.
Kong D., Sanjayan J., Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement Concr. Res. 2007;37:1583–1589.
Samal S., Stuchlík M., Petrikova I. Thermal behavior of flax and jute reinforced in matrix acrylic composite. J. Therm. Anal. Calorim. 2018;131(2):1035–1040.
Kong D., Sanjayan J. Effect of elevated temperatures on geopolymer paste, mortar, and concrete. Cement Concr. Res. 2010;40:334–339.
Lyon R.E. Fire resistant aluminosilicate composites. Fire Mater. 1997;21:67–73.
Pan Ζ., Sanjayan J.G., V Rangan B. An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. J. Mater. Sci. 2009;44:1873–1880.
Sakkas K., Nomikos P., Sofianos A., Panias D. World Tunnel Congress 2013; Geneva: 2013. Slag Based Geopolymer for Passive Fire protection of Tunnels; pp. 343–349.
Sakkas K., Nomikos P., Sofianos A., Panias D. Inorganic polymeric materials for passive fire protection of underground constructions. Fire Mater. 2013;37:140–150.
Zhao R., Sanjayan J.G. Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 2011;63:163–173.
Utilization of Red Mud as a Source for Metal Ions-A Review