Biological autoluminescence enables effective monitoring of yeast cell electroporation
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
GX20-06873X
Czech Science Foundation
2/0124/22
Slovak Scientific Grant Agency
World Premier International Research Center Initiative (WPI), MEXT, Japan
JP23K19200
JSPS KAKENHI
PubMed
38651262
DOI
10.1002/biot.202300475
Knihovny.cz E-zdroje
- Klíčová slova
- autoluminescence, electroporation, pulsed electric fields, yeast in biotechnology,
- MeSH
- elektroporace * metody MeSH
- Saccharomyces cerevisiae * růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions. To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.
Faculty of Health Sciences Catholic University in Ruzomberok Ruzomberok Slovakia
Institute of Measurement Science Slovak Academy of Sciences Bratislava Slovakia
Institute of Photonics and Electronics of the Czech Academy of Sciences Prague Czechia
WPI Nano Life Science Institute Kanazawa University Kanazawa Japan
Zobrazit více v PubMed
Mohammadi, S., Saberidokht, B., Subramaniam, S., & Grama, A. (2015). Scope and limitations of yeast as a model organism for studying human tissue‐specific pathways. BMC Systems Biology, 9, 96, https://doi.org/10.1186/s12918‐015‐0253‐0
Vieira Gomes, A., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., & Parachin, N. S. (2018). Comparison of yeasts as hosts for recombinant protein production. Microorganisms, 6, 38, https://doi.org/10.3390/microorganisms6020038
Cervelli, T., & Galli, A. (2021). Yeast as a tool to understand the significance of human disease‐associated gene variants. Genes (Basel), 12(9), 1303, https://doi.org/10.3390/genes12091303
Wang, Y., Wei, D., Zhu, X., Pan, J., Zhang, P., Huo, L., & Zhu, X. (2016). A 'suicide' CRISPR‐Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Scientific Reports, 6, 31145, https://doi.org/10.1038/srep31145
Juergens, H., Varela, J. A., Gorter de Vries, A. R., Perli, T., Gast, V. J. M., Gyurchev, N. Y., Rajkumar, A. S., Mans, R., Pronk, J. T., Morrissey, J. P., & Daran, J. G. (2018). Genome editing in Kluyveromyces and Ogataea yeasts using a broad‐host‐range Cas9/gRNA co‐expression plasmid. FEMS Yeast Research, 18(3), foy012, https://doi.org/10.1093/femsyr/foy012
Benatuilet, L., Perez, J. M., Belk, J., & Hsieh, C. M. (2010). An improved yeast transformation method for the generation of very large human antibody libraries, Protein Engineering. Design and Selection, 23(4), 155–159. https://doi.org/10.1093/protein/gzq002
Wang, Y., Wang, B., Gao, Y., Nakanishi, H., Gao, X.‐D., & Li, Z. (2023). Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris. Journal of Biotechnology, 18, e2300259. https://doi.org/10.1002/biot.202300259
Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001
Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142, https://doi.org/10.3390/microorganisms8081142
Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397–411. https://doi.org/10.1007/s13197‐020‐04512‐4
Mahnič‐Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in food processing and biorefinery. The Journal of Membrane Biology, 247, 1279–1304. https://doi.org/10.1007/s00232‐014‐9737‐x
Chen, H., Li, Q., Wang, J., Niu, C., Zheng, F., & Liu, C. (2023). Improving ribonucleic acid production in Saccharomyces pastorianus via in silico genome‐scale metabolic network model. Journal of Biotechnology, 18, e2300240, https://doi.org/10.1002/biot.202300240
Kou, J., Shen, J., Wang, Z., & Yu, W. (2023). Advances in hybridoma preparation using electrofusion technology. Biotechnology Journal, 18, e2200428, https://doi.org/10.1002/biot.202200428
Kotnik, T., Frey, W., Sack, M., Haberl Meglič, S., Peterka, M., & Miklavčič, D. (2015). Electroporation‐based applications in biotechnology. Trends in Biotechnology, 33(8), 480–488. https://doi.org/10.1016/j.tibtech.2015.06.002
Haberl Meglič, S., & Kotnik, T. (2016). Electroporation‐Based Applications in Biotechnology. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐26779‐1_33‐1
Golberg, A., Fischer, J., & Rubinsky, B. (2010). The Use of Irreversible Electroporation in Food Preservation. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering, Springer, https://doi.org/10.1007/978‐3‐642‐05420‐4_13
Suzuki, D. O., Ramos, A., Ribeiro, M. C., Cazarolli, L. H., Silva, F. R., Leite, L. D., & Marques, J. L. (2011). Theoretical and experimental analysis of electroporated membrane conductance in cell suspension. in IEEE Transactions on Bio‐Medical Engineering, 58(12), 3310–3318. https://doi.org/10.1109/TBME.2010.2103074
Napotnik, T. B., & Miklavčič, D. (2018). In vitro electroporation detection methods—An overview. Bioelectrochemistry, 120, 166–182. https://doi.org/10.1016/j.bioelechem.2017.12.005
Lorenzo, M. F., Bhonsle, S. P., Arena, C. B., & Davalos, R. V. (2021). Rapid impedance spectroscopy for monitoring tissue impedance, temperature, and treatment outcome during electroporation‐based therapies. IEEE Transactions on Bio‐Medical Engineering, 68(5), 1536–1546. https://doi.org/10.1109/TBME.2020.3036535
Castellví, Q., Mercadal, B., & Ivorra, A. (2017). Assessment of Electroporation by Electrical Impedance Methods. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐32886‐7_164
Simonis, P., Garjonyte, R., & Stirke, A. (2020). Mediated amperometry as a prospective method for the investigation of electroporation. Scientific Reports, 10, 19094, https://doi.org/10.1038/s41598‐020‐76086‐2
Pavlin, M., Kanduser, M., Rebersek, M., Pucihar, G., Hart, F. X., Magjarevic, R., & Miklavcic, D. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88(6), 4378–4390. https://doi.org/10.1529/biophysj.104.048975
Napotnik, T. B. (2017). Fluorescent Indicators of Membrane Permeabilization Due to Electroporation. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐32886‐7_133
Arshad, R. N., Abdul‐Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M., Bekhit, A. E. D., Roobab, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 104, 1–13. https://doi.org/10.1016/j.tifs.2020.07.008
Morren, J., Roodenburg, B., & de Haan, S. W. (2003). Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innovative Food Science, & Emerging Technologies, 4(3), 285–295. https://doi.org/10.1016/S1466‐8564(03)00041‐9
Pataro, G., Falcone, M., Donsì, G., & Ferrari, G. (2014). Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innovative Food Science, & Emerging Technologies, 21, 58–65. https://doi.org/10.1016/j.ifset.2013.10.005
Chafai, D. E., Mehle, A., Tilmatine, A., Maouche, B., & Miklavčič, D. (2015). Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension. Bioelectrochemistry, 106, 249–257. https://doi.org/10.1016/j.bioelechem.2015.08.002
Vahalová, P., & Cifra, M. (2023). Biological autoluminescence as a perturbance‐free method for monitoring oxidation in biosystems. Progress in Biophysics and Molecular Biology, 177, 80–108. https://doi.org/10.1016/j.pbiomolbio.2022.10.009
Bereta, M., Teplan, M., Chafai, D. E., Radil, R., & Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328, https://doi.org/10.1038/s41598‐020‐79668‐2
Simonis, P., Linkeviciute, A., & Stirke, A. (2021). Electroporation assisted improvement of freezing tolerance in yeast cells. Foods, 10, 170. https://doi.org/10.3390/foods10010170
Pavlin, M., & Miklavcic, D. (2008). Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation — Relation between short‐lived and long‐lived pores. Bioelectrochemistry, 74(1), 38–46. https://doi.org/10.1016/j.bioelechem.2008.04.016
Chafai, D. E., & Cifra, M. (2019). Modulation of micro/nanobiostructure's functions by intense nanosecond pulsed electric fields, 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 1–3. https://doi.org/10.1109/ICAEE47123.2019.9015154
Vahalová, P., Havelka, D., Vaněčková, E., Zakar, T., Kolivoška, V., & Cifra, M. (2023). Biochemiluminescence sensing of protein oxidation by reactive oxygen species generated by pulsed electric field. Sens. Actuators, B, 385, 133676, https://doi.org/10.1016/j.snb.2023.133676
Agarwal, A., Zudans, I., Weber, E. A., Olofsson, J., Orwar, O., & Weber, S. G. (2007). Effect of cell size and shape on single‐cell electroporation. Analytical Chemistry, 79(10), 3589–3596. https://doi.org/10.1021/ac062049e
Sherba, J. J., Hogquist, S., Lin, H., Shan, J. W., Shreiber, D. I., & Zahn, J. D. (2020). The effects of electroporation buffer composition on cell viability and electro‐transfection efficiency. Scientific Reports, 10, 3053, https://doi.org/10.1038/s41598‐020‐59790‐x
Novickij, V., Rembiałkowska, N., Szlasa, W., & Kulbacka, J. (2022). Does the shape of the electric pulse matter in electroporation? Frontiers in Oncology, 12, 958128. https://doi.org/10.3389/fonc.2022.958128
Saulis, G., Rodaitė‐Riševičienė, R., Dainauskaitė, V. S., & Saulė, R. (2015), Electrochemical Processes During High‐Voltage Electric Pulses and their Importance in Food Processing Technology. In Advances in Food Biotechnology, Ravishankar Rai, V., (Ed.), https://doi.org/10.1002/9781118864463.ch35