Biological autoluminescence enables effective monitoring of yeast cell electroporation

. 2024 Apr ; 19 (4) : e2300475.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38651262

Grantová podpora
GX20-06873X Czech Science Foundation
2/0124/22 Slovak Scientific Grant Agency
World Premier International Research Center Initiative (WPI), MEXT, Japan
JP23K19200 JSPS KAKENHI

The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions. To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.

Zobrazit více v PubMed

Mohammadi, S., Saberidokht, B., Subramaniam, S., & Grama, A. (2015). Scope and limitations of yeast as a model organism for studying human tissue‐specific pathways. BMC Systems Biology, 9, 96, https://doi.org/10.1186/s12918‐015‐0253‐0

Vieira Gomes, A., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., & Parachin, N. S. (2018). Comparison of yeasts as hosts for recombinant protein production. Microorganisms, 6, 38, https://doi.org/10.3390/microorganisms6020038

Cervelli, T., & Galli, A. (2021). Yeast as a tool to understand the significance of human disease‐associated gene variants. Genes (Basel), 12(9), 1303, https://doi.org/10.3390/genes12091303

Wang, Y., Wei, D., Zhu, X., Pan, J., Zhang, P., Huo, L., & Zhu, X. (2016). A 'suicide' CRISPR‐Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Scientific Reports, 6, 31145, https://doi.org/10.1038/srep31145

Juergens, H., Varela, J. A., Gorter de Vries, A. R., Perli, T., Gast, V. J. M., Gyurchev, N. Y., Rajkumar, A. S., Mans, R., Pronk, J. T., Morrissey, J. P., & Daran, J. G. (2018). Genome editing in Kluyveromyces and Ogataea yeasts using a broad‐host‐range Cas9/gRNA co‐expression plasmid. FEMS Yeast Research, 18(3), foy012, https://doi.org/10.1093/femsyr/foy012

Benatuilet, L., Perez, J. M., Belk, J., & Hsieh, C. M. (2010). An improved yeast transformation method for the generation of very large human antibody libraries, Protein Engineering. Design and Selection, 23(4), 155–159. https://doi.org/10.1093/protein/gzq002

Wang, Y., Wang, B., Gao, Y., Nakanishi, H., Gao, X.‐D., & Li, Z. (2023). Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris. Journal of Biotechnology, 18, e2300259. https://doi.org/10.1002/biot.202300259

Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001

Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142, https://doi.org/10.3390/microorganisms8081142

Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397–411. https://doi.org/10.1007/s13197‐020‐04512‐4

Mahnič‐Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in food processing and biorefinery. The Journal of Membrane Biology, 247, 1279–1304. https://doi.org/10.1007/s00232‐014‐9737‐x

Chen, H., Li, Q., Wang, J., Niu, C., Zheng, F., & Liu, C. (2023). Improving ribonucleic acid production in Saccharomyces pastorianus via in silico genome‐scale metabolic network model. Journal of Biotechnology, 18, e2300240, https://doi.org/10.1002/biot.202300240

Kou, J., Shen, J., Wang, Z., & Yu, W. (2023). Advances in hybridoma preparation using electrofusion technology. Biotechnology Journal, 18, e2200428, https://doi.org/10.1002/biot.202200428

Kotnik, T., Frey, W., Sack, M., Haberl Meglič, S., Peterka, M., & Miklavčič, D. (2015). Electroporation‐based applications in biotechnology. Trends in Biotechnology, 33(8), 480–488. https://doi.org/10.1016/j.tibtech.2015.06.002

Haberl Meglič, S., & Kotnik, T. (2016). Electroporation‐Based Applications in Biotechnology. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐26779‐1_33‐1

Golberg, A., Fischer, J., & Rubinsky, B. (2010). The Use of Irreversible Electroporation in Food Preservation. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering, Springer, https://doi.org/10.1007/978‐3‐642‐05420‐4_13

Suzuki, D. O., Ramos, A., Ribeiro, M. C., Cazarolli, L. H., Silva, F. R., Leite, L. D., & Marques, J. L. (2011). Theoretical and experimental analysis of electroporated membrane conductance in cell suspension. in IEEE Transactions on Bio‐Medical Engineering, 58(12), 3310–3318. https://doi.org/10.1109/TBME.2010.2103074

Napotnik, T. B., & Miklavčič, D. (2018). In vitro electroporation detection methods—An overview. Bioelectrochemistry, 120, 166–182. https://doi.org/10.1016/j.bioelechem.2017.12.005

Lorenzo, M. F., Bhonsle, S. P., Arena, C. B., & Davalos, R. V. (2021). Rapid impedance spectroscopy for monitoring tissue impedance, temperature, and treatment outcome during electroporation‐based therapies. IEEE Transactions on Bio‐Medical Engineering, 68(5), 1536–1546. https://doi.org/10.1109/TBME.2020.3036535

Castellví, Q., Mercadal, B., & Ivorra, A. (2017). Assessment of Electroporation by Electrical Impedance Methods. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐32886‐7_164

Simonis, P., Garjonyte, R., & Stirke, A. (2020). Mediated amperometry as a prospective method for the investigation of electroporation. Scientific Reports, 10, 19094, https://doi.org/10.1038/s41598‐020‐76086‐2

Pavlin, M., Kanduser, M., Rebersek, M., Pucihar, G., Hart, F. X., Magjarevic, R., & Miklavcic, D. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88(6), 4378–4390. https://doi.org/10.1529/biophysj.104.048975

Napotnik, T. B. (2017). Fluorescent Indicators of Membrane Permeabilization Due to Electroporation. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham, https://doi.org/10.1007/978‐3‐319‐32886‐7_133

Arshad, R. N., Abdul‐Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M., Bekhit, A. E. D., Roobab, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 104, 1–13. https://doi.org/10.1016/j.tifs.2020.07.008

Morren, J., Roodenburg, B., & de Haan, S. W. (2003). Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innovative Food Science, & Emerging Technologies, 4(3), 285–295. https://doi.org/10.1016/S1466‐8564(03)00041‐9

Pataro, G., Falcone, M., Donsì, G., & Ferrari, G. (2014). Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innovative Food Science, & Emerging Technologies, 21, 58–65. https://doi.org/10.1016/j.ifset.2013.10.005

Chafai, D. E., Mehle, A., Tilmatine, A., Maouche, B., & Miklavčič, D. (2015). Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension. Bioelectrochemistry, 106, 249–257. https://doi.org/10.1016/j.bioelechem.2015.08.002

Vahalová, P., & Cifra, M. (2023). Biological autoluminescence as a perturbance‐free method for monitoring oxidation in biosystems. Progress in Biophysics and Molecular Biology, 177, 80–108. https://doi.org/10.1016/j.pbiomolbio.2022.10.009

Bereta, M., Teplan, M., Chafai, D. E., Radil, R., & Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328, https://doi.org/10.1038/s41598‐020‐79668‐2

Simonis, P., Linkeviciute, A., & Stirke, A. (2021). Electroporation assisted improvement of freezing tolerance in yeast cells. Foods, 10, 170. https://doi.org/10.3390/foods10010170

Pavlin, M., & Miklavcic, D. (2008). Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation — Relation between short‐lived and long‐lived pores. Bioelectrochemistry, 74(1), 38–46. https://doi.org/10.1016/j.bioelechem.2008.04.016

Chafai, D. E., & Cifra, M. (2019). Modulation of micro/nanobiostructure's functions by intense nanosecond pulsed electric fields, 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 1–3. https://doi.org/10.1109/ICAEE47123.2019.9015154

Vahalová, P., Havelka, D., Vaněčková, E., Zakar, T., Kolivoška, V., & Cifra, M. (2023). Biochemiluminescence sensing of protein oxidation by reactive oxygen species generated by pulsed electric field. Sens. Actuators, B, 385, 133676, https://doi.org/10.1016/j.snb.2023.133676

Agarwal, A., Zudans, I., Weber, E. A., Olofsson, J., Orwar, O., & Weber, S. G. (2007). Effect of cell size and shape on single‐cell electroporation. Analytical Chemistry, 79(10), 3589–3596. https://doi.org/10.1021/ac062049e

Sherba, J. J., Hogquist, S., Lin, H., Shan, J. W., Shreiber, D. I., & Zahn, J. D. (2020). The effects of electroporation buffer composition on cell viability and electro‐transfection efficiency. Scientific Reports, 10, 3053, https://doi.org/10.1038/s41598‐020‐59790‐x

Novickij, V., Rembiałkowska, N., Szlasa, W., & Kulbacka, J. (2022). Does the shape of the electric pulse matter in electroporation? Frontiers in Oncology, 12, 958128. https://doi.org/10.3389/fonc.2022.958128

Saulis, G., Rodaitė‐Riševičienė, R., Dainauskaitė, V. S., & Saulė, R. (2015), Electrochemical Processes During High‐Voltage Electric Pulses and their Importance in Food Processing Technology. In Advances in Food Biotechnology, Ravishankar Rai, V., (Ed.), https://doi.org/10.1002/9781118864463.ch35

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...