Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts

. 2024 ; 19 (4) : e0302224. [epub] 20240425

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38662658

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.

Zobrazit více v PubMed

Thomas Postler, Kuhn H Jens. Rename all species in the family to comply with the ICTV-mandated binomial format (Bunyavirales: Nairoviridae). ICTV [International Committee on Taxonomy of Viurses] TaxoProp 2021.017M.N.v1.Nairoviridae_sprenamed. 2021. 2021 [cited 30 Jun 2023]. Available: https://talk.ictvonline.org/files/proposals/animal_dsrna_and_ssrna-_viruses/m/animal_rna_minus_under_consideration/12837.

Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100: 159–189. doi: 10.1016/j.antiviral.2013.07.006 PubMed DOI

Shayan S, Bokaean M, Shahrivar MR, Chinikar S. Crimean-Congo Hemorrhagic Fever. Lab Med. 2015;46: 180–189. doi: 10.1309/LMN1P2FRZ7BKZSCO PubMed DOI

Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98: 248–260. doi: 10.1016/j.antiviral.2013.02.007 PubMed DOI

WHO. Crimean-Congo haemorrhagic fever. 31 Jan 2013. [cited 26 Sep 2022]. Available: https://www.who.int/news-room/fact-sheets/detail/crimean-congo-haemorrhagic-fever.

Ergönül Ö. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6: 203–214. doi: 10.1016/S1473-3099(06)70435-2 PubMed DOI PMC

Akuffo R, Brandful JAM, Zayed A, Adjei A, Watany N, Fahmy NT, et al.. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect Dis. 2016;16: 324. doi: 10.1186/s12879-016-1660-6 PubMed DOI PMC

Gonzalez JP, Cornet JP, Wilson ML, Camicas JL. Crimean-Congo haemorrhagic fever virus replication in adult Hyalomma truncatum and Amblyomma variegatum ticks. Res Virol. 1991;142: 483–488. doi: 10.1016/0923-2516(91)90071-a PubMed DOI

Madbouly MH, Kemp GE, Causey OR, David-West TamS. Congo Virus from Domestic Livestock, African Hedgehog, and Arthropods in Nigeria. Am J Trop Med Hyg. 1970;19: 846–850. doi: 10.4269/ajtmh.1970.19.846 PubMed DOI

Estrada-Peña A, Palomar AM, Santibáñez P, Sánchez N, Habela MA, Portillo A, et al.. Crimean-Congo hemorrhagic fever virus in ticks, Southwestern Europe, 2010. Emerg Infect Dis. 2012;18: 179–80. doi: 10.3201/eid1801.111040 PubMed DOI PMC

Nasirian H. Ticks infected with Crimean-Congo hemorrhagic fever virus (CCHFV): A decision approach systematic review and meta-analysis regarding their role as vectors. Travel Med Infect Dis. 2022;47: 102309. doi: 10.1016/j.tmaid.2022.102309 PubMed DOI

Orkun Ö, Karaer Z, Çakmak A, Nalbantoğlu S. Crimean-Congo hemorrhagic fever virus in ticks in Turkey: A broad range tick surveillance study. Infection, Genetics and Evolution. 2017;52: 59–66. doi: 10.1016/j.meegid.2017.04.017 PubMed DOI

Anna Papa, Anastasia Kontana, Katerina Tsioka, Ilias Chaligiannis, Smaragda Sotiraki. Molecular detection of Crimean-Congo hemorrhagic fever virus in ticks, Greece, 2012–2014. Parasitol Res. 2017;116: 3057–3063. doi: 10.1007/s00436-017-5616-6 PubMed DOI

Tsapko N V., Volynkina AS, Evchenko AY, Lisitskaya Y V, Shaposhnikova LI. Detection of Crimean-Congo hemorrhagic fever virus in ticks collected from South Russia. Ticks Tick Borne Dis. 2022;13: 101890. doi: 10.1016/j.ttbdis.2021.101890 PubMed DOI

Yesilbag K, Aydin L, Dincer E, Alpay G, Girisgin AO, Tuncer P, et al.. Tick survey and detection of Crimean-Congo hemorrhagic fever virus in tick species from a non-endemic area, South Marmara region, Turkey. Exp Appl Acarol. 2013;60: 253–261. doi: 10.1007/s10493-012-9642-x PubMed DOI

Papa A, Velo E, Kadiaj P, Tsioka K, Kontana A, Kota M, et al.. Crimean-Congo hemorrhagic fever virus in ticks collected from livestock in Albania. Infection, Genetics and Evolution. 2017;54: 496–500. doi: 10.1016/j.meegid.2017.08.017 PubMed DOI

Gargili A, Midilli K, Ergonul O, Ergin S, Alp HG, Vatansever Z, et al.. Crimean-Congo Hemorrhagic Fever in European Part of Turkey: Genetic Analysis of the Virus Strains from Ticks and a Seroepidemiological Study in Humans. Vector-Borne and Zoonotic Diseases. 2011;11: 747–752. doi: 10.1089/vbz.2010.0030 PubMed DOI

Moraga‐Fernández A, Ruiz‐Fons F, Habela MA, Royo‐Hernández L, Calero‐Bernal R, Gortazar C, et al.. Detection of new Crimean–Congo haemorrhagic fever virus genotypes in ticks feeding on deer and wild boar, Spain. Transbound Emerg Dis. 2021;68: 993–1000. doi: 10.1111/tbed.13756 PubMed DOI

Gargili A, Estrada-Peña A, Spengler JR, Lukashev A, Nuttall PA, Bente DA. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res. 2017;144: 93–119. doi: 10.1016/j.antiviral.2017.05.010 PubMed DOI PMC

Pshenichnaya NY, Leblebicioglu H, Bozkurt I, Sannikova IV, Abuova GN, Zhuravlev AS, et al.. Crimean-Congo hemorrhagic fever in pregnancy: A systematic review and case series from Russia, Kazakhstan and Turkey. International Journal of Infectious Diseases. 2017;58: 58–64. doi: 10.1016/j.ijid.2017.02.019 PubMed DOI PMC

Anagnostou V, Papa A. Evolution of Crimean-Congo Hemorrhagic Fever virus. Infection, Genetics and Evolution. 2009;9: 948–954. doi: 10.1016/j.meegid.2009.06.018 PubMed DOI

Chinikar S, Ghiasi SM, Moradi M, Goya MM, Shirzadi MR, Zeinali M, et al.. Geographical Distribution and Surveillance of Crimean-Congo Hemorrhagic Fever in Iran. Vector-Borne and Zoonotic Diseases. 2010;10: 705–708. doi: 10.1089/vbz.2009.0247 PubMed DOI

Hewson R, Gmyl A, Gmyl L, Smirnova SE, Karganova G, Jamil B, et al.. Evidence of segment reassortment in Crimean-Congo haemorrhagic fever virus. Journal of General Virology. 2004;85: 3059–3070. doi: 10.1099/vir.0.80121-0 PubMed DOI

Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12: 32–42. doi: 10.1038/nrg2899 PubMed DOI PMC

Plotkin JB, Dushoff J, Desai MM, Fraser HB. Codon Usage and Selection on Proteins. J Mol Evol. 2006;63: 635–653. doi: 10.1007/s00239-005-0233-x PubMed DOI

Chen Y, Chen Y-F. Analysis of synonymous codon usage patterns in duck hepatitis A virus: a comparison on the roles of mutual pressure and natural selection. Virusdisease. 2014;25: 285–293. doi: 10.1007/s13337-014-0191-2 PubMed DOI PMC

Ermolaeva MD. Synonymous codon usage in bacteria. Curr Issues Mol Biol. 2001;3: 91–7. PubMed

Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2001;2: research0010.1. doi: 10.1186/gb-2001-2-4-research0010 PubMed DOI PMC

Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol Cell. 2015;59: 149–161. doi: 10.1016/j.molcel.2015.05.035 PubMed DOI PMC

Shields D, Sharp P, Higgins D, Wright F. “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988. doi: 10.1093/oxfordjournals.molbev.a040525 PubMed DOI

Stenico M, Lloyd AT, Sharp PM. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994;22: 2437–2446. doi: 10.1093/nar/22.13.2437 PubMed DOI PMC

Jenkins GM, Holmes EC. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 2003;92: 1–7. doi: 10.1016/s0168-1702(02)00309-x PubMed DOI

Sharp PM, Emery LR, Zeng K. Forces that influence the evolution of codon bias. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365: 1203–1212. doi: 10.1098/rstb.2009.0305 PubMed DOI PMC

Wong EH, Smith DK, Rabadan R, Peiris M, Poon LL. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol Biol. 2010;10: 253. doi: 10.1186/1471-2148-10-253 PubMed DOI PMC

Butt AM, Nasrullah I, Tong Y. Genome-Wide Analysis of Codon Usage and Influencing Factors in Chikungunya Viruses. PLoS One. 2014;9: e90905. doi: 10.1371/journal.pone.0090905 PubMed DOI PMC

Rahman SU, Yao X, Li X, Chen D, Tao S. Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts. Infection, Genetics and Evolution. 2018;58: 1–16. doi: 10.1016/j.meegid.2017.11.027 PubMed DOI

dos Passos Cunha M, Ortiz-Baez AS, de Melo Freire CC, de Andrade Zanotto PM. Codon adaptation biases among sylvatic and urban genotypes of Dengue virus type 2. Infection, Genetics and Evolution. 2018;64: 207–211. doi: 10.1016/j.meegid.2018.05.017 PubMed DOI PMC

Li G, Shi L, Zhang L, Xu B. Componential usage patterns in dengue 4 viruses reveal their better evolutionary adaptation to humans. Front Microbiol. 2022;13. doi: 10.3389/fmicb.2022.935678 PubMed DOI PMC

Di Paola N, Freire CC de M, Zanotto PM de A. Does adaptation to vertebrate codon usage relate to flavivirus emergence potential? PLoS One. 2018;13: e0191652. doi: 10.1371/journal.pone.0191652 PubMed DOI PMC

de Fabritus L, Nougairède A, Aubry F, Gould EA, de Lamballerie X. Attenuation of Tick-Borne Encephalitis Virus Using Large-Scale Random Codon Re-encoding. PLoS Pathog. 2015;11: e1004738. doi: 10.1371/journal.ppat.1004738 PubMed DOI PMC

Nougairede A, De Fabritus L, Aubry F, Gould EA, Holmes EC, de Lamballerie X. Random Codon Re-encoding Induces Stable Reduction of Replicative Fitness of Chikungunya Virus in Primate and Mosquito Cells. PLoS Pathog. 2013;9: e1003172. doi: 10.1371/journal.ppat.1003172 PubMed DOI PMC

Manokaran G, Sujatmoko, McPherson KG, Simmons CP. Attenuation of a dengue virus replicon by codon deoptimization of nonstructural genes. Vaccine. 2019;37: 2857–2863. doi: 10.1016/j.vaccine.2019.03.062 PubMed DOI

Sexton NR, Ebel GD. Effects of Arbovirus Multi-Host Life Cycles on Dinucleotide and Codon Usage Patterns. Viruses. 2019;11. doi: 10.3390/v11070643 PubMed DOI PMC

Sherifi K, Rexhepi A, Berxholi K, Mehmedi B, Gecaj RM, Hoxha Z, et al.. Crimean-Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania. Front Vet Sci. 2018;5: 38. doi: 10.3389/fvets.2018.00038 PubMed DOI PMC

Sherifi K, Cadar D, Muji S, Robaj A, Ahmeti S, Jakupi X, et al.. Crimean-Congo Hemorrhagic Fever Virus Clades V and VI (Europe 1 and 2) in Ticks in Kosovo, 2012. PLoS Negl Trop Dis. 2014;8: e3168. doi: 10.1371/journal.pntd.0003168 PubMed DOI PMC

Fakoorziba MR, Naddaf-Sani AA, Moemenbellah-Fard MD, Azizi K, Ahmadnia S, Chinikar S. First phylogenetic analysis of a Crimean-Congo hemorrhagic fever virus genome in naturally infected Rhipicephalus appendiculatus ticks (Acari: Ixodidae). Arch Virol. 2015;160: 1197–1209. doi: 10.1007/s00705-015-2379-1 PubMed DOI

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7: 214. doi: 10.1186/1471-2148-7-214 PubMed DOI PMC

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4. doi: 10.1093/ve/vey016 PubMed DOI PMC

Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol Direct. 2008;3: 38. doi: 10.1186/1745-6150-3-38 PubMed DOI PMC

Singh NK, Tyagi A, Kaur R, Verma R, Gupta PK. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus. Virus Res. 2016;221: 58–65. doi: 10.1016/j.virusres.2016.05.008 PubMed DOI

Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero L V., Lam PVN, et al.. Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol. 2019;431: 2434–2441. doi: 10.1016/j.jmb.2019.04.021 PubMed DOI

Puigbò P, Bravo IG, Garcia-Vallvé S. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics. 2008;9: 65. doi: 10.1186/1471-2105-9-65 PubMed DOI PMC

Pond SLK, Frost SDW, Muse S V. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21: 676–679. doi: 10.1093/bioinformatics/bti079 PubMed DOI

Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al.. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol Biol Evol. 2013;30: 1196–1205. doi: 10.1093/molbev/mst030 PubMed DOI PMC

Chen Y, Shi Y, Deng H, Gu T, Xu J, Ou J, et al.. Characterization of the porcine epidemic diarrhea virus codon usage bias. Infection, Genetics and Evolution. 2014;28: 95–100. doi: 10.1016/j.meegid.2014.09.004 PubMed DOI PMC

Wang H, Liu S, Lv Y, Wei W. Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res. 2023;328: 199081. doi: 10.1016/j.virusres.2023.199081 PubMed DOI PMC

Yao X, Fan Q, Yao B, Lu P, Rahman SU, Chen D, et al.. Codon Usage Bias Analysis of Bluetongue Virus Causing Livestock Infection. Front Microbiol. 2020;11. doi: 10.3389/fmicb.2020.00655 PubMed DOI PMC

Wang H, Liu S, Zhang B, Wei W. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts. PLoS One. 2016;11: e0166260. doi: 10.1371/journal.pone.0166260 PubMed DOI PMC

Nasrullah I, Butt AM, Tahir S, Idrees M, Tong Y. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol Biol. 2015;15: 174. doi: 10.1186/s12862-015-0456-4 PubMed DOI PMC

Volynkina A, Lisitskaya Y, Kolosov A, Shaposhnikova L, Pisarenko S, Dedkov V, et al.. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Russia. PLoS One. 2022;17: e0266177. doi: 10.1371/journal.pone.0266177 PubMed DOI PMC

Moratorio G, Iriarte A, Moreno P, Musto H, Cristina J. A detailed comparative analysis on the overall codon usage patterns in West Nile virus. Infection, Genetics and Evolution. 2013;14: 396–400. doi: 10.1016/j.meegid.2013.01.001 PubMed DOI

Lara-Ramírez EE, Salazar MI, López-López M de J, Salas-Benito JS, Sánchez-Varela A, Guo X. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence. Biomed Res Int. 2014;2014: 1–9. doi: 10.1155/2014/851425 PubMed DOI PMC

Luo W, Roy A, Guo F, Irwin DM, Shen X, Pan J, et al.. Host Adaptation and Evolutionary Analysis of Zaire ebolavirus: Insights From Codon Usage Based Investigations. Front Microbiol. 2020;11. doi: 10.3389/fmicb.2020.570131 PubMed DOI PMC

van Hemert F, van der Kuyl AC, Berkhout B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. Journal of General Virology. 2016;97: 2608–2619. doi: 10.1099/jgv.0.000579 PubMed DOI

Cristina J, Moreno P, Moratorio G, Musto H. Genome-wide analysis of codon usage bias in Ebolavirus. Virus Res. 2015;196: 87–93. doi: 10.1016/j.virusres.2014.11.005 PubMed DOI

Tao P, Dai L, Luo M, Tang F, Tien P, Pan Z. Analysis of synonymous codon usage in classical swine fever virus. Virus Genes. 2009;38: 104–112. doi: 10.1007/s11262-008-0296-z PubMed DOI PMC

Zhong J, Li Y, Zhao S, Liu S, Zhang Z. Mutation pressure shapes codon usage in the GC-Rich genome of foot-and-mouth disease virus. Virus Genes. 2007;35: 767–776. doi: 10.1007/s11262-007-0159-z PubMed DOI PMC

Hu J, Wang Q, Zhang J, Chen H, Xu Z, Zhu L, et al.. The characteristic of codon usage pattern and its evolution of hepatitis C virus. Infection, Genetics and Evolution. 2011;11: 2098–2102. doi: 10.1016/j.meegid.2011.08.025 PubMed DOI

Lin J-J, Bhattacharjee MJ, Yu C-P, Tseng YY, Li W-H. Many human RNA viruses show extraordinarily stringent selective constraints on protein evolution. Proceedings of the National Academy of Sciences. 2019;116: 19009–19018. doi: 10.1073/pnas.1907626116 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...