Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Development of Microbial Consortium as Bio-inoculants for Drought
Department of Environment Science and Technology
Low Temperature Growing Crops for Organic Farming in Himachal Pradesh
Department of Environment Science and Technology
PubMed
38668814
DOI
10.1007/s12223-024-01168-x
PII: 10.1007/s12223-024-01168-x
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural sustainability, Growth parameters, NPK consortium, Physiological parameters, Plant growth promotion,
- MeSH
- Bacteria * genetika klasifikace metabolismus izolace a purifikace růst a vývoj MeSH
- draslík metabolismus MeSH
- dusík metabolismus MeSH
- fixace dusíku * MeSH
- fosfor * metabolismus MeSH
- fylogeneze MeSH
- kořeny rostlin mikrobiologie MeSH
- mikrobiální společenstva * MeSH
- půdní mikrobiologie * MeSH
- rhizosféra MeSH
- RNA ribozomální 16S * genetika MeSH
- Solanum melongena * mikrobiologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík MeSH
- dusík MeSH
- fosfor * MeSH
- RNA ribozomální 16S * MeSH
In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.
Department of Biochemistry Dr Ram Manohar Lohia Avadh University Faizabad Uttar Pradesh India
Faculty of Agricultural Sciences GLA University Mathura Uttar Pradesh India
Zobrazit více v PubMed
Abraham J, Silambarasan S, Logeswari P (2014) Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. J Taiwan Inst Chem Eng 45:2590–2596. https://doi.org/10.1016/j.jtice.2014.06.014 DOI
Ali SS, Darwesh OM, Kornaros M, Al-Tohamy R, Manni A, El-Shanshoury AE-RR et al (2021a) Chapter 27 - Nano-biofertilizers: synthesis, advantages, and applications. In: Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK (eds) Biofertilizers. Woodhead Publishing, p 359–370. https://doi.org/10.1016/B978-0-12-821667-5.00007-5 DOI
Ali SS, Kornaros M, Manni A, Al-Tohamy R, El-Shanshoury AE-RR, Matter IM et al (2021b) Chapter 28 - Advances in microorganisms-based biofertilizers: major mechanisms and applications. In: Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK (eds) Biofertilizers. Woodhead Publishing, p 371–385. https://doi.org/10.1016/B978-0-12-821667-5.00023-3 DOI
Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91. https://doi.org/10.1016/j.apsoil.2016.02.014 DOI
Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M et al (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140. https://doi.org/10.3390/su13031140 DOI
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507. https://doi.org/10.1038/s41396-018-0093-1 PubMed DOI PMC
Bilal S, Shahzad R, Khan AL, Kang S-M, Imran QM, Al-Harrasi A et al (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273. https://doi.org/10.3389/fpls.2018.01273 PubMed DOI PMC
Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413. https://doi.org/10.1128/AEM.70.11.6407-6413.2004 PubMed DOI PMC
Desai S, Bagyaraj DJ, Ashwin R (2020) Inoculation with microbial consortium promotes growth of tomato and capsicum seedlings raised in pro trays. Proc Natl Acad Sci India Sect B Biol Sci 90:21–28. https://doi.org/10.1007/s40011-019-01078-w DOI
Devi R, Kaur T, Kour D, Yadav A, Yadav AN, Suman A et al (2022) Minerals solubilizing and mobilizing microbiomes: a sustainable approach for managing minerals’ deficiency in agricultural soil. J Appl Microbiol 133:1245–1272. https://doi.org/10.1111/jam.15627 PubMed DOI
Dolkar D, Dolkar P, Angmo S, Chaurasia OP, Stobdan T (2018) Stress tolerance and plant growth promotion potential of Enterobacter ludwigii PS1 isolated from Seabuckthorn rhizosphere. Biocatal Agric Biotechnol 14:438–443. https://doi.org/10.1016/j.bcab.2018.04.012 DOI
Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843 PubMed DOI PMC
Egidi E, Wood JL, Aracic S, Kannan R, McDonald L, Bell CA et al (2016) Draft genome sequence of Enterobacter ludwigii NCR3, a heavy metal–resistant rhizobacterium. Genome Announc 4:e01076-e11016. https://doi.org/10.1128/genomea.01076-16 PubMed DOI PMC
Habibi S, Djedidi S, Ohkama-Ohtsu N, Sarhadi WA, Kojima K, Rallos RV et al (2019) Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microb Environ 34:347–355. https://doi.org/10.1264/jsme2.ME18168 DOI
Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36:193–201. https://doi.org/10.1007/s002489900106 PubMed DOI
Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990. https://doi.org/10.1007/s11274-006-9144-2 DOI
Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant 84:55–60. https://doi.org/10.1007/s11274-006-9144-2 DOI
Jain A, Singh A, Singh S, Singh HB (2015) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 55:961–972. https://doi.org/10.1002/jobm.201400628 PubMed DOI
Jenifer AA, Chandran T, Muthunarayanan V, Ravindran B, Nguyen VK, Nguyen XC et al (2020) Evaluation of efficacy of indigenous acidophile- bacterial consortia for removal of pollutants from coffee cherry pulping wastewater. Biores Technol Rep 11:100533. https://doi.org/10.1016/j.biteb.2020.100533 DOI
Jha CK, Saraf M (2012) Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul 31(4):588–598. https://doi.org/10.1007/s00344-012-9269-5 DOI
El Kahkahi R, Moustaine M, Channaoui S, Hafidi M, Zouhair R, Chitt MA et al (2019) Characterization of plant growth promoting rhizobacteria isolated from the rhizosphere of carob tree (Ceratonia siliqua L.) in Morocco. EurAsian J Biosci 13(2):921–930
Kaur T, Devi R, Kour D, Yadav A, Yadav AN (2021a) Plant growth promotion of barley (Hordeum vulgare L.) by potassium solubilizing bacteria with multifarious plant growth promoting attributes. Plant Sci Today 8:17–24. https://doi.org/10.14719/pst.1377 DOI
Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M et al (2021b) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biol. https://doi.org/10.1007/s11756-021-00806-w DOI
Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2022a) Plant growth promotion of pearl millet (Pennisetum glaucum L.) by novel bacterial consortium with multifunctional attributes. Biol 78:621–631. https://doi.org/10.1007/s11756-022-01291-5 DOI
Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2022b) Synergistic effect of endophytic and rhizospheric microbes for plant growth promotion of foxtail millet (Setaria italica L.). Natl Acad Sci Lett 46:27–30. https://doi.org/10.1007/s40009-022-01190-y DOI
Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN (2022c) Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8:e09326. https://doi.org/10.1016/j.heliyon.2022.e09326 PubMed DOI PMC
Kesavan P, Swaminathan M (2018) Modern technologies for sustainable food and nutrition security. Curr Sci 115(10):1876–1883 DOI
Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326. https://doi.org/10.1016/S0308-8146(02)00423-5 DOI
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487 DOI
Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1 DOI
Kumar P, Pandey P, Dubey RC, Maheshwari DK (2016) Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere 2:13–23. https://doi.org/10.1016/j.rhisph.2016.09.002 DOI
Kumar A, Maurya BR, Raghuwanshi R (2021) The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). J Plant Nutr 44:1942–1956. https://doi.org/10.1080/01904167.2021.1884706 DOI
Li X, Yan J, Li D, Jiang Y, Zhang Y, Wang H et al (2021) Isolation and molecular characterization of plant-growth-promoting bacteria and their effect on eggplant (Solanum melongena) Growth. Agriculture 11:1258. https://doi.org/10.3390/agriculture11121258 DOI
Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzymology, vol 148. Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1 DOI
Liu J, Ma K, Ciais P, Polasky S (2016) Reducing human nitrogen use for food production. Sci Rep 6(1):1–14. https://doi.org/10.1038/srep30104 DOI
May A, Coelho LF, Pedrinho A, Batista BD, Mendes LW, Mendes R et al (2021) The use of indigenous bacterial community as inoculant for plant growth promotion in soybean cultivation. Arch Agron Soil Sci 69:135–150. https://doi.org/10.1080/03650340.2021.1964017 DOI
Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth-promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore, pp 219–258. https://doi.org/10.1007/978-981-15-3204-7_10 DOI
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 DOI
Nafiu A, Togun O, Abiodun M, Chude V (2011) Effects of NPK fertilizer on growth, drymatter production and yield of eggplant in southwestern Nigeria. Agric Biol J N Am 2(7):1117–1125 DOI
Pandey P, Maheshwari D (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142
Panneerselvam P, Senapati A, Sharma L, Nayak AK, Kumar A, Kumar U et al (2021) Understanding rice growth-promoting potential of Enterobacter spp. isolated from long-term organic farming soil in India through a supervised learning approach. Curr Res Microb Sci 2:100035. https://doi.org/10.1016/j.crmicr.2021.100035 PubMed DOI PMC
Pawlicki-Jullian N, Courtois B, Pillon M, Lesur D, Le Flèche-Mateos A, Laberche J-C et al (2010) Exopolysaccharide production by nitrogen-fixing bacteria within nodules of Medicago plants exposed to chronic radiation in the Chernobyl exclusion zone. Res Microbiol 161(2):101–108. https://doi.org/10.1016/j.resmic.2009.12.009 PubMed DOI
Pellegrini M, Spera DM, Ercole C, Del Gallo M (2021) Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plants, soil, and the autochthonous microbial community. Microorganisms 9(3):639. https://doi.org/10.3390/microorganisms9030639 PubMed DOI PMC
Pérez ML, Collavino MM, Sansberro PA, Mroginski LA, Galdeano E (2016) Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J Microbiol Biotechnol 32(4):1–15. https://doi.org/10.1007/s11274-016-2016-5 DOI
Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370
Sharma CK, Vishnoi VK, Dubey R, Maheshwari D (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75. https://doi.org/10.1016/j.rhisph.2018.01.001 DOI
Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774. https://doi.org/10.1016/j.soilbio.2007.12.031 DOI
Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng 116:163–173. https://doi.org/10.1016/j.ecoleng.2017.12.033 DOI
Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355
Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42
Sutton P, Woodruff TJ, Perron J, Stotland N, Conry JA, Miller MD et al (2012) Toxic environmental chemicals: the role of reproductive health professionals in preventing harmful exposures. Am J Obstet Gynecol 207(3):164–173. https://doi.org/10.1016/j.ajog.2012.01.034 PubMed DOI PMC
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. https://doi.org/10.1093/molbev/msm092 PubMed DOI
Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M et al (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356(1):35–49. https://doi.org/10.1007/s11104-011-1023-4 DOI
Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447
Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899. https://doi.org/10.1007/s13213-014-1027-4 DOI
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58. https://doi.org/10.1002/jobm.201500459 PubMed DOI
Wang Q, Li Q, Lin Y, Hou Y, Deng Z, Liu W et al (2020) Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. Environ Pollut 264:114637. https://doi.org/10.1016/j.envpol.2020.114637 PubMed DOI
Yadav AN (2021) Phytomicrobiomes for agro-environmental sustainability. J Appl Biol Biotechnol 9(5):1–4. https://doi.org/10.7324/JABB.2021.95ed DOI
Yadav A, Yadav AN (2021) Phytomicrobiome for sustainable agriculture and environment. J Appl Biol Biotechnol 9(03):176–192. https://doi.org/10.7324/JABB.2021.9319 DOI
Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z PubMed DOI
Yadav SK, Singh S, Singh HB, Sarma BK (2017) Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J Agric Food Chem 65(30):6122–6130. https://doi.org/10.1021/acs.jafc.7b01326 PubMed DOI
Yadav AN, Kour D, Yadav N (2023) Microbes as a gift from God. J Appl Biol Biotechnol 11:1–4. https://doi.org/10.7324/JABB.2023.157095 DOI
Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159(10):2675–2683. https://doi.org/10.1016/j.envpol.2011.05.031 PubMed DOI
Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239. https://doi.org/10.1016/j.scienta.2015.07.020 DOI