Pegunigalsidase alfa: a novel, pegylated recombinant alpha-galactosidase enzyme for the treatment of Fabry disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38680424
PubMed Central
PMC11045972
DOI
10.3389/fgene.2024.1395287
PII: 1395287
Knihovny.cz E-zdroje
- Klíčová slova
- Fabry disease, PEGylation, agalsidase, non-inferiority trial, renal function,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fabry disease, a rare X-linked genetic disorder, results from pathogenic variants in GLA, leading to deficient lysosomal α-galactosidase A enzyme activity and multi-organ manifestations. Since 2001, enzyme replacement therapy (ERT), using agalsidase alfa or agalsidase beta, has been the mainstay treatment, albeit with limitations such as rapid clearance and immunogenicity. Pegunigalsidase alfa, a novel PEGylated recombinant alpha-galactosidase, offers promise as an alternative. Produced in plant cells, pegunigalsidase alfa exhibits enhanced stability, prolonged half-life, and reduced immunogenicity due to pegylation. A phase 1/2 clinical trial demonstrated Gb3 clearance from renal capillary endothelial cells and its 48-month extension study revealed notable outcomes in renal function preservation. Three phase 3 clinical trials (BRIDGE, BRIGHT, and BALANCE) have shown favorable efficacy and safety profile, although caution is warranted in interpreting the results of BRIDGE and BRIGHT which lacked control groups. In BALANCE, the pivotal phase 3 trial comparing pegunigalsidase alfa with agalsidase beta, an intention-to-treat analysis of the eGFR decline over 2 years showed that the intergroup difference [95%confidence interval] in the median slope was -0.36 mL/min/1.73 m2/year [-2.44; 1.73]. The confidence interval had a lower limit above the prespecified value of -3 mL/min/1.73 m2/year and included zero. Despite challenges such as occasional hypersensitivity reactions and immune-complex-mediated glomerulonephritis, pegunigalsidase alfa approval by the European Medicines Agency and the Food and Drug Administration represents a significant addition to Fabry disease therapeutic landscape providing an option for patients in whom enzyme replacement therapy with current formulations is poorly tolerated or poorly effective.
Zobrazit více v PubMed
Azevedo O., Gago M. F., Miltenberger-Miltenyi G., Sousa N., Cunha D. (2021). Fabry disease therapy: state-of-the-art and current challenges. Int. J. Mol. Sci. 22 (1), 206. 10.3390/ijms22010206 PubMed DOI PMC
Benjamin E. R., Della Valle M. C., Wu X., Katz E., Pruthi F., Bond S., et al. (2017). The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet. Med. 19 (4), 430–438. 10.1038/gim.2016.122 PubMed DOI PMC
Bernat J., Holida M., Longo N., Goker-Alpan O., Wallace E., Deegan P., et al. (2023). eP149: safety and efficacy of pegunigalsidase alfa, every 4 weeks, in Fabry disease: results from the phase 3, open-label, BRIGHT study. Genet. Med. 24, S91–S92. 10.1016/j.gim.2022.01.185 DOI
Burlina A., Brand E., Hughes D., Kantola I., Kramer J., Nowak A., et al. (2023). An expert consensus on the recommendations for the use of biomarkers in Fabry disease. Mol. Genet. Metab. 139 (2), 107585. 10.1016/j.ymgme.2023.107585 PubMed DOI
Chen B. M., Cheng T. L., Roffler S. R. (2021). Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 15 (9), 14022–14048. 10.1021/acsnano.1c05922 PubMed DOI
Debiec H., Valayannopoulos V., Boyer O., Nöel L. H., Callard P., Sarda H., et al. (2014). Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: a need for tolerance induction therapy. J. Am. Soc. Nephrol. 25 (4), 675–680. 10.1681/ASN.2013030290 PubMed DOI PMC
Echevarria L., Benistan K., Toussaint A., Dubourg O., Hagege A. A., Eladari D., et al. (2016). X-chromosome inactivation in female patients with Fabry disease. Clin. Genet. 89, 44–54. 10.1111/cge.12613 PubMed DOI
Eng C. M., Guffon N., Wilcox W. R., Germain D. P., Lee P., Waldek S., et al. (2001). Safety and efficacy of recombinant human alpha-galactosidase A: replacement therapy in Fabry’s disease. N. Engl. J. Med. 345 (1), 9–16. 10.1056/NEJM200107053450102 PubMed DOI
European Medicines Agency (2024a). Elfabrio®. Summary of product characteristics. Available at https://www.ema.europa.eu/en/documents/product-information/elfabrio-epar-product-information_en.pdf.
European Medicines Agency (2024b). Fabrazyme®. Summary of product characteristics. Available at https://www.ema.europa.eu/en/documents/product-information/fabrazyme-epar-product-information_en.pdf.
European Medicines Agency (2024c). Galafold® summary of product characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/galafold-epar-product-information_en.pdf.
European Medicines Agency (2024d). Replagal® summary of product characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/replagal-epar-product-information_en-0.pdf.
Food and Drug Administration (FDA) (2023). Elfabrio® multidiscipline review. Available at https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/761161Orig1s000MultidisciplineR.pdf.
Germain D. P. (2010). Fabry disease. Orphanet J. Rare Dis. 5, 30. 10.1186/1750-1172-5-30 PubMed DOI PMC
Germain D. P., Altarescu G., Barriales-Villa R., Mignani R., Pawlaczyk K., Pieruzzi F., et al. (2022). An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol. Genet. Metab. 137 (1-2), 49–61. 10.1016/j.ymgme.2022.07.010 PubMed DOI
Germain D. P., Biasotto M., Tosi M., Meo T., Kahn A., Poenaru L. (1996). Fluorescence-assisted mismatch analysis (FAMA) for exhaustive screening of the alpha-galactosidase A gene and detection of carriers in Fabry disease. Hum. Genet. 98, 719–726. 10.1007/s004390050292 PubMed DOI
Germain D. P., Hughes D. A., Nicholls K., Bichet D. G., Giugliani R., Wilcox W. R., et al. (2016). Treatment of fabry's disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375 (6), 545–555. 10.1056/NEJMoa1510198 PubMed DOI
Germain D. P., Oliveira J. P., Bichet D. G., Yoo H. W., Hopkin R. J., Lemay R., et al. (2020). Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: a consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J. Med. Genet. 57, 542–551. 10.1136/jmedgenet-2019-106467 PubMed DOI PMC
Hughes D., Gonzalez D., Maegawa G., Bernat J. A., Holida M., Giraldo P., et al. (2023). Long-term safety and efficacy of pegunigalsidase alfa: a multicenter 6-year study in adult patients with Fabry disease. Genet. Med. 25, 100968. 10.1016/j.gim.2023.100968 PubMed DOI
Kizhner T., Azulay Y., Hainrichson M., Tekoah Y., Arvatz G., Shulman A., et al. (2015). Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol. Genet. Metab. 114, 259–267. 10.1016/j.ymgme.2014.08.002 PubMed DOI
Kramer J., Lenders M., Canaan-Kuhl S., Nordbeck P., Uceyler N., Blaschke D., et al. (2018). Fabry disease under enzyme replacement therapy-new insights in efficacy of different dosages. Nephrol. Dial. Transpl. 33, 1362–1372. 10.1093/ndt/gfx319 PubMed DOI
Lee K., Jin X., Zhang K., Copertino L., Andrews L., Baker-Malcolm J., et al. (2003). A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13, 305–313. 10.1093/glycob/cwg034 PubMed DOI
Lenders M., Brand E. (2018). Effects of enzyme replacement therapy and antidrug antibodies in patients with Fabry disease. J. Am. Soc. Nephrol. 29, 2265–2278. 10.1681/ASN.2018030329 PubMed DOI PMC
Lenders M., Brand E. (2022). Assessment and impact of dose escalation on anti-drug antibodies in Fabry disease. Front. Immunol. 13, 1024963. 10.3389/fimmu.2022.1024963 PubMed DOI PMC
Lenders M., Feidicker L. M., Brand S. M., Brand E. (2023). Characterization of pre-existing anti-PEG and anti-AGAL antibodies towards PRX-102 in patients with Fabry disease. Front. Immunol. 14, 1266082. 10.3389/fimmu.2023.1266082 PubMed DOI PMC
Lenders M., Pollmann S., Terlinden M., Brand E. (2022). Pre-existing anti-drug antibodies in Fabry disease show less affinity for pegunigalsidase alfa. Mol. Ther. Methods Clin. Dev. 26, 323–330. 10.1016/j.omtm.2022.07.009 PubMed DOI PMC
Levstek T., Vujkovac B., Cokan Vujkovac A., Trebušak Podkrajšek K. (2023). Urinary-derived extracellular vesicles reveal a distinct microRNA signature associated with the development and progression of Fabry nephropathy. Front. Med. (Lausanne) 10, 1143905. 10.3389/fmed.2023.1143905 PubMed DOI PMC
Lidove O., West M. L., Pintos-Morell G., Reisin R., Nicholls K., Figuera L. E., et al. (2010). Effects of enzyme replacement therapy in Fabry disease: a comprehen-sive review of the medical literature. Genet. Med. 12, 668–679. 10.1097/GIM.0b013e3181f13b75 PubMed DOI
Lin H. Y., Huang Y. H., Liao H. C., Liu H. C., Hsu T. R., Shen C. I., et al. (2014). Clinical observations on enzyme replacement therapy in patients with Fabry disease and the switch from agalsidase beta to agalsidase alfa. J. Chin. Med. Assoc. 77, 190–197. 10.1016/j.jcma.2013.11.006 PubMed DOI
Linhart A., Dostalova G., Nicholls K., West M. L., Tondel C., Jovanovic A., et al. (2023). Safety and efficacy of pegunigalsidase alfa in patients with Fabry disease who were previously treated with agalsidase alfa: results from BRIDGE, a phase 3 open-label study. Orphanet J. Rare Dis. 18, 332. 10.1186/s13023-023-02937-6 PubMed DOI PMC
Linhart A., Germain D. P., Olivotto I., Akhtar M. M., Anastasakis A., Hughes D., et al. (2020). An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur. J. Heart Fail 22, 1076–1096. 10.1002/ejhf.1960 PubMed DOI
Linthorst G. E., Germain D. P., Hollak C. E., Hughes D., Rolfs A., Wanner C., et al. (2011). Expert opinion on temporary treatment recommendations for Fabry disease during the shortage of enzyme replacement therapy (ERT). Mol. Genet. Metab. 102, 99–102. 10.1016/j.ymgme.2010.11.155 PubMed DOI
Liu H. C., Perrin A., Hsu T. R., Yang C. F., Lin H. Y., Yu W. C., et al. (2015). Age at first cardiac symptoms in Fabry disease: association with a Chinese hotspot Fabry mutation (IVS4+919G>A), classical Fabry mutations, and sex in a Taiwanese population from the Fabry outcome survey (FOS). JIMD Rep. 22, 107–113. 10.1007/8904_2015_418 PubMed DOI PMC
Marchesan D., Cox T. M., Deegan P. B. (2012). Lysosomal delivery of therapeutic enzymes in cell models of Fabry disease. J. Inherit. Metab. Dis. 35, 1107–1117. 10.1007/s10545-012-9472-3 PubMed DOI
Namdar M. (2016). Electrocardiographic changes and arrhythmia in Fabry disease. Front. Cardiovasc Med. 3, 7. 10.3389/fcvm.2016.00007 PubMed DOI PMC
Ortiz A., Germain D. P., Desnick R. J., Politei J., Mauer M., Burlina A., et al. (2018). Fabry disease revisited: management and treatment recommendations for adult patients. Mol. Genet. Metab. 123, 416–427. 10.1016/j.ymgme.2018.02.014 PubMed DOI
Pieroni M., Moon J. C., Arbustini E., Barriales-Villa R., Camporeale A., Vujkovac A. C., et al. (2021). Cardiac involvement in Fabry disease: JACC review topic of the week. J. Am. Coll. Cardiol. 77, 922–936. 10.1016/j.jacc.2020.12.024 PubMed DOI
Pisani A., Bruzzese D., Sabbatini M., Spinelli L., Imbriaco M., Riccio E. (2017). Switch to agalsidase alfa after shortage of agalsidase beta in Fabry disease: a systematic review and meta-analysis of the literature. Genet. Med. 19 (3), 275–282. 10.1038/gim.2016.117 PubMed DOI
Prabakaran T., Nielsen R., Larsen J. V., Sørensen S. S., Feldt-Rasmussen U., Saleem M. A., et al. (2011). Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease. PLoS One 6 (9), e25065. 10.1371/journal.pone.0025065 PubMed DOI PMC
Ruderfer I., Shulman A., Kizhner T., Azulay Y., Nataf Y., Tekoah Y., et al. (2018). Development and analytical characterization of pegunigalsidase alfa, a chemically cross-linked plant recombinant human α-galactosidase-A for treatment of Fabry disease. Bioconjug Chem. 29 (5), 1630–1639. 10.1021/acs.bioconjchem.8b00133 PubMed DOI
Schiffmann R., Goker-Alpan O., Holida M., Giraldo P., Barisoni L., Colvin R. B., et al. (2019). Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: a 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis. 42 (3), 534–544. 10.1002/jimd.12080 PubMed DOI
Schiffmann R., Kopp J. B., Austin H. A. 3rd, Sabnis S., Moore D. F., Weibel T., et al. (2001). Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285 (21), 2743–2749. 10.1001/jama.285.21.2743 PubMed DOI
Shen J. S., Busch A., Day T. S., Meng X. L., Yu C. I., Dabrowska-Schlepp P., et al. (2016). Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J. Inherit. Metab. Dis. 39 (2), 293–303. 10.1007/s10545-015-9886-9 PubMed DOI PMC
Sirrs S. M., Bichet D. G., Casey R., Clarke J. T., Lemoine K., Doucette S., et al. (2014). Outcomes of patients treated through the Canadian Fabry disease initiative. Mol. Genet. Metab. 111 (4), 499–506. 10.1016/j.ymgme.2014.01.014 PubMed DOI
Smid B. E., Rombach S. M., Aerts J. M., Kuiper S., Mirzaian M., Overkleeft H. S., et al. (2011). Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients. Orphanet J. Rare Dis. 6, 69. 10.1186/1750-1172-6-69 PubMed DOI PMC
Spada M., Baron R., Elliott P. M., Falissard B., Hilz M. J., Monserrat L., et al. (2019). The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease - a systematic literature review by a European panel of experts. Mol. Genet. Metab. 126, 212–223. 10.1016/j.ymgme.2018.04.007 PubMed DOI
Tekoah Y., Shulman A., Kizhner T., Ruderfer I., Fux L., Nataf Y., et al. (2015). Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnol. J. 13 (8), 1199–1208. 10.1111/pbi.12428 PubMed DOI
Tian W., Ye Z., Wang S., Schulz M. A., Van Coillie J., Sun L., et al. (2019). The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun. 10 (1), 1785. 10.1038/s41467-019-09809-3 PubMed DOI PMC
Tøndel C., Bostad L., Larsen K. K., Hirth A., Vikse B. E., Houge G., et al. (2013). Agalsidase benefits renal histology in young patients with Fabry disease. J. Am. Soc. Nephrol. 24 (1), 137–148. 10.1681/ASN.2012030316 PubMed DOI PMC
Tøndel C., Thurberg B. L., DasMahapatra P., Lyn N., Maski M., Batista J. L., et al. (2022). Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the effect of agalsidase beta in affected tissues. Mol. Genet. Metab. 137, 328–341. 10.1016/j.ymgme.2022.10.005 PubMed DOI
Turecek P. L., Bossard M. J., Schoetens F., Ivens I. A. (2016). PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475. 10.1016/j.xphs.2015.11.015 PubMed DOI
Tuttolomondo A., Pecoraro R., Simonetta I., Miceli S., Pinto A., Licata G. (2013). Anderson-Fabry disease: a multiorgan disease. Curr. Pharm. Des. 19, 5974–5996. 10.2174/13816128113199990352 PubMed DOI
Vedder A. C., Linthorst G. E., Houge G., Groener J. E., Ormel E. E., Bouma B. J., et al. (2007). Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One 2 (7), e598. 10.1371/journal.pone.0000598 PubMed DOI PMC
Vujkovac B., Srebotnik Kirbiš I., Keber T., Cokan Vujkovac A., Tretjak M., Radoš Krnel S. (2021). Podocyturia in Fabry disease: a 10-year follow-up. Clin. Kidney J. 15, 269–277. 10.1093/ckj/sfab172 PubMed DOI PMC
Wallace E. L., Goker-Alpan O., Wilcox W. R., Holida M., Bernat J., Longo N., et al. (2023). Head-to-head trial of pegunigalsidase alfa versus agalsidase beta in patients with Fabry disease and deteriorating renal function: results from the 2-year randomised phase III BALANCE study. J. Med. Genet. 8–109445. jmg-2023-109445. 10.1136/jmg-2023-109445 PubMed DOI PMC
Wanner C., Arad M., Baron R., Burlina A., Elliott P. M., Feldt-Rasmussen U., et al. (2018). European expert consensus statement on therapeutic goals in Fabry disease. Mol. Genet. Metab. 124 (3), 189–203. 10.1016/j.ymgme.2018.06.004 PubMed DOI
Wanner C., Ortiz A., Wilcox W. R., Hopkin R. J., Johnson J., Ponce E., et al. (2023). Global reach of over 20 years of experience in the patient-centered Fabry Registry: advancement of Fabry disease expertise and dissemination of real-world evidence to the Fabry community. Mol. Genet. Metab. 139, 107603. 10.1016/j.ymgme.2023.107603 PubMed DOI
Wilcox W. R., Linthorst G. E., Germain D. P., Feldt-Rasmussen U., Waldek S., Richards S. M., et al. (2012). Anti-α-galactosidase A antibody response to agalsidase beta treatment: data from the Fabry Registry. Mol. Genet. Metab. 105, 443–449. 10.1016/j.ymgme.2011.12.006 PubMed DOI