Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38695147
DOI
10.1002/ajb2.16315
Knihovny.cz E-resources
- Keywords
- Cape Floristic Region, Cyperaceae, functional traits, fynbos, genome size, polyploidy, stomatal size, water‐use efficiency,
- MeSH
- Genome Size * MeSH
- Phylogeny * MeSH
- Genome, Plant * MeSH
- Plant Leaves physiology genetics anatomy & histology MeSH
- Plant Stomata * physiology genetics MeSH
- Cyperaceae genetics physiology MeSH
- Water physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water MeSH
PREMISE: Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS: We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS: Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS: We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Bolus Herbarium University of Cape Town Private Bag X3 Rondebosch Cape Town 7701 South Africa
See more in PubMed
Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. In B. N. Petrov and F. Csáki [eds.], 2nd International Symposium on Information Theory, 267–281, Tsahkadsor, Armenia, USSR, 1971. Akadémiai Kiadó, Budapest, Hungary.
Araya, Y. N., J. Silvertown, D. J. Gowing, K. McConway, P. Linder, and G. Midgley. 2010. Variation in δ13C among species and sexes in the family Restionaceae along a fine‐scale hydrological gradient. Austral Ecology 35: 818–824.
Araya, Y. N., J. Silvertown, D. J. Gowing, K. J. McConway, H. P. Linder, and G. Midgley. 2011. A fundamental, eco‐hydrological basis for niche segregation in plant communities. New Phytologist 189: 253–258.
Archer, C., and A. M. Muasya. 2012. Cyperaceae. In J. Manning and P. Goldblatt [eds.], Strelitzia. Plants of the Greater Cape Floristic Region 1: The core Cape flora, 29. South African Biodiversity Institute, Pretoria, South Africa.
Bafort, Q., T. Wu, A. Natran, O. De Clerck, and Y. Van de Peer. 2023. The immediate effects of polyploidization of Spirodela polyrhiza change in a strain‐specific way along environmental gradients. Evolution Letters 7: 37–47.
Balao, F., J. Herrera, and S. Talavera. 2011. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytologist 192: 256–265.
Bales, A. L., and E. I. Hersch‐Green. 2018. Effects of soil nitrogen on diploid advantage in fireweed, Chamerion angustifolium (Onagraceae). Ecology and Evolution 9: 1095–1109.
Barrett, R. L., J. J. Bruhl, and K. L. Wilson. 2021. Revision of generic concepts in Schoeneae subtribe Tricostulariinae (Cyperaceae) with a new genus Ammothryon and new species of Tricostularia. Telopea 24: 61–169.
Beaulieu, J., I. J. Leitch, S. Patel, A. Pendharkar, and C. A. Knight. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986.
Bennet, M. D. 1971. The duration of meiosis. Proceedings of the Royal Society of London, B, Biological Sciences 178: 277–299.
Bennet, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London, B, Biological Sciences 181: 109–135.
Bennetzen, J. L., and E. A. Kellogg. 1997. Do plants have a one‐way ticket to genomic obesity? Plant Cell 9: 1509–1514.
Bergh, E. W., and J. S. Compton. 2015. A one‐year post‐fire record of macronutrient cycling in a mountain sandstone fynbos ecosystem, South Africa. South African Journal of Botany 97: 48–58.
Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717–745.
Bradshaw, P. L., and R. M. Cowling. 2014. Landscapes, rock types, and climate of the Greater Cape Floristic Region. In N. Allsopp, J. Colville, and G. Verboom [eds.], Fynbos: ecology, evolution, and conservation of a megadiverse region, 26–46. Oxford University Press, Oxford, UK.
Bureš, P., A. M. Muasya, I. Lipnerova, F. Zedek, K. Bauters, J.‐A. Viljoen, M. S. Gonzalez Elizondo, et al. 2013. The evolution of genome size and base composition in cyperid clade (Poales). In L. M. Campbell, J. I. Davis, A. W. Meerow, R. F. C. Naczi, D. W. Stevenson, and W. W. Thomas [eds.], Diversity and phylogeny of monocotyledons: Contributions of Monocot V. Memoirs of the New York Botanical Garden 118: 19–20.
Bureš, P., T. L. Elliott, P. Veselý, P. Šmarda, F. Forest, I. J. Leitch, E. N. Lughadha, et al. 2024. The global distribution of angiosperm genome size is shaped by climate. New Phytologist 242: 744–759.
Cai, S., G. Chen, Y. Wang, Y. Huang, D. B. Marchant, Y. Wang, Q. Yang, et al. 2017. Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology 174: 732–747.
Chaerle, L., N. Saibo, and D. Van Der Straeten. 2005. Tuning the pores: towards engineering plants for improved water use efficiency. Trends in Biotechnology 23: 308–315.
Chumová, Z., Z. Monier, K. Šemberová, E. Havlíčková, D. Euston‐Brown, A. M. Muasya, and Trávníček, P. 2023. Diploid and tetraploid cytotypes of the flagship Cape species Dicerothamnus rhinocerotis (Asteraceae): variation in distribution, ecological niche, morphology and genetics. Annals of Botany Jul 6: mcad084. https://doi.org/10.1093/aob/mcad084
Cramer, M.D., Hoffmann, V. and Verboom, G.A. 2008. Nutrient availability moderates transpiration in Ehrharta calycina. New Phytologist 179: 1048–1057.
Cramer, M. D., Hawkins, H.‐J. and Verboom, G.A. 2009. The importance of nutritional regulation of plant water flux. Oecologia 161: 15–24.
Cramer, M. D., A. G. West, S. C. Power, R. Skelton, and W. D. Stock. 2014. Plant ecophysiological diversity. In N. Allsopp, J. Colville, and G. Verboom [eds.], Fynbos: ecology, evolution, and conservation of a megadiverse region, 248–272. Oxford University Press, Oxford, UK.
Cramer, M. D., L. M. Wootton, R. van Mazijk, and G. A. Verboom. 2019. New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Diversity and Distributions 25: 17361750.
Cussier, E. L. 1997. Diffusion: mass transfer in fluid systems, 2nd ed. Cambridge University Press, NY, NY, USA.
Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
Doyle, J. J., and J. E. Coate. 2019. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. International Journal of Plant Sciences 180: 1–52.
Drake, P. L., R. H. Froend, and P. J. Franks. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495–505.
Ehleringer, J., A. Hall, and G. Farquhar. 1993. Introduction: Water use in relation to productivity. In Stable isotopes and plant carbon–water relations, 3–8. Academic Press, NY, NY, USA.
Ehmig, M., M. Coiro, and H. P. Linder. 2019. Ecophysiological strategy switch through development in heteroblastic species of Mediterranean ecosystems – an example in the African Restionaceae. Annals of Botany 123: 611–623.
Elliott, T. L. and A. M. Muasya. 2017. Taxonomic realignment in the southern African Tetraria (Cyperaceae, tribe Schoeneae; Schoenus clade). South African Journal of Botany 112: 354–360.
Elliott, T. L., and A. M. Muasya. 2018. A taxonomic revision of Schoenus compar ‐ Schoenus pictus and allies (Cyperaceae, tribe Schoeneae) with three new species described from South Africa. South African Journal of Botany 114: 303–315.
Elliott, T. L., and A. M. Muasya. 2020a. A taxonomic revision of the Epischoenus group of Schoenus (Cyperaceae, tribe Schoeneae). South African Journal of Botany 135: 296–316.
Elliott, T. L., and A. M. Muasya. 2020b. A taxonomic revision of Schoenus cuspidatus and allies (Cyperaceae, tribe Schoeneae)—Part 2. South African Journal of Botany 130: 327–347.
Elliott, T. L., R. L. Barrett, and A. M. Muasya. 2019. A taxonomic revision of Schoenus cuspidatus and allies (Cyperaceae, tribe Schoeneae)—Part 1. South African Journal of Botany 121: 519–535.
Elliott, T. L., A. M. Muasya, and P. Bureš. 2023. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Annals of Botany 131: 143–156.
Elliott, T. L., R. van Mazijk, R. L. Barrett, J. J. Bruhl, S. Joly, N. Muthaphuli, K. L. Wilson, and A. M. Muasya. 2021. Global dispersal and diversification of the genus Schoenus (Cyperaceae) from the Western Australian biodiversity hotspot. Journal of Systematics and Evolution 59: 791–808.
Elliott, T. L., F. Zedek, R. L. Barrett, J. J. Bruhl, M. Escudero, Z. Hroudová, S. Joly, et al. 2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999–1014.
Farquhar, G., M. O'Leary, and J. Berry. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology 9: 121.
Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.
Franks, P. J., and D. J. Beerling. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 10343–10347.
Goetghebeur, P. 1998. Cyperaceae. In K. Kubitzki [ed.], The families and genera of vascular plants, 141–190. Springer, Berlin, Germany.
Greilhuber, J. 1995. Chromosomes of the monocotyledons (general aspects). In P. Rudall, P. Cribb, D. Cutler, and C. Humphries [eds.], Monocotyledons: systematics and evolution, 379–414. Royal Botanic Gardens, Kew, UK.
Greilhuber, J., J. Doležel, M. A. Lysák, and M. D. Bennett. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C‐value’ to describe nuclear DNA contents. Annals of Botany 95: 255–260.
Grover, C. E., and J. F. Wendel. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 1–8.
Guerrieri, R., S. Belmecheri, S. V. Ollinger, H. Asbjornsen, K. Jennings, J. Xiao, B. D. Stocker, M. Martin, et al. 2019. Disentangling the role of photosynthesis and stomatal conductance on rising forest water‐use efficiency. Proceedings of the National Academy of Sciences, USA 116: 16909–16914.
Guignard, M. S., R. A. Nichols, R. J. Knell, A. Macdonald, C.‐A. Romila, M. Trimmer, I. J. Leitch, and A. R. Leitch. 2016. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195–1206.
Hetherington, A. M., and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901–908.
Hodgson, J. G., M. Sharafi, A. Jalili, S. Díaz, G. Montserrat‐Martí, C. Palmer, B. Cerabolini, et al. 2010. Stomatal vs. genome size in angiosperms: The somatic tail wagging the genomic dog? Annals of Botany 105: 573–584.
Huelsenbeck, J. P., and B. Rannala. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904–913.
Inkscape Project. 2020. Inkscape v1.2. Website: https://inkscape.org
Kang, M., J. Wang, and H. Huang. 2015. Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports 5: 11636.
Katoh, K., K. Kuma, H. Toh, and T. Miyata. 2005. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518.
Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
Kaur, N., P. M. Datson, and B. G. Murray. 2012. Genome size and chromosome number in the New Zealand species of Schoenus (Cyperaceae). Botanical Journal of the Linnean Society 169: 555–564.
Knight, C. A., and J. M. Beaulieu. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759–766.
Larridon, I., K. Bauters, I. Semmouri, J. Viljoen, C. J. Prychid, A. M. Muasya, J. J. Bruhl, et al. 2018a. Molecular phylogenetics of the genus Costularia (Schoeneae, Cyperaceae) reveals multiple distinct evolutionary lineages. Molecular Phylogenetics and Evolution 126: 196–209.
Larridon, I., G. A. Verboom, and A. M. Muasya. 2018b. Revised delimitation of the genus Tetraria, nom. cons. prop. (Cyperaceae, tribe Schoeneae, Tricostularia clade). South African Journal of Botany 118: 18–22.
Larridon, I., A. R. Zuntini, É. Léveillé‐Bourret, R. L. Barrett, J. R. Starr, A. M. Muasya, T. Villaverde, et al. 2021. A new classification of Cyperaceae (Poales) supported by phylogenomic data. Journal of Systematics and Evolution 59: 852–895.
Larsson, A. 2014. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278.
Lawson, T., and M. R. Blatt. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556–1570.
Levy, A. A., and M. Feldman. 2004. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biological Journal of the Linnean Society 82: 607–613.
Li, W., G. P. Berlyn, and P. M. S. Ashton. 1996. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). American Journal of Botany 83: 15–20.
Linder, H. P. 2020. The evolution of flowering phenology: an example from the wind‐pollinated African Restionaceae. Annals of Botany 126: 1141–1153.
Linder, H. P., Suda, J., Weiss‐Schneeweiss, H., Trávníček, P. and Bouchenak‐Khelladi, Y. 2017. Patterns, causes and consequences of genome size variation in Restionaceae of the Cape flora. Botanical Journal of the Linnean Society 183: 515–531.
Metcalfe, C. R. 1971. Anatomy of the monocotyledons: V. Cyperaceae. Clarendon Press, Oxford, UK.
Miller, M. A., W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8, New Orleans, LA, USA. Website: https://doi.org/10.1109/GCE.2010.5676129
Mtileni, M. P., N. Venter, and K. L. Glennon. 2021. Ploidy differences affect leaf functional traits, but not water stress responses in a mountain endemic plant population. South African Journal of Botany 138: 76–83.
Oberlander, K. C., L. L. Dreyer, P. Goldblatt, J. Suda, and H. P. Linder. 2016. Species‐rich and polyploid‐poor: insights into the evolutionary role of whole‐genome duplication from the Cape flora biodiversity hotspot. American Journal of Botany 103: 1336–1347.
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.
Paradis, E., and K. Schliep. 2019. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.
Parisod, C., R. Holderegger, and C. Brochmann. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5–17.
Pellicer, J., O. Hidalgo, S. Dodsworth, and I. J. Leitch. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.
Pinheiro, J. C., and D. M. Bates. 2000. Mixed‐effects models in S and S‐PLUS. Springer, NY, NY, USA. Website: https://doi.org/10.1007/b98882
Pinheiro, J., D. Bates, and R Core Team. 2022. nlme: Linear and nonlinear mixed effects models. Website: https://CRAN.R-project.org/package=nlme
POWO. 2022. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew, UK. Website: http://www.plantsoftheworldonline.org [accessed 20 September 2022].
R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: https://www.R-project.org/
Rambaut, A. 2018. FigTree v1.4.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. Website: http://tree.bio.ed.ac.uk/software/figtree/
Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. 67: 901–904.
Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.
Rice, A., P. Šmarda, M. Novosolov, M. Drori, L. Glick, N. Sabath, S. Meiri, et al. 2019. The global biogeography of polyploid plants. Nature Ecology & Evolution 3: 265–273.
Roddy, A. B., G. Théroux‐Rancourt, T. Abbo, J. W. Benedetti, C. R. Brodersen, M. Castro, S. Castro, et al. 2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.
Sayers, E. W., M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, and I. Karsch‐Mizrachi. 2020. GenBank. Nucleic Acids Research 48: D84–D86.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.
Seibt, U., A. Rajabi, H. Griffiths, and J. A. Berry. 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155: 441–454.
Servick, S., C. J. Visger, M. A. Gitzendanner, P. S. Soltis, and D. E. Soltis. 2015. Population genetic variation, geographic structure, and multiple origins of autopolyploidy in Galax urceolata. American Journal of Botany 102: 973–982.
Shane, M. W., G. R. Cawthray, M. D. Cramer, J. Kuo, and H. Lambers. 2006. Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant, Cell & Environment 29: 1989–1999.
Shane, M. W., K. W. Dixon, and H. Lambers. 2005. The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform‐root development in Schoenus unispiculatus (Cyperaceae). New Phytologist 165: 887–898.
Silvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution 19: 605–611.
Šímová, I., and T. Herben. 2011. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society, B, Biological Sciences 279: 867–875.
Slingsby, J. A. 2011. Ecological differentiation and the evolution and maintenance of Fynbos diversity. Ph.D. dissertation, University of Cape Town, Cape Town, South Africa.
Slingsby, J. A., and G. A. Verboom. 2006. Phylogenetic relatedness limits co‐occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. American Naturalist 168: 14–27.
Slingsby, J. A., M. N. Britton, and G. A. Verboom. 2014. Ecology limits the diversity of the Cape flora: phylogenetics and diversification of the genus Tetraria. Molecular Phylogenetics and Evolution 72: 61–70.
Soltis, D. E., M. C. Segovia‐Salcedo, I. Jordon‐Thaden, L. Majure, N. M. Miles, E. V. Mavrodiev, W. Mei, et al. 2014. Are polyploids really evolutionary dead‐ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist 202: 1105–1117.
Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, and A. Rambaut. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.
Van Blerk, J., A. West, R. Skelton, and J. Midgley. 2022. Phenological asynchrony between sexes of Restionaceae can explain culm δ13C differences. Austral Ecology 47: 1200–1207.
Viljoen, J.‐A., A. M. Muasya, R. L. Barrett, J. J. Bruhl, A. K. Gibbs, J. A. Slingsby, K. L. Wilson, and G. A. Verboom. 2013. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere. American Journal of Botany 100: 2494–2508.
Walczyk, A. M., and E. I. Hersch‐Green. 2019. Impacts of soil nitrogen and phosphorus levels on cytotype performance of the circumboreal herb Chamerion angustifolium: implications for polyploid establishment. American Journal of Botany 106: 906–921.
Warner, D. A., and G. E. Edwards. 1989. Effects of polyploidy on photosynthetic rates, photosynthetic enzymes, contents of DNA, chlorophyll, and sizes and numbers of photosynthetic cells in the C4 dicot Atriplex confertifolia. Plant Physiology 91: 1143–1151.
Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, et al. 2019. Welcome to the tidyverse. Journal of Open Source Software 4: 1686.
Yu, G. 2022. Data integration, manipulation and visualization of phylogenetic trees. Chapman and Hall/CRC, NY, NY, USA.