Nanoformulation of the Broad-Spectrum Hydrophobic Antiviral Vacuolar ATPase Inhibitor Diphyllin in Human Recombinant H-ferritin

. 2024 ; 19 () : 3907-3917. [epub] 20240430

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38708183

BACKGROUND: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. METHODS: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. RESULTS: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. CONCLUSION: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.

Zobrazit více v PubMed

Mathieu E, Ritchie H, Rodes-Guirao L, et al. Coronavirus Pandemic (COVID-19). OurWorldInData.org; 2020. Available from: https://ourworldindata.org/coronavirus. Accessed February 8, 2023.

De Clercq E, Li GD. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747. doi:10.1128/CMR.00102-15 PubMed DOI PMC

Chen R, Wang TT, Song J, et al. Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics. Int J Nanomed. 2021;16:4959–4984. doi:10.2147/IJN.S315705 PubMed DOI PMC

Stefanik M, Bhosale DS, Haviernik J, et al. Diphyllin shows a broad-spectrum antiviral activity against multiple medically important enveloped RNA and DNA viruses. Viruses. 2022;14(2):1–21. doi:10.3390/v14020354 PubMed DOI PMC

Stefanik M, Strakova P, Haviernik J, Miller AD, Ruzek D, Eyer L. Antiviral activity of vacuolar ATPase blocker diphyllin against SARS-CoV-2. Microorganisms. 2021;9(3):1–10. doi:10.3390/microorganisms9030471 PubMed DOI PMC

Sorensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res. 2007;22(10):1640–1648. doi:10.1359/jbmr.070613 PubMed DOI

Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–929. doi:10.1038/nrm2272 PubMed DOI

Staring J, Raaben M, Brummelkamp TR. Viral escape from endosomes and host detection at a glance. J Cell Sci. 2018;131(15):1–8. doi:10.1242/jcs.216259 PubMed DOI

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8 PubMed DOI PMC

Hu CMJ, Chen YT, Fang ZS, Chang WS, Chen HW. Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection. Int J Nanomed. 2018;13:8579–8593. doi:10.2147/IJN.S185806 PubMed DOI PMC

Cmj H, Chang WS, Fang ZS, et al. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci Rep. 2017;7(1):1–11. doi:10.1038/s41598-016-0028-x PubMed DOI PMC

Fan KL, Jia XH, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano. 2018;12(5):4105–4115. doi:10.1021/acsnano.7b06969 PubMed DOI

Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021;605:1–12. doi:10.1016/j.ijpharm.2021.120807 PubMed DOI

Tesarova B, Musilek K, Rex S, Heger Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release. 2020;325:176–190. doi:10.1016/j.jconrel.2020.06.026 PubMed DOI

Heger Z, Skalickova S, Zitka O, Adam V, Kizek R. Apoferritin applications in nanomedicine. Nanomedicine. 2014;9(14):2233–2245. doi:10.2217/nnm.14.119 PubMed DOI

Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthc Mater. 2015;4(18):2816–2821. doi:10.1002/adhm.201500389 PubMed DOI

Zhen ZP, Tang W, Chuang YJ, et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano. 2014;8(6):6004–6013. doi:10.1021/nn501134q PubMed DOI PMC

Crich SG, Cadenazzi M, Lanzardo S, et al. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale. 2015;7(15):6527–6533. doi:10.1039/C5NR00352K PubMed DOI

He JY, Fan KL, Yan XY. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release. 2019;311:288–300. doi:10.1016/j.jconrel.2019.09.002 PubMed DOI

Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol. 2006;291(3):445–455. doi:10.1152/ajpcell.00505.2005 PubMed DOI

Sun CJ, Yuan Y, Xu ZH, et al. Fine-Tuned H-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe. Bioconjugate Chem. 2015;26(2):193–196. doi:10.1021/bc5005284 PubMed DOI

Tesarova B, Dostalova S, Smidova V, et al. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Appl Mater Today. 2020;18:1–11.

Parodi A, Buzaeva P, Nigovora D, et al. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnol. 2021;19(1):1–19. doi:10.1186/s12951-021-01100-2 PubMed DOI PMC

Yang BY, Dong YX, Xu ZC, Li X, Wang F, Zhang Y. Improved stability and pharmacokinetics of wogonin through loading into PASylated ferritin. Colloids Surf B. 2022;216:1–9. doi:10.1016/j.colsurfb.2022.112515 PubMed DOI

Skubalova Z, Rex S, Sukupova M, et al. Passive diffusion vs active pH-dependent encapsulation of tyrosine kinase inhibitors vandetanib and lenvatinib into folate-targeted ferritin delivery system. Int J Nanomed. 2021;16:1–14. doi:10.2147/IJN.S275808 PubMed DOI PMC

Tosha T, Behera RK, Ng HL, Bhattasali O, Alber T, Theil EC. Ferritin protein nanocage ion channels gating by N-terminal extensions. J Biol Chem. 2012;287(16):13016–13025. doi:10.1074/jbc.M111.332734 PubMed DOI PMC

Takahashi T, Kuyucak S. Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations. Biophys J. 2003;84(4):2256–2263. doi:10.1016/S0006-3495(03)75031-0 PubMed DOI PMC

Kim M, Rho Y, Jin KS, et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules. 2011;12(5):1629–1640. doi:10.1021/bm200026v PubMed DOI

Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107(8):3505–3510. doi:10.1073/pnas.0913192107 PubMed DOI PMC

Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–3500. doi:10.1038/emboj.2011.286 PubMed DOI PMC

Liang M, Fan K, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. doi:10.1073/pnas.1407808111 PubMed DOI PMC

Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein Corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomed. 2015;10:97–112. PubMed PMC

Mahmoudi M, Landry MP, Moore A, Coreas R. The protein Corona from nanomedicine to environmental science. Nat Rev Mater. 2023;8(7):422–438. doi:10.1038/s41578-023-00552-2 PubMed DOI PMC

Asano J, Chiba K, Tada M, Yoshii T. Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochem. 1996;42(3):713–717. doi:10.1016/0031-9422(96)00024-6 PubMed DOI

Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: a review. J Control Release. 2021;331:30–44. doi:10.1016/j.jconrel.2021.01.017 PubMed DOI PMC

Zivotska H, Mokry M, Rodrigo MAM, et al. Conotoxin-derived biomimetic coiled cone-shaped peptide as ligand for selective nanodelivery to norepinephrine transporter-expressing neuroblastoma cells. Appl Mater Today. 2022;27:1–14.

Kaur N, Popli P, Tiwary N, Swami R. Small molecules as cancer targeting ligands: shifting the paradigm. J Control Release. 2023;355:417–433. doi:10.1016/j.jconrel.2023.01.032 PubMed DOI

Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117(19):12133–12164. doi:10.1021/acs.chemrev.7b00013 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...