On the Low-Pressure Hysteresis (LPH) in Gas Sorption Isotherms of Porous Carbons
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
101131382
HORIZON EUROPE European Research Council
CZ.10.03.01/00/22_003/0000003
Ministerstvo Životního Prostředí
PCI2020-111968/3D-Photocat
Ministerio de Ciencia e Innovación
PID2022-142960OB-C21
Ministerio de Ciencia e Innovación
SGS16/PřF/2022
Ostravská Univerzita v Ostravě
APVV SK-CZ-RD-21-0068
Agentúra Ministerstva školstva, vedy, výskumu a športu SR
LUASK22049
Ministerstvo Školství, Mládeže a Tělovýchovy
CIPROM/2021/022
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital
ProjectCLEANWATER
MSCA HorizonEurope
- Keywords
- artificial hysteresis, degassing, diffusion limitations, open isotherms, oxidized carbon,
- Publication type
- Journal Article MeSH
This study investigates the origin of low-pressure hysteresis (LPH) in the adsorption and desorption of three different probe molecules: carbon dioxide, nitrogen, and argon, across various adsorption temperatures (from cryogenic to room temperature), and within five different carbon materials: synthetic carbons (pristine and one post-synthetically oxidized) and natural coal. Significant attention is dedicated to elucidating LPH in oxidized samples outgassed at various temperatures (120-350 °C). Experimental results show that insufficient outgassing temperature can lead to unreliable data due to artificial LPH and significantly underestimated textural properties, primarily caused by porosity blockage from substances like moisture. Conversely, in samples where heteroatoms have a stabilizing effect on texture, such as natural coal, careful consideration of outgassing temperature is crucial due to the risk of thermal degradation. Other factors contributing to LPH are adsorption temperature, and especially, kinetic limitations at cryogenic temperatures for cellulose-based carbons. Minor factors responsible for LPH are the physical state of the sample (monolith vs powder) and the flexibility of the porous system, both studied by carbon dioxide sorption. This study constitutes an important piece in the evaluation of LPH, providing practical recommendations and underlining the importance of experimental design, with implications for further research in this complex field.
See more in PubMed
M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez‐Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
T. Zelenka, T. Horikawa, D. D. Do, Adv. Colloid Interface Sci. 2023, 311, 102831.
P. Maziarka, C. Wurzer, P. J. Arauzo, A. Dieguez‐Alonso, O. Mašek, F. Ronsse, Chem. Eng. J. 2021, 418, 129234.
W. Lai, S. Yang, Y. Jiang, F. Zhao, Z. Li, B. Zaman, M. Fayaz, X. Li, Y. Chen, Adsorption 2020, 26, 633.
C. Balzer, R. T. Cimino, G. Y. Gor, A. V. Neimark, G. Reichenauer, Langmuir 2016, 32, 8265.
C. Balzer, S. Braxmeier, A. V. Neimark, G. Reichenauer, Langmuir 2015, 31, 12512.
A. M. Silvestre‐Albero, J. M. Juárez‐Galán, J. Silvestre‐Albero, F. Rodríguez‐Reinoso, J. Phys. Chem. C 2012, 116, 16652.
V. Yu. Yakovlev, A. A. Fomkin, A. V. Tvardovski, J. Colloid Interface Sci. 2003, 268, 33.
V. Yu. Yakovlev, A. A. Fomkin, A. V. Tvardovski, J. Colloid Interface Sci. 2004, 280, 305.
H. Wu, C. G. Thibault, H. Wang, K. A. Cychosz, M. Thommes, J. Li, Microporous Mesoporous Mater. 2016, 219, 186.
C. Reichenbach, G. Kalies, J. Lincke, D. Lässig, H. Krautscheid, J. Moellmer, M. Thommes, Microporous Mesoporous Mater. 2011, 142, 592.
J. Lincke, D. Lässig, J. Moellmer, C. Reichenbach, A. Puls, A. Moeller, R. Gläser, G. Kalies, R. Staudt, H. Krautscheid, Microporous Mesoporous Mater. 2011, 142, 62.
G. Kyriakou, C. R. Theocharis, Studies in Surface Science and Catalysis, Elsevier, Amsterdam 2002.
C. Reichenbach, D. Enke, J. Möllmer, D. Klank, M. Klauck, G. Kalies, Microporous Mesoporous Mater. 2013, 181, 68.
S. Sircar, H. Wu, J. Li, A. D. Lueking, Langmuir 2011, 27, 14169.
F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. L. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Elsevier/AP, Amsterdam 2014.
R. V. R. A. Rios, J. Silvestre‐Albero, A. Sepúlveda‐Escribano, M. Molina‐Sabio, F. Rodríguez‐Reinoso, J. Phys. Chem. C 2007, 111, 3803.
S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity, Academic Press, London/New York 1982.
A. H. Farmahini, K. Limbada, L. Sarkisov, Adsorption 2022, 28, 219.
G. Hotová, V. Slovák, O. S. G. P. Soares, J. L. Figueiredo, M. F. R. Pereira, Carbon 2018, 134, 255.
R. M. Fakoussa, Hofrichter M, Appl Microbiol Biotechnol. 1999, 52, 25.
S. Deevi, E. Suuberg, Fuel 1987, 66, 454.
T. Zelenka, B. Taraba, Int. J. Coal Geol. 2014, 132, 1.
S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Netherlands 2006.
M. Thommes, K. A. Cychosz, Adsorption 2014, 20, 233.
A. Figini‐Albisetti, L. F. Velasco, J. B. Parra, C. O. Ania, Appl. Surf. Sci. 2010, 256, 5182.
L. F. Velasco, A. Devos, P. Lodewyckx, Carbon 2019, 152, 409.
B. McEnaney, J. Chem. Soc., Faraday Trans. 1 1974, 70, 84.
H. Huang, W. Zhang, D. Liu, B. Liu, G. Chen, C. Zhong, Chem. Eng. Sci. 2011, 66, 6297.
J. Silvestre‐Albero, A. Silvestre‐Albero, F. Rodríguez‐Reinoso, M. Thommes, Carbon 2012, 50, 3128.
P. Bulavová, J. Parmentier, V. Slovák, Microporous Mesoporous Mater. 2018, 272, 155.
A. Kryeziu, V. Slovak, J. Parmentier, T. Zelenka, S. Rigolet, Ind. Crops Prod. 2022, 183, 114961.
G. Hotová, V. Slovák, Anal. Chem. 2017, 89, 1710.
B. Taraba, T. Zelenka, J. Therm. Anal. Calorim. 2017, 128, 1505.
G. Zelenková, T. Zelenka, V. Slovák, Microporous Mesoporous Mater. 2021, 326, 111358.
M. Almáši, A. Sharma, T. Zelenka, Inorg. Chim. Acta 2021, 526, 120505.
T. Zelenka, K. Simanova, R. Saini, G. Zelenkova, S. P. Nehra, A. Sharma, M. Almasi, Sci. Rep. 2022, 12, 17366.
T. Zelenka, Microporous Mesoporous Mater. 2016, 227, 202.