Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38713708
PubMed Central
PMC11101122
DOI
10.1371/journal.pgen.1011230
PII: PGENETICS-D-23-01235
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih genetika MeSH
- endoteliální buňky metabolismus MeSH
- expanze trinukleotidových repetic * genetika MeSH
- Fuchsova endoteliální dystrofie * genetika MeSH
- lidé MeSH
- rohovkový endotel metabolismus patologie MeSH
- transkripční faktor 4 * genetika metabolismus MeSH
- transkriptom genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- TCF4 protein, human MeSH Prohlížeč
- transkripční faktor 4 * MeSH
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.
Faculty of Health and Life Sciences University of Exeter Exeter United Kingdom
Moorfields Eye Hospital London United Kingdom
University College London Institute of Ophthalmology London United Kingdom
Zobrazit více v PubMed
Mathews P, Benbow A, Corcoran K, DeMatteo J, Philippy B, Van Meter W. 2022 Eye Banking Statistical Report—Executive Summary. Eye Bank Corneal Transplant. 2023. Sep;2(3):e0008.
NHSBT. NHS Blood and Transplant Annual Activity Report: Cornea Activity [Internet]. Available from: http://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/27122/section-10-cornea-activity.pdf
Matthaei M, Hribek A, Clahsen T, Bachmann B, Cursiefen C, Jun AS. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects. Annu Rev Vis Sci. 2019;5(1):151–75. doi: 10.1146/annurev-vision-091718-014852 PubMed DOI
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, et al.. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res. 2021. Mar 1;81:100883. doi: 10.1016/j.preteyeres.2020.100883 PubMed DOI PMC
Thaung C, Davidson AE. Fuchs endothelial corneal dystrophy: current perspectives on diagnostic pathology and genetics—Bowman Club Lecture. BMJ Open Ophthalmol. 2022. Jul 1;7(1):e001103. doi: 10.1136/bmjophth-2022-001103 PubMed DOI PMC
Wieben ED, Baratz KH, Aleff RA, Kalari KR, Tang X, Maguire LJ, et al.. Gene Expression and Missplicing in the Corneal Endothelium of Patients With a TCF4 Trinucleotide Repeat Expansion Without Fuchs’ Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2019. Aug 30;60(10):3636–43. doi: 10.1167/iovs.19-27689 PubMed DOI PMC
Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, Klein P, Liskova P, Dulla K, et al.. Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity. Am J Hum Genet. 2018. Apr 5;102(4):528–39. doi: 10.1016/j.ajhg.2018.02.010 PubMed DOI PMC
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet. 2021. May 6;108(5):764–85. doi: 10.1016/j.ajhg.2021.03.011 PubMed DOI PMC
Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018. Sep;14(9):544–58. doi: 10.1038/s41582-018-0047-2 PubMed DOI PMC
Wieben ED, Aleff RA, Tang X, Butz ML, Kalari KR, Highsmith EW, et al.. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs’ Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2017. Jan 24;58(1):343–52. doi: 10.1167/iovs.16-20900 PubMed DOI PMC
Wieben ED, Aleff RA, Tang X, Kalari KR, Maguire LJ, Patel SV, et al.. Gene expression in the corneal endothelium of Fuchs endothelial corneal dystrophy patients with and without expansion of a trinucleotide repeat in TCF4. PLOS ONE. 2018. Jul 2;13(7):e0200005. doi: 10.1371/journal.pone.0200005 PubMed DOI PMC
Chu Y, Hu J, Liang H, Kanchwala M, Xing C, Beebe W, et al.. Analyzing pre-symptomatic tissue to gain insights into the molecular and mechanistic origins of late-onset degenerative trinucleotide repeat disease. Nucleic Acids Res. 2020. Jul 9;48(12):6740–58. doi: 10.1093/nar/gkaa422 PubMed DOI PMC
Soragni E, Petrosyan L, Rinkoski TA, Wieben ED, Baratz KH, Fautsch MP, et al.. Repeat-Associated Non-ATG (RAN) Translation in Fuchs’ Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2018. Apr 1;59(5):1888–96. doi: 10.1167/iovs.17-23265 PubMed DOI PMC
Westin IM, Viberg A, Byström B, Golovleva I. Lower Fractions of TCF4 Transcripts Spanning over the CTG18.1 Trinucleotide Repeat in Human Corneal Endothelium. Genes. 2021. Dec 17;12(12):2006. doi: 10.3390/genes12122006 PubMed DOI PMC
Sirp A, Leite K, Tuvikene J, Nurm K, Sepp M, Timmusk T. The Fuchs corneal dystrophy-associated CTG repeat expansion in the TCF4 gene affects transcription from its alternative promoters. Sci Rep. 2020. Oct 28;10(1):18424. doi: 10.1038/s41598-020-75437-3 PubMed DOI PMC
Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T. Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5′ Exon Usage and Splicing. Kashanchi F, editor. PLoS ONE. 2011. Jul 15;6(7):e22138. doi: 10.1371/journal.pone.0022138 PubMed DOI PMC
Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, et al.. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am J Hum Genet. 2007. May;80(5):994–1001. doi: 10.1086/515583 PubMed DOI PMC
Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, et al.. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet. 2007. May;80(5):988–93. doi: 10.1086/515582 PubMed DOI PMC
Hellwig M, Lauffer MC, Bockmayr M, Spohn M, Merk DJ, Harrison L, et al.. TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathol (Berl). 2019. Apr 1;137(4):657–73. doi: 10.1007/s00401-019-01982-5 PubMed DOI
Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al.. Common variants conferring risk of schizophrenia. Nature. 2009. Aug 6;460(7256):744–7. doi: 10.1038/nature08186 PubMed DOI PMC
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011. Sep 18;43(10):969–76. PubMed PMC
Zhang D, Dey R, Lee S. Fast and robust ancestry prediction using principal component analysis. Bioinforma Oxf Engl. 2020. Jun 1;36(11):3439–46. doi: 10.1093/bioinformatics/btaa152 PubMed DOI PMC
Shen S, Park JW, xiang Lu Z, Lin L, Henry MD, Wu YN, et al.. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci. 2014. Dec 23;111(51):E5593–601. doi: 10.1073/pnas.1419161111 PubMed DOI PMC
Shen S, Park JW, Huang J, Dittmar KA, xiang Lu Z, Zhou Q, et al.. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res. 2012. Apr 1;40(8):e61. doi: 10.1093/nar/gkr1291 PubMed DOI PMC
Park JW, Tokheim C, Shen S, Xing Y. Identifying Differential Alternative Splicing Events from RNA Sequencing Data Using RNASeq-MATS. In: Shomron N, editor. Deep Sequencing Data Analysis [Internet]. Totowa, NJ: Humana Press; 2013. [cited 2022 Oct 31]. p. 171–9. (Methods in Molecular Biology). Available from: 10.1007/978-1-62703-514-9_10 PubMed DOI
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells. 2021. Sep;10(9):2443. doi: 10.3390/cells10092443 PubMed DOI PMC
Hu J, Rong Z, Gong X, Zhou Z, Sharma VK, Xing C, et al.. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018. Mar 15;27(6):1015–26. doi: 10.1093/hmg/ddy018 PubMed DOI PMC
Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 2014;42(17):10873–87. doi: 10.1093/nar/gku767 PubMed DOI PMC
Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL expression in autoregulatory feedback loops. RNA Biol. 2018. Jan 2;15(1):1–8. doi: 10.1080/15476286.2017.1384119 PubMed DOI PMC
Hwang JY, Jung S, Kook TL, Rouchka EC, Bok J, Park JW. rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation. Nucleic Acids Res. 2020. Jul 2;48(W1):W300–6. doi: 10.1093/nar/gkaa237 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. Dec 5;15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mori K, Lammich S, Mackenzie IRA, Forné I, Zilow S, Kretzschmar H, et al.. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol (Berl). 2013. Mar;125(3):413–23. doi: 10.1007/s00401-013-1088-7 PubMed DOI
Doostparast Torshizi A, Armoskus C, Zhang H, Forrest MP, Zhang S, Souaiaia T, et al.. Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Sci Adv. 2019. Sep 11;5(9):eaau4139. doi: 10.1126/sciadv.aau4139 PubMed DOI PMC
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014. Dec;15(12):829–45. doi: 10.1038/nrg3813 PubMed DOI PMC
Li M, Zhuang Y, Batra R, Thomas JD, Li M, Nutter CA, et al.. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy. Proc Natl Acad Sci. 2020. Mar 10;117(10):5472–7. doi: 10.1073/pnas.1907297117 PubMed DOI PMC
Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, et al.. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res. 2012. Apr;40(7):3159–71. doi: 10.1093/nar/gkr1228 PubMed DOI PMC
Pettersson OJ, Aagaard L, Andrejeva D, Thomsen R, Jensen TG, Damgaard CK. DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1. Nucleic Acids Res. 2014. Jun;42(11):7186–200. doi: 10.1093/nar/gku352 PubMed DOI PMC
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012. Oct;22(10):2008–17. doi: 10.1101/gr.133744.111 PubMed DOI PMC
Sznajder ŁJ, Thomas JD, Carrell EM, Reid T, McFarland KN, Cleary JD, et al.. Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci. 2018. Apr 17;115(16):4234–9. doi: 10.1073/pnas.1716617115 PubMed DOI PMC
Chen W, Wang S, Tithi SS, Ellison DW, Schaid DJ, Wu G. A rare variant analysis framework using public genotype summary counts to prioritize disease-predisposition genes. Nat Commun. 2022. May 11;13(1):2592. doi: 10.1038/s41467-022-30248-0 PubMed DOI PMC
Therapeutics ProQR. Open-Label, Single-Dose, Exploratory Study With QR-504a to Evaluate Safety, Tolerability, and Corneal Endothelium Molecular Biomarker(s) in Subjects With Fuchs Endothelial Corneal Dystrophy With Trinucleotide Repeat Expansion in the TCF4 Gene (FECD3) [Internet]. clinicaltrials.gov; 2022. May [cited 2023 Mar 6]. Report No.: NCT05052554. Available from: https://clinicaltrials.gov/ct2/show/NCT05052554
Powers A, Rinkoski TA, Cheung K, Schehr H, Osgood N, Livelo C, et al.. GeneTAC small molecules reduce toxic nuclear foci and restore normal splicing in corneal endothelial cells derived from patients with Fuchs endothelial corneal dystrophy (FECD) harboring repeat expansions in transcription factor 4 (TCF4). Invest Ophthalmol Vis Sci. 2022. Jun 1;63(7):2753–A0242.
Goyer B, Thériault M, Gendron SP, Brunette I, Rochette PJ, Proulx S. Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. Tissue Eng Part A. 2018. Apr;24(7–8):607–15. doi: 10.1089/ten.TEA.2017.0128 PubMed DOI PMC
Thériault M, Gendron SP, Brunette I, Rochette PJ, Proulx S. Function-Related Protein Expression in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Models. Am J Pathol. 2018. Jul 1;188(7):1703–12. doi: 10.1016/j.ajpath.2018.03.014 PubMed DOI
Angelbello AJ, Benhamou RI, Rzuczek SG, Choudhary S, Tang Z, Chen JL, et al.. A Small Molecule that Binds an RNA Repeat Expansion Stimulates Its Decay via the Exosome Complex. Cell Chem Biol. 2021. Jan 21;28(1):34–45.e6. doi: 10.1016/j.chembiol.2020.10.007 PubMed DOI PMC
Wang Q, Dou S, Zhang B, Jiang H, Qi X, Duan H, et al.. Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy. Mol Ther—Nucleic Acids. 2022. Mar 8;27:880–93. doi: 10.1016/j.omtn.2022.01.005 PubMed DOI PMC
Handsaker R, Kashin S, Reed N, Lee WS, McDonald TM, Tan S, et al.. Somatic DNA repeat expansion underlies Huntington’s Disease neuropathology (Plenary Abstract). In Washington DC; 2023.
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res. 2022. Jan;32(1):1–27. doi: 10.1101/gr.269530.120 PubMed DOI PMC
Sirp A, Roots K, Nurm K, Tuvikene J, Sepp M, Timmusk T. Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia. J Biol Chem [Internet]. 2021. Dec 1 [cited 2022 Nov 10];297(6). Available from: https://www.jbc.org/article/S0021-9258(21)01187-X/abstract doi: 10.1016/j.jbc.2021.101381 PubMed DOI PMC
Tekendo-Ngongang C, Grochowsky A, Solomon BD, Yano ST. Beyond Trinucleotide Repeat Expansion in Fragile X Syndrome: Rare Coding and Noncoding Variants in FMR1 and Associated Phenotypes. Genes. 2021. Oct 22;12(11):1669. doi: 10.3390/genes12111669 PubMed DOI PMC
Nath S, Caron NS, May L, Gluscencova OB, Kolesar J, Brady L, et al.. Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline. Hum Genome Var. 2022. Apr 14;9(1):1–12. PubMed PMC
Liu F, Liu Q, Lu CX, Cui B, Guo XN, Wang RR, et al.. Identification of a novel loss-of-function C9orf72 splice site mutation in a patient with amyotrophic lateral sclerosis. Neurobiol Aging. 2016. Nov 1;47:219.e1–219.e5. doi: 10.1016/j.neurobiolaging.2016.07.027 PubMed DOI
Winkler NS, Milone M, Martinez-Thompson JM, Raja H, Aleff RA, Patel SV, et al.. Fuchs’ Endothelial Corneal Dystrophy in Patients With Myotonic Dystrophy, Type 1. Invest Ophthalmol Vis Sci. 2018. Jun 1;59(7):3053–7. doi: 10.1167/iovs.17-23160 PubMed DOI PMC
Mootha VV, Hansen B, Rong Z, Mammen PP, Zhou Z, Xing C, et al.. Fuchs’ Endothelial Corneal Dystrophy and RNA Foci in Patients With Myotonic Dystrophy. Invest Ophthalmol Vis Sci. 2017. Sep 1;58(11):4579–85. doi: 10.1167/iovs.17-22350 PubMed DOI PMC
Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, et al.. A Common Trinucleotide Repeat Expansion within the Transcription Factor 4 (TCF4, E2-2) Gene Predicts Fuchs Corneal Dystrophy. PLOS ONE. 2012. Nov 21;7(11):e49083. doi: 10.1371/journal.pone.0049083 PubMed DOI PMC
Vasanth S, Eghrari AO, Gapsis BC, Wang J, Haller NF, Stark WJ, et al.. Expansion of CTG18.1 Trinucleotide Repeat in TCF4 Is a Potent Driver of Fuchs’ Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2015. Jul;56(8):4531–6. doi: 10.1167/iovs.14-16122 PubMed DOI PMC
Peh GSL, Chng Z, Ang HP, Cheng TYD, Adnan K, Seah XY, et al.. Propagation of human corneal endothelial cells: A novel dual media approach. Cell Transplant. 2015;24(2):287–304. doi: 10.3727/096368913X675719 PubMed DOI
Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data [Internet]. [cited 2022 Oct 31]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.. STAR: ultrafast universal RNA-seq aligner. Bioinforma Oxf Engl. 2013. Jan 1;29(1):15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017. Apr;14(4):417–9. doi: 10.1038/nmeth.4197 PubMed DOI PMC
Witten DM. Classification and clustering of sequencing data using a Poisson model. Ann Appl Stat. 2011. Dec;5(4):2493–518.
Blighe K. PCAtools: everything Principal Component Analysis [Internet]. 2023. [cited 2023 Feb 20]. Available from: https://github.com/kevinblighe/PCAtools
Ignatiadis N, Huber W. Covariate powered cross-weighted multiple testing. J R Stat Soc Ser B Stat Methodol. 2021;83(4):720–51.
Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods. 2016. Jul;13(7):577–80. doi: 10.1038/nmeth.3885 PubMed DOI PMC
Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019. Jun;35(12):2084–92. doi: 10.1093/bioinformatics/bty895 PubMed DOI PMC
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al.. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019. Jul 2;47(W1):W191–8. doi: 10.1093/nar/gkz369 PubMed DOI PMC
Veiga DT. maseR: Mapping Alternative Splicing Events to pRoteins [Internet]. 2022. [cited 2023 Feb 20]. Available from: https://github.com/DiogoVeiga/maser
Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al.. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLOS ONE. 2015. Jul 15;10(7):e0132628. doi: 10.1371/journal.pone.0132628 PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018. Sep 15;34(18):3094–100. doi: 10.1093/bioinformatics/bty191 PubMed DOI PMC
Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, del Risco H, et al.. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018. Jan 3;28(3):396–411. doi: 10.1101/gr.222976.117 PubMed DOI PMC
Pontikos N, Yu J, Moghul I, Withington L, Blanco-Kelly F, Vulliamy T, et al.. Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data. Bioinformatics. 2017. Aug 1;33(15):2421–3. doi: 10.1093/bioinformatics/btx147 PubMed DOI
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al.. The Ensembl Variant Effect Predictor. Genome Biol. 2016. Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4 PubMed DOI PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014. Mar;46(3):310–5. doi: 10.1038/ng.2892 PubMed DOI PMC
Glusman G, Caballero J, Mauldin DE, Hood L, Roach JC. Kaviar: an accessible system for testing SNV novelty. Bioinformatics. 2011. Nov 15;27(22):3216–7. doi: 10.1093/bioinformatics/btr540 PubMed DOI PMC
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al.. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019. Jan 24;176(3):535–548.e24. doi: 10.1016/j.cell.2018.12.015 PubMed DOI
Zuallaert J, Godin F, Kim M, Soete A, Saeys Y, De Neve W. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics. 2018. Dec 15;34(24):4180–8. doi: 10.1093/bioinformatics/bty497 PubMed DOI
Genetic and Demographic Determinants of Fuchs Endothelial Corneal Dystrophy Risk and Severity
Tissue-specific TCF4 triplet repeat instability revealed by optical genome mapping