Nature-Inspired Gallinamides Are Potent Antischistosomal Agents: Inhibition of the Cathepsin B1 Protease Target and Binding Mode Analysis

. 2024 Jun 14 ; 10 (6) : 1935-1948. [epub] 20240517

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38757505

Grantová podpora
R21 AI156554 NIAID NIH HHS - United States

Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.

Zobrazit více v PubMed

WHO . Schistosomiasis, https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed 2023 October 2).

Colley D. G.; Bustinduy A. L.; Secor W. E.; King C. H. Human schistosomiasis. Lancet 2014, 383 (9936), 2253–2264. 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC

McManus D. P.; Dunne D. W.; Sacko M.; Utzinger J.; Vennervald B. J.; Zhou X.-N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4 (1), 13.10.1038/s41572-018-0013-8. PubMed DOI

Kjetland E. F.; Leutscher P. D. C.; Ndhlovu P. D. A review of female genital schistosomiasis. Trends Parasitol. 2012, 28 (2), 58–65. 10.1016/j.pt.2011.10.008. PubMed DOI

Balogun J. B.; Adewale B.; Balogun S. U.; Lawan A.; Haladu I. S.; Dogara M. M.; Aminu A. U.; Caffrey C. R.; De Koning H. P.; Watanabe Y.; Balogun E. O. Prevalence and associated risk factors of urinary schistosomiasis among primary school pupils in the Jidawa and Zobiya communities of Jigawa State, Nigeria. Ann. Glob. Health 2022, 88 (1), 71.10.5334/aogh.3704. PubMed DOI PMC

Park S. K.; Gunaratne G. S.; Chulkov E. G.; Moehring F.; McCusker P.; Dosa P. I.; Chan J. D.; Stucky C. L.; Marchant J. S. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J. Biol. Chem. 2019, 294 (49), 18873–18880. 10.1074/jbc.AC119.011093. PubMed DOI PMC

Park S. K.; Friedrich L.; Yahya N. A.; Rohr C. M.; Chulkov E. G.; Maillard D.; Rippmann F.; Spangenberg T.; Marchant J. S. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci. Transl. Med. 2021, 13 (625), eabj583210.1126/scitranslmed.abj5832. PubMed DOI PMC

Vale N.; Gouveia M. J.; Rinaldi G.; Brindley P. J.; Gärtner F.; Correia da Costa J. M. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother. 2017, 61 (5), 10.10.1128/AAC.02582-16. PubMed DOI PMC

Doenhoff M. J.; Pica-Mattoccia L. Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev. Anti-Infect. Ther. 2006, 4 (2), 199–210. 10.1586/14787210.4.2.199. PubMed DOI

Caffrey C. R.; El-Sakkary N.; Mäder P.; Krieg R.; Becker K.; Schlitzer M.; Drewry D. H.; Vennerstrom J. L.; Grevelding C. G. Drug discovery and development for schistosomiasis. Neglected Trop. Dis. 2019, 187–225. 10.1002/9783527808656.ch8. DOI

Delcroix M.; Sajid M.; Caffrey C. R.; Lim K.-C.; Dvořák J.; Hsieh I.; Bahgat M.; Dissous C.; McKerrow J. H. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006, 281 (51), 39316–39329. 10.1074/jbc.M607128200. PubMed DOI

Caffrey C. R.; McKerrow J. H.; Salter J. P.; Sajid M. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004, 20 (5), 241–248. 10.1016/j.pt.2004.03.004. PubMed DOI

Dvořák J.; Mashiyama S. T.; Sajid M.; Braschi S.; Delcroix M.; Schneider E. L.; McKerrow W. H.; Bahgat M.; Hansell E.; Babbitt P. C.; Craik C. S.; McKerrow J. H.; Caffrey C. R. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 2009, 3 (6), e44910.1371/journal.pntd.0000449. PubMed DOI PMC

Brady C. P.; Brindley P. J.; Dowd A. J.; Dalton J. P. Schistosoma mansoni: differential expression of cathepsins L1 and L2 suggests discrete biological functions for each enzyme. Exp. Parasitol. 2000, 94 (2), 75–83. 10.1006/expr.1999.4478. PubMed DOI

Jílková A.; Řezáčová P.; Lepšík M.; Horn M.; Váchová J.; Fanfrlík J.; Brynda J.; McKerrow J. H.; Caffrey C. R.; Mareš M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem. 2011, 286 (41), 35770–35781. 10.1074/jbc.M111.271304. PubMed DOI PMC

Sajid M.; McKerrow J. H.; Hansell E.; Mathieu M. A.; Lucas K. D.; Hsieh I.; Greenbaum D.; Bogyo M.; Salter J. P.; Lim K. C.; Franklin C.; Kim J. H.; Caffrey C. R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol. 2003, 131 (1), 65–75. 10.1016/S0166-6851(03)00194-4. PubMed DOI

Musil D.; Zucic D.; Turk D.; Engh R. A.; Mayr I.; Huber R.; Popovic T.; Turk V.; Towatari T.; Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991, 10 (9), 2321–2330. 10.1002/j.1460-2075.1991.tb07771.x. PubMed DOI PMC

Abdulla M. H.; Lim K. C.; Sajid M.; McKerrow J. H.; Caffrey C. R. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 2007, 4 (1), e1410.1371/journal.pmed.0040014. PubMed DOI PMC

Jílková A.; Rubešová P.; Fanfrlík J.; Fajtová P.; Řezáčová P.; Brynda J.; Lepšík M.; Mertlíková-Kaiserová H.; Emal C. D.; Renslo A. R.; Roush W. R.; Horn M.; Caffrey C. R.; Mareš M. Druggable hot spots in the schistosomiasis cathepsin B1 target identified by functional and binding mode analysis of potent vinyl sulfone inhibitors. ACS Infect. Dis. 2021, 7 (5), 1077–1088. 10.1021/acsinfecdis.0c00501. PubMed DOI PMC

Jílková A.; Horn M.; Fanfrlík J.; Küppers J.; Pachl P.; Řezáčová P.; Lepšík M.; Fajtová P.; Rubešová P.; Chanová M.; Caffrey C. R.; Gütschow M.; Mareš M. Azanitrile inhibitors of the SmCB1 protease target are lethal to Schistosoma mansoni: structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis. 2021, 7 (1), 189–201. 10.1021/acsinfecdis.0c00644. PubMed DOI PMC

Fanfrlík J.; Brahmkshatriya P. S.; Řezáč J.; Jílková A.; Horn M.; Mareš M.; Hobza P.; Lepšík M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B 2013, 117 (48), 14973–14982. 10.1021/jp409604n. PubMed DOI

Linington R. G.; Clark B. R.; Trimble E. E.; Almanza A.; Ureña L. D.; Kyle D. E.; Gerwick W. H. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J. Nat. Prod. 2009, 72 (1), 14–17. 10.1021/np8003529. PubMed DOI PMC

Taori K.; Liu Y.; Paul V. J.; Luesch H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem. 2009, 10 (10), 1634–1639. 10.1002/cbic.200900192. PubMed DOI

Conroy T.; Guo J. T.; Elias N.; Cergol K. M.; Gut J.; Legac J.; Khatoon L.; Liu Y.; McGowan S.; Rosenthal P. J.; Hunt N. H.; Payne R. J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem. 2014, 57 (24), 10557–10563. 10.1021/jm501439w. PubMed DOI

Stolze S. C.; Deu E.; Kaschani F.; Li N.; Florea B. I.; Richau K. H.; Colby T.; van der Hoorn R. A.; Overkleeft H. S.; Bogyo M.; Kaiser M. The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Cell Chem. Biol. 2012, 19 (12), 1546–1555. 10.1016/j.chembiol.2012.09.020. PubMed DOI PMC

Stoye A.; Juillard A.; Tang A. H.; Legac J.; Gut J.; White K. L.; Charman S. A.; Rosenthal P. J.; Grau G. E. R.; Hunt N. H.; Payne R. J. Falcipain inhibitors based on the natural product gallinamide A are potent in vitro and in vivo antimalarials. J. Med. Chem. 2019, 62 (11), 5562–5578. 10.1021/acs.jmedchem.9b00504. PubMed DOI

Barbosa Da Silva E.; Sharma V.; Hernandez-Alvarez L.; Tang A. H.; Stoye A.; O’Donoghue A. J.; Gerwick W. H.; Payne R. J.; McKerrow J. H.; Podust L. M. Intramolecular interactions enhance the potency of gallinamide A analogues against Trypanosoma cruzi. J. Med. Chem. 2022, 65 (5), 4255–4269. 10.1021/acs.jmedchem.1c02063. PubMed DOI

Boudreau P. D.; Miller B. W.; McCall L. I.; Almaliti J.; Reher R.; Hirata K.; Le T.; Siqueira-Neto J. L.; Hook V.; Gerwick W. H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem. 2019, 62 (20), 9026–9044. 10.1021/acs.jmedchem.9b00294. PubMed DOI PMC

Ashhurst A. S.; Tang A. H.; Fajtova P.; Yoon M. C.; Aggarwal A.; Bedding M. J.; Stoye A.; Beretta L.; Pwee D.; Drelich A.; Skinner D.; Li L. F.; Meek T. D.; McKerrow J. H.; Hook V.; Tseng C. T.; Larance M.; Turville S.; Gerwick W. H.; O’Donoghue A. J.; Payne R. J. Potent anti-SARS-CoV-2 activity by the natural product gallinamide A and analogues via inhibition of cathepsin L. J. Med. Chem. 2022, 65 (4), 2956–2970. 10.1021/acs.jmedchem.1c01494. PubMed DOI PMC

Horn M.; Nussbaumerová M.; Šanda M.; Kovářová Z.; Srba J.; Franta Z.; Sojka D.; Bogyo M.; Caffrey C. R.; Kopáček P.; Mareš M. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009, 16 (10), 1053–1063. 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC

Srp J.; Nussbaumerová M.; Horn M.; Mareš M. Digestive proteolysis in the Colorado potato beetle, Leptinotarsa decemlineata: activity-based profiling and imaging of a multipeptidase network. Insect Biochem. Mol. Biol. 2016, 78, 1–11. 10.1016/j.ibmb.2016.08.004. PubMed DOI

Caffrey C. R.; Ruppel A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res. 1997, 83 (6), 632–635. 10.1007/s004360050310. PubMed DOI

Caffrey C. R.; Rheinberg C. E.; Moné H.; Jourdane J.; Li Y. L.; Ruppel A. Schistosoma japonicum, S. mansoni, S. haematobium, S. intercalatum, and S. rodhaini: cysteine-class cathepsin activities in the vomitus of adult worms. Parasitol. Res. 1996, 83 (1), 37–41. 10.1007/s004360050204. PubMed DOI

Caffrey C. R.; Salter J. P.; Lucas K. D.; Khiem D.; Hsieh I.; Lim K. C.; Ruppel A.; McKerrow J. H.; Sajid M. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol. Biochem. Parasitol. 2002, 121 (1), 49–61. 10.1016/S0166-6851(02)00022-1. PubMed DOI

Brady C. P.; Brinkworth R. I.; Dalton J. P.; Dowd A. J.; Verity C. K.; Brindley P. J. Molecular modeling and substrate specificity of discrete Cruzipain-like and cathepsin L-like cysteine proteinases of the human blood fluke Schistosoma mansoni. Arch. Biochem. Biophys. 2000, 380 (1), 46–55. 10.1006/abbi.2000.1905. PubMed DOI

Rawlings N. D.; Waller M.; Barrett A. J.; Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014, 42 (D1), D503–509. 10.1093/nar/gkt953. PubMed DOI PMC

Schechter I.; Berger A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27 (2), 157–162. 10.1016/S0006-291X(67)80055-X. PubMed DOI

Tonge P. J. Quantifying the interactions between biomolecules: guidelines for assay design and data analysis. ACS Infect. Dis. 2019, 5 (6), 796–808. 10.1021/acsinfecdis.9b00012. PubMed DOI PMC

Long T.; Neitz R. J.; Beasley R.; Kalyanaraman C.; Suzuki B. M.; Jacobson M. P.; Dissous C.; McKerrow J. H.; Drewry D. H.; Zuercher W. J.; Singh R.; Caffrey C. R. Structure-bioactivity relationship for benzimidazole thiophene inhibitors of polo-like kinase 1 (PLK1), a potential drug target in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2016, 10 (1), e000435610.1371/journal.pntd.0004356. PubMed DOI PMC

Štefanić S.; Dvořák J.; Horn M.; Braschi S.; Sojka D.; Ruelas D.; Suzuki B.; Lim K. C.; Hopkins S. D.; McKerrow J. H.; Caffrey C. R. RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl. Trop. Dis. 2010, 4 (10), e85010.1371/journal.pntd.0000850. PubMed DOI PMC

Hosono Y.; Uchida S.; Shinkai M.; Townsend C. E.; Kelly C. N.; Naylor M. R.; Lee H.-W.; Kanamitsu K.; Ishii M.; Ueki R.; Ueda T.; Takeuchi K.; Sugita M.; Akiyama Y.; Lokey S. R.; Morimoto J.; Sando S. Amide-to-ester substitution as a stable alternative to N-methylation for increasing membrane permeability in cyclic peptides. Nat. Commun. 2023, 14 (1), 1416.10.1038/s41467-023-36978-z. PubMed DOI PMC

Abdulla M. H.; Ruelas D. S.; Wolff B.; Snedecor J.; Lim K. C.; Xu F.; Renslo A. R.; Williams J.; McKerrow J. H.; Caffrey C. R. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl. Trop. Dis. 2009, 3 (7), e47810.1371/journal.pntd.0000478. PubMed DOI PMC

Monti L.; Cornec A. S.; Oukoloff K.; Kovalevich J.; Prijs K.; Alle T.; Brunden K. R.; Smith A. B. 3rd; El-Sakkary N.; Liu L. J.; Syed A.; Skinner D. E.; Ballatore C.; Caffrey C. R. Congeners derived from microtubule-active phenylpyrimidines produce a potent and long-lasting paralysis of Schistosoma mansoni in vitro. ACS Infect. Dis. 2021, 7 (5), 1089–1103. 10.1021/acsinfecdis.0c00508. PubMed DOI PMC

Fajtová P.; Štefanić S.; Hradilek M.; Dvořák J.; Vondrášek J.; Jílková A.; Ulrychová L.; McKerrow J. H.; Caffrey C. R.; Mareš M.; Horn M. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 2015, 9 (6), e000382710.1371/journal.pntd.0003827. PubMed DOI PMC

Jílková A.; Horn M.; Řezáčová P.; Marešová L.; Fajtová P.; Brynda J.; Vondrášek J.; McKerrow J. H.; Caffrey C. R.; Mareš M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 2014, 22 (12), 1786–1798. 10.1016/j.str.2014.09.015. PubMed DOI

Turk D.; Podobnik M.; Popovic T.; Katunuma N.; Bode W.; Huber R.; Turk V. Crystal structure of cathepsin B inhibited with CA030 at 2.0-Å resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry 1995, 34 (14), 4791–4797. 10.1021/bi00014a037. PubMed DOI

Watanabe D.; Yamamoto A.; Tomoo K.; Matsumoto K.; Murata M.; Kitamura K.; Ishida T. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. J. Mol. Biol. 2006, 362 (5), 979–993. 10.1016/j.jmb.2006.07.070. PubMed DOI

Mort J. S. Chapter 406 Cathepsin B.. Handbook of Proteolytic Enzymes 2013, 1784–1791.

Choe Y.; Leonetti F.; Greenbaum D. C.; Lecaille F.; Bogyo M.; Brömme D.; Ellman J. A.; Craik C. S. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 2006, 281 (18), 12824–12832. 10.1074/jbc.M513331200. PubMed DOI

Poreba M.; Groborz K.; Vizovisek M.; Maruggi M.; Turk D.; Turk B.; Powis G.; Drag M.; Salvesen G. S. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chem. Sci. 2019, 10 (36), 8461–8477. 10.1039/C9SC00997C. PubMed DOI PMC

Miller B.; Friedman A. J.; Choi H.; Hogan J.; McCammon J. A.; Hook V.; Gerwick W. H. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 2014, 77 (1), 92–99. 10.1021/np400727r. PubMed DOI PMC

Fonseca N. C.; da Cruz L. F.; da Silva Villela F.; do Nascimento Pereira G. A.; de Siqueira-Neto J. L.; Kellar D.; Suzuki B. M.; Ray D.; de Souza T. B.; Alves R. J.; Júnior P. A. S.; Romanha A. J.; Murta S. M. F.; McKerrow J. H.; Caffrey C. R.; de Oliveira R. B.; Ferreira R. S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother. 2015, 59 (5), 2666–2677. 10.1128/AAC.04601-14. PubMed DOI PMC

Pavani T. F. A.; Cirino M. E.; Teixeira T. R.; de Moraes J.; Rando D. G. G. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci. Rep. 2023, 13 (1), 19735.10.1038/s41598-023-46959-3. PubMed DOI PMC

Caffrey C. R.; Steverding D.; Swenerton R. K.; Kelly B.; Walshe D.; Debnath A.; Zhou Y. M.; Doyle P. S.; Fafarman A. T.; Zorn J. A.; Land K. M.; Beauchene J.; Schreiber K.; Moll H.; Ponte-Sucre A.; Schirmeister T.; Saravanamuthu A.; Fairlamb A. H.; Cohen F. E.; McKerrow J. H.; Weisman J. L.; May B. C. Bis-acridines as lead antiparasitic agents: structure-activity analysis of a discrete compound library in vitro. Antimicrob. Agents Chemother. 2007, 51 (6), 2164–2172. 10.1128/AAC.01418-06. PubMed DOI PMC

Santiago E. d. F.; de Oliveira S. A.; de Oliveira Filho G. B.; Moreira D. R. M.; Gomes P. A. T.; da Silva A. L.; de Barros A. F.; da Silva A. C.; dos Santos T. A. R.; Pereira V. R. A.; Gonçalves G. G. A.; Brayner F. A.; Alves L. C.; Wanderley A. G.; Leite A. C. L. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother. 2014, 58 (1), 352–363. 10.1128/AAC.01900-13. PubMed DOI PMC

Stern I.; Schaschke N.; Moroder L.; Turk D. Crystal structure of NS-134 in complex with bovine cathepsin B: a two-headed epoxysuccinyl inhibitor extends along the entire active-site cleft. Biochem. J. 2004, 381 (2), 511–517. 10.1042/BJ20040237. PubMed DOI PMC

Baell J. B.; Holloway G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740. 10.1021/jm901137j. PubMed DOI

Jílková A.; Horn M.; Mareš M. Structural and functional characterization of Schistosoma mansoni cathepsin B1. Methods Mol. Biol. 2020, 2151, 145–158. 10.1007/978-1-0716-0635-3_12. PubMed DOI

Caffrey C. R.; Mathieu M. A.; Gaffney A. M.; Salter J. P.; Sajid M.; Lucas K. D.; Franklin C.; Bogyo M.; McKerrow J. H. Identification of a cDNA encoding an active asparaginyl endopeptidase of Schistosoma mansoni and its expression in Pichia pastoris. FEBS letters 2000, 466 (2–3), 244–248. 10.1016/S0014-5793(99)01798-6. PubMed DOI

Horn M.; Jílková A.; Vondrášek J.; Marešová L.; Caffrey C. R.; Mareš M. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol. 2011, 6 (6), 609–617. 10.1021/cb100411v. PubMed DOI

Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühringer S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. Plus 2015, 130 (7), 141.10.1140/epjp/i2015-15141-2. DOI

Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 (2), 125–132. 10.1107/S0907444909047337. PubMed DOI PMC

Vagin A.; Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 2000, 56 (12), 1622–1624. 10.1107/S0907444900013780. PubMed DOI

Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 (4), 235–242. 10.1107/S0907444910045749. PubMed DOI PMC

Emsley P.; Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 (12), 2126–2132. 10.1107/S0907444904019158. PubMed DOI

Ahlrichs R.; Bär M.; Häser M.; Horn H.; Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI

Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016, 37 (13), 1230–1237. 10.1002/jcc.24312. PubMed DOI

Hostaš J.; Řezáč J. Accurate DFT-D3 calculations in a small basis set. J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI

Kříž K.; Řezáč J. Reparametrization of the COSMO solvent model for semiempirical methods PM6 and PM7. J. Chem. Inf. Model. 2019, 59 (1), 229–235. 10.1021/acs.jcim.8b00681. PubMed DOI

Lovell S. C.; Davis I. W.; Arendall W. B. III; de Bakker P. I.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Struct. Funct. Bioinform. 2003, 50 (3), 437–450. 10.1002/prot.10286. PubMed DOI

Salentin S.; Schreiber S.; Haupt V. J.; Adasme M. F.; Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43 (W1), W443–447. 10.1093/nar/gkv315. PubMed DOI PMC

Case D. A.; Babin V.; Berryman J. T.; Betz R. M.; Cai Q.; Cerutti D. S.; Cheatham T. E.; Darden T. A.; Duke R. E.; Gohlke H.; Goetz A. W.; Gusarov S.; Homeyer N.; Janowski P.; Kaus J.; Kolossváry I.; Kovalenko A.; Lee T. S.; LeGrand S.; Luchko T.; Luo R.; Madej B.; Merz K. M.; Paesani F.; Roe D. R.; Roitberg A.; Sagui C.; Salomon-Ferrer R.; Seabra G.; Simmerling C. L.; Smith W.; Swails J.; Walker R. C.; Wang J.; Wolf R. M.; Wu X.; Kollman P. A.. AMBER 14; University of California, San Francisco, 2014

Řezáč J.; Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2012, 8 (1), 141–151. 10.1021/ct200751e. PubMed DOI

Stewart J. J. P. (2016) MOPAC2016; Stewart Computational Chemistry, Colorado Springs.

Basch P. F. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J. Parasitol. 1981, 67 (2), 179–185. 10.2307/3280632. PubMed DOI

Dvořák J.; Fajtová P.; Ulrychová L.; Leontovyč A.; Rojo-Arreola L.; Suzuki B. M.; Horn M.; Mareš M.; Craik C. S.; Caffrey C. R.; O’Donoghue A. J. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 2016, 122, 99–109. 10.1016/j.biochi.2015.09.025. PubMed DOI PMC

Leontovyč A.; Ulrychová L.; Horn M.; Dvořák J. Collection of excretory/secretory products from individual developmental stages of the blood fluke Schistosoma mansoni. Methods Mol. Biol. 2020, 2151, 55–63. 10.1007/978-1-0716-0635-3_5. PubMed DOI

Hola-Jamriska L.; Dalton J. P.; Aaskov J.; Brindley P. J. Dipeptidyl peptidase I and III activities of adult schistosomes. Parasitology 1999, 118 (3), 275–282. 10.1017/S0031182098003746. PubMed DOI

Horn M.; Pavlík M.; Dolečková L.; Baudyš M.; Mareš M. Arginine-based structures are specific inhibitors of cathepsin C. Eur. J. Biochem. 2000, 267 (11), 3330–3336. 10.1046/j.1432-1327.2000.01364.x. PubMed DOI

Dalton J. P.; Hola-Jamriska L.; Brindley P. J. Asparaginyl endopeptidase activity in adult Schistosoma mansoni. Parasitology 1995, 111 (5), 575–580. 10.1017/S0031182000077052. PubMed DOI

Máša M.; Marešová L.; Vondrášek J.; Horn M.; Ježek J.; Mareš M. Cathepsin D propeptide: mechanism and regulation of its interaction with the catalytic core. Biochemistry 2006, 45 (51), 15474–15482. 10.1021/bi0614986. PubMed DOI

Barrett A. J.; Kembhavi A. A.; Brown M. A.; Kirschke H.; Knight C. G.; Tamai M.; Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982, 201 (1), 189–198. 10.1042/bj2010189. PubMed DOI PMC

Murata M.; Miyashita S.; Yokoo C.; Tamai M.; Hanada K.; Hatayama K.; Towatari T.; Nikawa T.; Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991, 280 (2), 307–310. 10.1016/0014-5793(91)80318-W. PubMed DOI

Kam C. M.; Götz M. G.; Koot G.; McGuire M.; Thiele D.; Hudig D.; Powers J. C. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C). Arch. Biochem. Biophys. 2004, 427 (2), 123–134. 10.1016/j.abb.2004.04.011. PubMed DOI

Ekici O. D.; Götz M. G.; James K. E.; Li Z. Z.; Rukamp B. J.; Asgian J. L.; Caffrey C. R.; Hansell E.; Dvořák J.; McKerrow J. H.; Potempa J.; Travis J.; Mikolajczyk J.; Salvesen G. S.; Powers J. C. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J. Med. Chem. 2004, 47 (8), 1889–1892. 10.1021/jm049938j. PubMed DOI

Knight C. G.; Barrett A. J. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 1976, 155 (1), 117–125. 10.1042/bj1550117. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...