Nature-Inspired Gallinamides Are Potent Antischistosomal Agents: Inhibition of the Cathepsin B1 Protease Target and Binding Mode Analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R21 AI156554
NIAID NIH HHS - United States
PubMed
38757505
PubMed Central
PMC11184554
DOI
10.1021/acsinfecdis.3c00589
Knihovny.cz E-zdroje
- Klíčová slova
- Schistosoma mansoni, acrylamide inhibitor, cathepsin B, cysteine protease, drug target, parasite,
- MeSH
- kathepsin B * antagonisté a inhibitory metabolismus MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- Schistosoma mansoni * enzymologie účinky léků MeSH
- schistosomicidy farmakologie chemie MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kathepsin B * MeSH
- schistosomicidy MeSH
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
Zobrazit více v PubMed
WHO . Schistosomiasis, https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed 2023 October 2).
Colley D. G.; Bustinduy A. L.; Secor W. E.; King C. H. Human schistosomiasis. Lancet 2014, 383 (9936), 2253–2264. 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC
McManus D. P.; Dunne D. W.; Sacko M.; Utzinger J.; Vennervald B. J.; Zhou X.-N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4 (1), 13.10.1038/s41572-018-0013-8. PubMed DOI
Kjetland E. F.; Leutscher P. D. C.; Ndhlovu P. D. A review of female genital schistosomiasis. Trends Parasitol. 2012, 28 (2), 58–65. 10.1016/j.pt.2011.10.008. PubMed DOI
Balogun J. B.; Adewale B.; Balogun S. U.; Lawan A.; Haladu I. S.; Dogara M. M.; Aminu A. U.; Caffrey C. R.; De Koning H. P.; Watanabe Y.; Balogun E. O. Prevalence and associated risk factors of urinary schistosomiasis among primary school pupils in the Jidawa and Zobiya communities of Jigawa State, Nigeria. Ann. Glob. Health 2022, 88 (1), 71.10.5334/aogh.3704. PubMed DOI PMC
Park S. K.; Gunaratne G. S.; Chulkov E. G.; Moehring F.; McCusker P.; Dosa P. I.; Chan J. D.; Stucky C. L.; Marchant J. S. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J. Biol. Chem. 2019, 294 (49), 18873–18880. 10.1074/jbc.AC119.011093. PubMed DOI PMC
Park S. K.; Friedrich L.; Yahya N. A.; Rohr C. M.; Chulkov E. G.; Maillard D.; Rippmann F.; Spangenberg T.; Marchant J. S. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci. Transl. Med. 2021, 13 (625), eabj583210.1126/scitranslmed.abj5832. PubMed DOI PMC
Vale N.; Gouveia M. J.; Rinaldi G.; Brindley P. J.; Gärtner F.; Correia da Costa J. M. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother. 2017, 61 (5), 10.10.1128/AAC.02582-16. PubMed DOI PMC
Doenhoff M. J.; Pica-Mattoccia L. Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev. Anti-Infect. Ther. 2006, 4 (2), 199–210. 10.1586/14787210.4.2.199. PubMed DOI
Caffrey C. R.; El-Sakkary N.; Mäder P.; Krieg R.; Becker K.; Schlitzer M.; Drewry D. H.; Vennerstrom J. L.; Grevelding C. G. Drug discovery and development for schistosomiasis. Neglected Trop. Dis. 2019, 187–225. 10.1002/9783527808656.ch8. DOI
Delcroix M.; Sajid M.; Caffrey C. R.; Lim K.-C.; Dvořák J.; Hsieh I.; Bahgat M.; Dissous C.; McKerrow J. H. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006, 281 (51), 39316–39329. 10.1074/jbc.M607128200. PubMed DOI
Caffrey C. R.; McKerrow J. H.; Salter J. P.; Sajid M. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004, 20 (5), 241–248. 10.1016/j.pt.2004.03.004. PubMed DOI
Dvořák J.; Mashiyama S. T.; Sajid M.; Braschi S.; Delcroix M.; Schneider E. L.; McKerrow W. H.; Bahgat M.; Hansell E.; Babbitt P. C.; Craik C. S.; McKerrow J. H.; Caffrey C. R. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 2009, 3 (6), e44910.1371/journal.pntd.0000449. PubMed DOI PMC
Brady C. P.; Brindley P. J.; Dowd A. J.; Dalton J. P. Schistosoma mansoni: differential expression of cathepsins L1 and L2 suggests discrete biological functions for each enzyme. Exp. Parasitol. 2000, 94 (2), 75–83. 10.1006/expr.1999.4478. PubMed DOI
Jílková A.; Řezáčová P.; Lepšík M.; Horn M.; Váchová J.; Fanfrlík J.; Brynda J.; McKerrow J. H.; Caffrey C. R.; Mareš M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem. 2011, 286 (41), 35770–35781. 10.1074/jbc.M111.271304. PubMed DOI PMC
Sajid M.; McKerrow J. H.; Hansell E.; Mathieu M. A.; Lucas K. D.; Hsieh I.; Greenbaum D.; Bogyo M.; Salter J. P.; Lim K. C.; Franklin C.; Kim J. H.; Caffrey C. R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol. 2003, 131 (1), 65–75. 10.1016/S0166-6851(03)00194-4. PubMed DOI
Musil D.; Zucic D.; Turk D.; Engh R. A.; Mayr I.; Huber R.; Popovic T.; Turk V.; Towatari T.; Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991, 10 (9), 2321–2330. 10.1002/j.1460-2075.1991.tb07771.x. PubMed DOI PMC
Abdulla M. H.; Lim K. C.; Sajid M.; McKerrow J. H.; Caffrey C. R. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 2007, 4 (1), e1410.1371/journal.pmed.0040014. PubMed DOI PMC
Jílková A.; Rubešová P.; Fanfrlík J.; Fajtová P.; Řezáčová P.; Brynda J.; Lepšík M.; Mertlíková-Kaiserová H.; Emal C. D.; Renslo A. R.; Roush W. R.; Horn M.; Caffrey C. R.; Mareš M. Druggable hot spots in the schistosomiasis cathepsin B1 target identified by functional and binding mode analysis of potent vinyl sulfone inhibitors. ACS Infect. Dis. 2021, 7 (5), 1077–1088. 10.1021/acsinfecdis.0c00501. PubMed DOI PMC
Jílková A.; Horn M.; Fanfrlík J.; Küppers J.; Pachl P.; Řezáčová P.; Lepšík M.; Fajtová P.; Rubešová P.; Chanová M.; Caffrey C. R.; Gütschow M.; Mareš M. Azanitrile inhibitors of the SmCB1 protease target are lethal to Schistosoma mansoni: structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis. 2021, 7 (1), 189–201. 10.1021/acsinfecdis.0c00644. PubMed DOI PMC
Fanfrlík J.; Brahmkshatriya P. S.; Řezáč J.; Jílková A.; Horn M.; Mareš M.; Hobza P.; Lepšík M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B 2013, 117 (48), 14973–14982. 10.1021/jp409604n. PubMed DOI
Linington R. G.; Clark B. R.; Trimble E. E.; Almanza A.; Ureña L. D.; Kyle D. E.; Gerwick W. H. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J. Nat. Prod. 2009, 72 (1), 14–17. 10.1021/np8003529. PubMed DOI PMC
Taori K.; Liu Y.; Paul V. J.; Luesch H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem. 2009, 10 (10), 1634–1639. 10.1002/cbic.200900192. PubMed DOI
Conroy T.; Guo J. T.; Elias N.; Cergol K. M.; Gut J.; Legac J.; Khatoon L.; Liu Y.; McGowan S.; Rosenthal P. J.; Hunt N. H.; Payne R. J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem. 2014, 57 (24), 10557–10563. 10.1021/jm501439w. PubMed DOI
Stolze S. C.; Deu E.; Kaschani F.; Li N.; Florea B. I.; Richau K. H.; Colby T.; van der Hoorn R. A.; Overkleeft H. S.; Bogyo M.; Kaiser M. The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Cell Chem. Biol. 2012, 19 (12), 1546–1555. 10.1016/j.chembiol.2012.09.020. PubMed DOI PMC
Stoye A.; Juillard A.; Tang A. H.; Legac J.; Gut J.; White K. L.; Charman S. A.; Rosenthal P. J.; Grau G. E. R.; Hunt N. H.; Payne R. J. Falcipain inhibitors based on the natural product gallinamide A are potent in vitro and in vivo antimalarials. J. Med. Chem. 2019, 62 (11), 5562–5578. 10.1021/acs.jmedchem.9b00504. PubMed DOI
Barbosa Da Silva E.; Sharma V.; Hernandez-Alvarez L.; Tang A. H.; Stoye A.; O’Donoghue A. J.; Gerwick W. H.; Payne R. J.; McKerrow J. H.; Podust L. M. Intramolecular interactions enhance the potency of gallinamide A analogues against Trypanosoma cruzi. J. Med. Chem. 2022, 65 (5), 4255–4269. 10.1021/acs.jmedchem.1c02063. PubMed DOI
Boudreau P. D.; Miller B. W.; McCall L. I.; Almaliti J.; Reher R.; Hirata K.; Le T.; Siqueira-Neto J. L.; Hook V.; Gerwick W. H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem. 2019, 62 (20), 9026–9044. 10.1021/acs.jmedchem.9b00294. PubMed DOI PMC
Ashhurst A. S.; Tang A. H.; Fajtova P.; Yoon M. C.; Aggarwal A.; Bedding M. J.; Stoye A.; Beretta L.; Pwee D.; Drelich A.; Skinner D.; Li L. F.; Meek T. D.; McKerrow J. H.; Hook V.; Tseng C. T.; Larance M.; Turville S.; Gerwick W. H.; O’Donoghue A. J.; Payne R. J. Potent anti-SARS-CoV-2 activity by the natural product gallinamide A and analogues via inhibition of cathepsin L. J. Med. Chem. 2022, 65 (4), 2956–2970. 10.1021/acs.jmedchem.1c01494. PubMed DOI PMC
Horn M.; Nussbaumerová M.; Šanda M.; Kovářová Z.; Srba J.; Franta Z.; Sojka D.; Bogyo M.; Caffrey C. R.; Kopáček P.; Mareš M. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009, 16 (10), 1053–1063. 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC
Srp J.; Nussbaumerová M.; Horn M.; Mareš M. Digestive proteolysis in the Colorado potato beetle, Leptinotarsa decemlineata: activity-based profiling and imaging of a multipeptidase network. Insect Biochem. Mol. Biol. 2016, 78, 1–11. 10.1016/j.ibmb.2016.08.004. PubMed DOI
Caffrey C. R.; Ruppel A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res. 1997, 83 (6), 632–635. 10.1007/s004360050310. PubMed DOI
Caffrey C. R.; Rheinberg C. E.; Moné H.; Jourdane J.; Li Y. L.; Ruppel A. Schistosoma japonicum, S. mansoni, S. haematobium, S. intercalatum, and S. rodhaini: cysteine-class cathepsin activities in the vomitus of adult worms. Parasitol. Res. 1996, 83 (1), 37–41. 10.1007/s004360050204. PubMed DOI
Caffrey C. R.; Salter J. P.; Lucas K. D.; Khiem D.; Hsieh I.; Lim K. C.; Ruppel A.; McKerrow J. H.; Sajid M. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol. Biochem. Parasitol. 2002, 121 (1), 49–61. 10.1016/S0166-6851(02)00022-1. PubMed DOI
Brady C. P.; Brinkworth R. I.; Dalton J. P.; Dowd A. J.; Verity C. K.; Brindley P. J. Molecular modeling and substrate specificity of discrete Cruzipain-like and cathepsin L-like cysteine proteinases of the human blood fluke Schistosoma mansoni. Arch. Biochem. Biophys. 2000, 380 (1), 46–55. 10.1006/abbi.2000.1905. PubMed DOI
Rawlings N. D.; Waller M.; Barrett A. J.; Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014, 42 (D1), D503–509. 10.1093/nar/gkt953. PubMed DOI PMC
Schechter I.; Berger A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27 (2), 157–162. 10.1016/S0006-291X(67)80055-X. PubMed DOI
Tonge P. J. Quantifying the interactions between biomolecules: guidelines for assay design and data analysis. ACS Infect. Dis. 2019, 5 (6), 796–808. 10.1021/acsinfecdis.9b00012. PubMed DOI PMC
Long T.; Neitz R. J.; Beasley R.; Kalyanaraman C.; Suzuki B. M.; Jacobson M. P.; Dissous C.; McKerrow J. H.; Drewry D. H.; Zuercher W. J.; Singh R.; Caffrey C. R. Structure-bioactivity relationship for benzimidazole thiophene inhibitors of polo-like kinase 1 (PLK1), a potential drug target in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2016, 10 (1), e000435610.1371/journal.pntd.0004356. PubMed DOI PMC
Štefanić S.; Dvořák J.; Horn M.; Braschi S.; Sojka D.; Ruelas D.; Suzuki B.; Lim K. C.; Hopkins S. D.; McKerrow J. H.; Caffrey C. R. RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl. Trop. Dis. 2010, 4 (10), e85010.1371/journal.pntd.0000850. PubMed DOI PMC
Hosono Y.; Uchida S.; Shinkai M.; Townsend C. E.; Kelly C. N.; Naylor M. R.; Lee H.-W.; Kanamitsu K.; Ishii M.; Ueki R.; Ueda T.; Takeuchi K.; Sugita M.; Akiyama Y.; Lokey S. R.; Morimoto J.; Sando S. Amide-to-ester substitution as a stable alternative to N-methylation for increasing membrane permeability in cyclic peptides. Nat. Commun. 2023, 14 (1), 1416.10.1038/s41467-023-36978-z. PubMed DOI PMC
Abdulla M. H.; Ruelas D. S.; Wolff B.; Snedecor J.; Lim K. C.; Xu F.; Renslo A. R.; Williams J.; McKerrow J. H.; Caffrey C. R. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl. Trop. Dis. 2009, 3 (7), e47810.1371/journal.pntd.0000478. PubMed DOI PMC
Monti L.; Cornec A. S.; Oukoloff K.; Kovalevich J.; Prijs K.; Alle T.; Brunden K. R.; Smith A. B. 3rd; El-Sakkary N.; Liu L. J.; Syed A.; Skinner D. E.; Ballatore C.; Caffrey C. R. Congeners derived from microtubule-active phenylpyrimidines produce a potent and long-lasting paralysis of Schistosoma mansoni in vitro. ACS Infect. Dis. 2021, 7 (5), 1089–1103. 10.1021/acsinfecdis.0c00508. PubMed DOI PMC
Fajtová P.; Štefanić S.; Hradilek M.; Dvořák J.; Vondrášek J.; Jílková A.; Ulrychová L.; McKerrow J. H.; Caffrey C. R.; Mareš M.; Horn M. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 2015, 9 (6), e000382710.1371/journal.pntd.0003827. PubMed DOI PMC
Jílková A.; Horn M.; Řezáčová P.; Marešová L.; Fajtová P.; Brynda J.; Vondrášek J.; McKerrow J. H.; Caffrey C. R.; Mareš M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 2014, 22 (12), 1786–1798. 10.1016/j.str.2014.09.015. PubMed DOI
Turk D.; Podobnik M.; Popovic T.; Katunuma N.; Bode W.; Huber R.; Turk V. Crystal structure of cathepsin B inhibited with CA030 at 2.0-Å resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry 1995, 34 (14), 4791–4797. 10.1021/bi00014a037. PubMed DOI
Watanabe D.; Yamamoto A.; Tomoo K.; Matsumoto K.; Murata M.; Kitamura K.; Ishida T. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. J. Mol. Biol. 2006, 362 (5), 979–993. 10.1016/j.jmb.2006.07.070. PubMed DOI
Mort J. S. Chapter 406 Cathepsin B.. Handbook of Proteolytic Enzymes 2013, 1784–1791.
Choe Y.; Leonetti F.; Greenbaum D. C.; Lecaille F.; Bogyo M.; Brömme D.; Ellman J. A.; Craik C. S. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 2006, 281 (18), 12824–12832. 10.1074/jbc.M513331200. PubMed DOI
Poreba M.; Groborz K.; Vizovisek M.; Maruggi M.; Turk D.; Turk B.; Powis G.; Drag M.; Salvesen G. S. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chem. Sci. 2019, 10 (36), 8461–8477. 10.1039/C9SC00997C. PubMed DOI PMC
Miller B.; Friedman A. J.; Choi H.; Hogan J.; McCammon J. A.; Hook V.; Gerwick W. H. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 2014, 77 (1), 92–99. 10.1021/np400727r. PubMed DOI PMC
Fonseca N. C.; da Cruz L. F.; da Silva Villela F.; do Nascimento Pereira G. A.; de Siqueira-Neto J. L.; Kellar D.; Suzuki B. M.; Ray D.; de Souza T. B.; Alves R. J.; Júnior P. A. S.; Romanha A. J.; Murta S. M. F.; McKerrow J. H.; Caffrey C. R.; de Oliveira R. B.; Ferreira R. S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother. 2015, 59 (5), 2666–2677. 10.1128/AAC.04601-14. PubMed DOI PMC
Pavani T. F. A.; Cirino M. E.; Teixeira T. R.; de Moraes J.; Rando D. G. G. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci. Rep. 2023, 13 (1), 19735.10.1038/s41598-023-46959-3. PubMed DOI PMC
Caffrey C. R.; Steverding D.; Swenerton R. K.; Kelly B.; Walshe D.; Debnath A.; Zhou Y. M.; Doyle P. S.; Fafarman A. T.; Zorn J. A.; Land K. M.; Beauchene J.; Schreiber K.; Moll H.; Ponte-Sucre A.; Schirmeister T.; Saravanamuthu A.; Fairlamb A. H.; Cohen F. E.; McKerrow J. H.; Weisman J. L.; May B. C. Bis-acridines as lead antiparasitic agents: structure-activity analysis of a discrete compound library in vitro. Antimicrob. Agents Chemother. 2007, 51 (6), 2164–2172. 10.1128/AAC.01418-06. PubMed DOI PMC
Santiago E. d. F.; de Oliveira S. A.; de Oliveira Filho G. B.; Moreira D. R. M.; Gomes P. A. T.; da Silva A. L.; de Barros A. F.; da Silva A. C.; dos Santos T. A. R.; Pereira V. R. A.; Gonçalves G. G. A.; Brayner F. A.; Alves L. C.; Wanderley A. G.; Leite A. C. L. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother. 2014, 58 (1), 352–363. 10.1128/AAC.01900-13. PubMed DOI PMC
Stern I.; Schaschke N.; Moroder L.; Turk D. Crystal structure of NS-134 in complex with bovine cathepsin B: a two-headed epoxysuccinyl inhibitor extends along the entire active-site cleft. Biochem. J. 2004, 381 (2), 511–517. 10.1042/BJ20040237. PubMed DOI PMC
Baell J. B.; Holloway G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740. 10.1021/jm901137j. PubMed DOI
Jílková A.; Horn M.; Mareš M. Structural and functional characterization of Schistosoma mansoni cathepsin B1. Methods Mol. Biol. 2020, 2151, 145–158. 10.1007/978-1-0716-0635-3_12. PubMed DOI
Caffrey C. R.; Mathieu M. A.; Gaffney A. M.; Salter J. P.; Sajid M.; Lucas K. D.; Franklin C.; Bogyo M.; McKerrow J. H. Identification of a cDNA encoding an active asparaginyl endopeptidase of Schistosoma mansoni and its expression in Pichia pastoris. FEBS letters 2000, 466 (2–3), 244–248. 10.1016/S0014-5793(99)01798-6. PubMed DOI
Horn M.; Jílková A.; Vondrášek J.; Marešová L.; Caffrey C. R.; Mareš M. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol. 2011, 6 (6), 609–617. 10.1021/cb100411v. PubMed DOI
Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühringer S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. Plus 2015, 130 (7), 141.10.1140/epjp/i2015-15141-2. DOI
Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 (2), 125–132. 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A.; Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 2000, 56 (12), 1622–1624. 10.1107/S0907444900013780. PubMed DOI
Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 (4), 235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P.; Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 (12), 2126–2132. 10.1107/S0907444904019158. PubMed DOI
Ahlrichs R.; Bär M.; Häser M.; Horn H.; Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI
Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016, 37 (13), 1230–1237. 10.1002/jcc.24312. PubMed DOI
Hostaš J.; Řezáč J. Accurate DFT-D3 calculations in a small basis set. J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI
Kříž K.; Řezáč J. Reparametrization of the COSMO solvent model for semiempirical methods PM6 and PM7. J. Chem. Inf. Model. 2019, 59 (1), 229–235. 10.1021/acs.jcim.8b00681. PubMed DOI
Lovell S. C.; Davis I. W.; Arendall W. B. III; de Bakker P. I.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Struct. Funct. Bioinform. 2003, 50 (3), 437–450. 10.1002/prot.10286. PubMed DOI
Salentin S.; Schreiber S.; Haupt V. J.; Adasme M. F.; Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43 (W1), W443–447. 10.1093/nar/gkv315. PubMed DOI PMC
Case D. A.; Babin V.; Berryman J. T.; Betz R. M.; Cai Q.; Cerutti D. S.; Cheatham T. E.; Darden T. A.; Duke R. E.; Gohlke H.; Goetz A. W.; Gusarov S.; Homeyer N.; Janowski P.; Kaus J.; Kolossváry I.; Kovalenko A.; Lee T. S.; LeGrand S.; Luchko T.; Luo R.; Madej B.; Merz K. M.; Paesani F.; Roe D. R.; Roitberg A.; Sagui C.; Salomon-Ferrer R.; Seabra G.; Simmerling C. L.; Smith W.; Swails J.; Walker R. C.; Wang J.; Wolf R. M.; Wu X.; Kollman P. A.. AMBER 14; University of California, San Francisco, 2014
Řezáč J.; Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2012, 8 (1), 141–151. 10.1021/ct200751e. PubMed DOI
Stewart J. J. P. (2016) MOPAC2016; Stewart Computational Chemistry, Colorado Springs.
Basch P. F. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J. Parasitol. 1981, 67 (2), 179–185. 10.2307/3280632. PubMed DOI
Dvořák J.; Fajtová P.; Ulrychová L.; Leontovyč A.; Rojo-Arreola L.; Suzuki B. M.; Horn M.; Mareš M.; Craik C. S.; Caffrey C. R.; O’Donoghue A. J. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 2016, 122, 99–109. 10.1016/j.biochi.2015.09.025. PubMed DOI PMC
Leontovyč A.; Ulrychová L.; Horn M.; Dvořák J. Collection of excretory/secretory products from individual developmental stages of the blood fluke Schistosoma mansoni. Methods Mol. Biol. 2020, 2151, 55–63. 10.1007/978-1-0716-0635-3_5. PubMed DOI
Hola-Jamriska L.; Dalton J. P.; Aaskov J.; Brindley P. J. Dipeptidyl peptidase I and III activities of adult schistosomes. Parasitology 1999, 118 (3), 275–282. 10.1017/S0031182098003746. PubMed DOI
Horn M.; Pavlík M.; Dolečková L.; Baudyš M.; Mareš M. Arginine-based structures are specific inhibitors of cathepsin C. Eur. J. Biochem. 2000, 267 (11), 3330–3336. 10.1046/j.1432-1327.2000.01364.x. PubMed DOI
Dalton J. P.; Hola-Jamriska L.; Brindley P. J. Asparaginyl endopeptidase activity in adult Schistosoma mansoni. Parasitology 1995, 111 (5), 575–580. 10.1017/S0031182000077052. PubMed DOI
Máša M.; Marešová L.; Vondrášek J.; Horn M.; Ježek J.; Mareš M. Cathepsin D propeptide: mechanism and regulation of its interaction with the catalytic core. Biochemistry 2006, 45 (51), 15474–15482. 10.1021/bi0614986. PubMed DOI
Barrett A. J.; Kembhavi A. A.; Brown M. A.; Kirschke H.; Knight C. G.; Tamai M.; Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982, 201 (1), 189–198. 10.1042/bj2010189. PubMed DOI PMC
Murata M.; Miyashita S.; Yokoo C.; Tamai M.; Hanada K.; Hatayama K.; Towatari T.; Nikawa T.; Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991, 280 (2), 307–310. 10.1016/0014-5793(91)80318-W. PubMed DOI
Kam C. M.; Götz M. G.; Koot G.; McGuire M.; Thiele D.; Hudig D.; Powers J. C. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C). Arch. Biochem. Biophys. 2004, 427 (2), 123–134. 10.1016/j.abb.2004.04.011. PubMed DOI
Ekici O. D.; Götz M. G.; James K. E.; Li Z. Z.; Rukamp B. J.; Asgian J. L.; Caffrey C. R.; Hansell E.; Dvořák J.; McKerrow J. H.; Potempa J.; Travis J.; Mikolajczyk J.; Salvesen G. S.; Powers J. C. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J. Med. Chem. 2004, 47 (8), 1889–1892. 10.1021/jm049938j. PubMed DOI
Knight C. G.; Barrett A. J. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 1976, 155 (1), 117–125. 10.1042/bj1550117. PubMed DOI PMC