Azithromycin resistance in Escherichia coli and Salmonella from food-producing animals and meat in Europe

. 2024 Jul 01 ; 79 (7) : 1657-1667.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38775752

Grantová podpora
European Union Reference Laboratory for Antimicrobial Resistance

OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.

Animal and Plant Health Agency Weybridge UK

Austrian Agency for Health and Food Safety Graz Austria

Bacteriology Serology Laboratory Veterinary Services Cyprus

Central Veterinary Research Laboratory Kildare Ireland

Croatian Veterinary Institute Zagreb Croatia

Danish Veterinary and Food Administration Ringsted Denmark

Department of Biological Sciences Texas Tech University Lubbock TX USA

Department of Pathobiology Ghent University Merelbeke Belgium

DIANA Lab Dept of Computer Science and Biomedical Informatics University of Thessaly Lamia Greece

European Food Safety Authority Parma Italy

European Union Reference Laboratory for Antimicrobial Resistance Research Group for Global Capacity Building Technical University of Denmark Kongens Lyngby Denmark

French Agency for Food Environmental and Occupational Health and Safety Maisons Alfort France

German Federal Institute for Risk Assessment Berlin Germany

Institute for Diagnosis and Animal Health Bucharest Romania

Institute for Hygiene and Veterinary Public Health Bucharest Romania

Institute for Microbiology and Parasitology Ljubljana Slovenia

Institute of Food Safety Animal Health and Environment BIOR Riga Latvia

Instituto Nacional de Investigação Agrária e Veterinária Oeiras Portugal

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M Aleandri' Rome Italy

Jockey Club College of Veterinary Medicine and Life Sciences Kowloon Hong Kong

Laboratoire de Médecine Vétérinaire de l'État Dudelange Luxembourg

National Diagnostic and Research Veterinary Institute Sofia Bulgaria

National Food and Veterinary Risk Assessment Institute Vilnius Lithuania

National Food Chain Safety Office Veterinary Diagnostic Directorate Budapest Hungary

National Veterinary Research Institute Pulawy Poland

Public Health Laboratory Valletta Malta

Research Group for Genomic Epidemiology Technical University of Denmark Kongens Lyngby Denmark

School of Veterinary Medicine Texas Tech University Amarillo TX USA

Sciensano Brussels Belgium

Spanish Agency for Food Safety and Nutrition Madrid Spain

State Veterinary and Food Institute Dolny Kubin Slovakia

State Veterinary Institute Prague Czech Republic

Statens Serum Institut Copenhagen Denmark

Veterinary Laboratory of Chalkis Chalkis Greece

Vetsuisse Faculty Institute of Veterinary Bacteriology University of Bern Bern Switzerland

Wageningen Bioveterinary Research Part of Wageningen University and Research Lelystad Netherlands

Zobrazit více v PubMed

WHO . The WHO list of Critically Important Antimicrobials. 2019. https://www.who.int/groups/advisory-group-on-the-who-list-of-critically-important-antimicrobials.

Hooda  Y, Sajib  MS, Rahman  H  et al.  Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis  2019; 13: e0007868. 10.1371/journal.pntd.0007868 PubMed DOI PMC

Lübbert  C. Antimicrobial therapy of acute diarrhoea: a clinical review. Expert Rev Anti Infect Ther  2016; 14: 193–206. 10.1586/14787210.2016.1128824 PubMed DOI

Darton  TC, Tuyen  HT, The  HC  et al.  Azithromycin resistance in Shigella spp. in Southeast Asia. Antimicrob Agents Chemother  2018; 62: e01748-17. 10.1128/AAC.01748-17 PubMed DOI PMC

Timmermans  M, Latour  S, Ceyssens  P-J  et al.  The AMR-ARRAY: a modular bead array detecting β-lactam, (fluoro) quinolone, colistin, aminoglycoside and macrolide resistance determinants in Gram-negative bacteria. J Microbiol Methods  2022; 196: 106472. 10.1016/j.mimet.2022.106472 PubMed DOI

Gomes  C, Martínez-Puchol  S, Palma  N  et al.  Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Crit Rev Microbiol  2017; 43: 1–30. 10.3109/1040841X.2015.1136261 PubMed DOI

Gomes  C, Ruiz-Roldán  L, Mateu  J  et al.  Azithromycin resistance levels and mechanisms in Escherichia coli. Sci Rep  2019; 9: 6089. 10.1038/s41598-019-42423-3 PubMed DOI PMC

Nguyen  MCP, Woerther  PL, Bouvet  M  et al.  Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis  2009; 15: 1648–50. 10.3201/eid1510.090696 PubMed DOI PMC

Bizot  E, Cointe  A, Bidet  P  et al.  Azithromycin resistance in Shiga-toxin producing Escherichia coli in France between 2004 and 2020 and detection of mef(C)- mph(G) genes. Antimicrob Agents Chemother  2021; 66: e0194921. 10.1128/AAC.01949-21 PubMed DOI PMC

European Commission . Commission implementing decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (2013/652/EU). https://eur-lex.europa.eu/eli/dec_impl/2013/652/oj.

European Commission . Commission implementing decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing implementing decision 2013/652/EU. (2020/1729/EU). https://eur-lex.europa.eu/eli/dec_impl/2020/1729/oj.

European Food Safety Authority, ECDC . The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J  2023; 21: e07867. 10.2903/j.efsa.2023.7867 PubMed DOI PMC

European Food Safety Authority, Aerts  M, Battisti  A  et al.  Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J  2019; 17: 5709. 10.2903/j.efsa.2019.5709 PubMed DOI PMC

Bolger  AM, Lohse  M, Usadel  B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics  2014; 30: 2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Nurk  S, Meleshko  D, Korobeynikov  A  et al.  metaSPAdes: a new versatile metagenomic assembler. Genome Res  2017; 27: 824–34. 10.1101/gr.213959.116 PubMed DOI PMC

Gurevich  A, Saveliev  V, Vyahhi  N  et al.  QUAST: quality assessment tool for genome assemblies. Bioinformatics  2013; 29: 1072–5. 10.1093/bioinformatics/btt086 PubMed DOI PMC

Bortolaia  V, Kaas  RS, Ruppe  E  et al.  ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother  2020; 75: 3491–500. 10.1093/jac/dkaa345 PubMed DOI PMC

Gunell  M, Kotilainen  P, Jalava  J  et al.  In vitro activity of azithromycin against nontyphoidal Salmonella enterica. Antimicrob Agents Chemother  2010; 54: 3498–501. 10.1128/AAC.01678-09 PubMed DOI PMC

Zhang  S, den Bakker  HC, Li  S  et al.  SeqSero2: rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl Environ Microbiol  2019; 85: e01746-19. 10.1128/AEM.01746-19 PubMed DOI PMC

Carattoli  A, Zankari  E, García-Fernández  A  et al.  In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother  2014; 58: 3895–903. 10.1128/AAC.02412-14 PubMed DOI PMC

Siguier  P. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res  2006; 34: D32–6. 10.1093/nar/gkj014 PubMed DOI PMC

Wickham  H. Ggplot2: Elegant Graphics for Data Analysis. 2nd edn. Springer International Publishing, 2016.

Allaire  JJ, Gandrud  C, Russell  K  et al. NetworkD3: D3 JavaScript Network Graphs from R. 2017. https://CRAN.R-project.org/package=networkD3.

Hansen  KH, Bortolaia  V, Nielsen  CA  et al.  Host-specific patterns of genetic diversity among IncI1-Iγ and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl Environ Microbiol  2016; 82: 4705–14. 10.1128/AEM.00495-16 PubMed DOI PMC

Andrews  S. FastQC: A quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bushnell  B, Rood  J, Singer  E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One  2017; 12: e0185056. 10.1371/journal.pone.0185056 PubMed DOI PMC

Bankevich  A, Nurk  S, Antipov  D  et al.  SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol  2012; 19: 455–77. 10.1089/cmb.2012.0021 PubMed DOI PMC

Xiang  Y, Wu  F, Chai  Y  et al.  A new plasmid carrying mphA causes prevalence of azithromycin resistance in enterotoxigenic Escherichia coli serogroup O6. BMC Microbiol  2020; 20: 247. 10.1186/s12866-020-01927-z PubMed DOI PMC

Noguchi  N, Takada  K, Katayama  J  et al.  Regulation of transcription of the mph(A) gene for macrolide 2-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol  2000; 182: 5052–8. 10.1128/JB.182.18.5052-5058.2000 PubMed DOI PMC

Nair  S, Ashton  P, Doumith  M  et al.  WGS for surveillance of antimicrobial resistance: a pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK population of non-typhoidal Salmonella. J Antimicrob Chemother  2016; 71: 3400–8. 10.1093/jac/dkw318 PubMed DOI

Nonaka  L, Maruyama  F, Suzuki  S  et al.  Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett Appl Microbiol  2015; 61: 1–6. 10.1111/lam.12414 PubMed DOI

Sugimoto  Y, Suzuki  S, Nonaka  L  et al.  The novel mef(C)–mph(G) macrolide resistance genes are conveyed in the environment on various vectors. J Glob Antimicrob Resist  2017; 10: 47–53. 10.1016/j.jgar.2017.03.015 PubMed DOI

González-Santamarina  B, Weber  M, Menge  C  et al.  Comparative genomic analysis of antimicrobial-resistant Escherichia coli from South American camelids in Central Germany. Microorganisms  2022; 10: 1697. 10.3390/microorganisms10091697 PubMed DOI PMC

Irrgang  A, Tenhagen  B-A, Pauly  N  et al.  Characterization of VIM-1-producing E. coli isolated from a German fattening pig farm by an improved isolation procedure. Front Microbiol  2019; 10: 2256. 10.3389/fmicb.2019.02256 PubMed DOI PMC

Ma  Y, Pirolo  M, Subramani  P  et al.  Macrolide resistance and in vitro potentiation by peptidomimetics in porcine clinical Escherichia coli. mSphere  2022; 7: e00402-22. 10.1128/msphere.00402-22 PubMed DOI PMC

Suzuki  S, Kadoya  A, Masuda  N  et al.  Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. J Glob Antimicrob Resist  2022; 29: 360–70. 10.1016/j.jgar.2022.04.024 PubMed DOI

Cai  Y, Tao  J, Jiao  Y  et al.  Phenotypic characteristics and genotypic correlation between Salmonella isolates from a slaughterhouse and retail markets in Yangzhou, China. Int J Food Microbiol  2016; 222: 56–64. 10.1016/j.ijfoodmicro.2016.01.020 PubMed DOI

Zhou  Z, Li  J, Zheng  H  et al.  Diversity of Salmonella isolates and their distribution in a pig slaughterhouse in Huaian, China. Food Control  2017; 78: 238–46. 10.1016/j.foodcont.2017.02.064 DOI

Toleman  MA, Bennett  PM, Walsh  TR. ISCR elements: novel gene-capturing systems of the 21st century?  Microbiol Mol Biol  2006; 70: 296–316. 10.1128/MMBR.00048-05 PubMed DOI PMC

Liu  X, Yang  X, Ye  L  et al.  Genetic characterization of a conjugative plasmid that encodes azithromycin resistance in Enterobacteriaceae. Microbiol Spectr  2022; 10: e00788-22. 10.1128/spectrum.00788-22 PubMed DOI PMC

Harmer  CJ, Holt  KE, Hall  RM. A type 2 A/C2 plasmid carrying the aacC4 apramycin resistance gene and the erm(42) erythromycin resistance gene recovered from two Salmonella enterica serovars. J Antimicrob Chemother  2015; 70: 1021–5. 10.1093/jac/dku489 PubMed DOI

Chiou  C-S, Hong  Y-P, Wang  Y-W  et al.  Antimicrobial resistance and mechanisms of azithromycin resistance in nontyphoidal Salmonella isolates in Taiwan, 2017 to 2018. Microbiol Spectr  2023; 11: e03364-22. 10.1128/spectrum.03364-22 PubMed DOI PMC

Kono  M. Purification and characterization of macrolide 2′-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett  1992; 97: 89–94. 10.1016/0378-1097(92)90369-y PubMed DOI

Chesneau  O, Tsvetkova  K, Courvalin  P. Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett  2007; 269: 317–22. 10.1111/j.1574-6968.2007.00643.x PubMed DOI

Lund  D, Kieffer  N, Parras-Moltó  M  et al.  Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microb Genomics  2022; 8: 000770. 10.1099/mgen.0.000770 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...