Azithromycin resistance in Escherichia coli and Salmonella from food-producing animals and meat in Europe
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
European Union Reference Laboratory for Antimicrobial Resistance
PubMed
38775752
PubMed Central
PMC11215539
DOI
10.1093/jac/dkae161
PII: 7679708
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie MeSH
- azithromycin * farmakologie MeSH
- bakteriální geny MeSH
- bakteriální léková rezistence * genetika MeSH
- epidemiologické monitorování MeSH
- Escherichia coli * účinky léků genetika MeSH
- genotyp MeSH
- infekce vyvolané Escherichia coli mikrobiologie MeSH
- makrolidy farmakologie MeSH
- maso * mikrobiologie MeSH
- mikrobiální testy citlivosti * MeSH
- plazmidy genetika MeSH
- prasata MeSH
- Salmonella * účinky léků genetika izolace a purifikace MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- antibakteriální látky * MeSH
- azithromycin * MeSH
- makrolidy MeSH
OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.
Animal and Plant Health Agency Weybridge UK
Austrian Agency for Health and Food Safety Graz Austria
Bacteriology Serology Laboratory Veterinary Services Cyprus
Central Veterinary Research Laboratory Kildare Ireland
Croatian Veterinary Institute Zagreb Croatia
Danish Veterinary and Food Administration Ringsted Denmark
Department of Biological Sciences Texas Tech University Lubbock TX USA
Department of Pathobiology Ghent University Merelbeke Belgium
DIANA Lab Dept of Computer Science and Biomedical Informatics University of Thessaly Lamia Greece
European Food Safety Authority Parma Italy
French Agency for Food Environmental and Occupational Health and Safety Maisons Alfort France
German Federal Institute for Risk Assessment Berlin Germany
Institute for Diagnosis and Animal Health Bucharest Romania
Institute for Hygiene and Veterinary Public Health Bucharest Romania
Institute for Microbiology and Parasitology Ljubljana Slovenia
Institute of Food Safety Animal Health and Environment BIOR Riga Latvia
Instituto Nacional de Investigação Agrária e Veterinária Oeiras Portugal
Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M Aleandri' Rome Italy
Jockey Club College of Veterinary Medicine and Life Sciences Kowloon Hong Kong
Laboratoire de Médecine Vétérinaire de l'État Dudelange Luxembourg
National Diagnostic and Research Veterinary Institute Sofia Bulgaria
National Food and Veterinary Risk Assessment Institute Vilnius Lithuania
National Food Chain Safety Office Veterinary Diagnostic Directorate Budapest Hungary
National Veterinary Research Institute Pulawy Poland
Public Health Laboratory Valletta Malta
Research Group for Genomic Epidemiology Technical University of Denmark Kongens Lyngby Denmark
School of Veterinary Medicine Texas Tech University Amarillo TX USA
Spanish Agency for Food Safety and Nutrition Madrid Spain
State Veterinary and Food Institute Dolny Kubin Slovakia
State Veterinary Institute Prague Czech Republic
Statens Serum Institut Copenhagen Denmark
Veterinary Laboratory of Chalkis Chalkis Greece
Vetsuisse Faculty Institute of Veterinary Bacteriology University of Bern Bern Switzerland
Wageningen Bioveterinary Research Part of Wageningen University and Research Lelystad Netherlands
Zobrazit více v PubMed
WHO . The WHO list of Critically Important Antimicrobials. 2019. https://www.who.int/groups/advisory-group-on-the-who-list-of-critically-important-antimicrobials.
Hooda Y, Sajib MS, Rahman H et al. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis 2019; 13: e0007868. 10.1371/journal.pntd.0007868 PubMed DOI PMC
Lübbert C. Antimicrobial therapy of acute diarrhoea: a clinical review. Expert Rev Anti Infect Ther 2016; 14: 193–206. 10.1586/14787210.2016.1128824 PubMed DOI
Darton TC, Tuyen HT, The HC et al. Azithromycin resistance in Shigella spp. in Southeast Asia. Antimicrob Agents Chemother 2018; 62: e01748-17. 10.1128/AAC.01748-17 PubMed DOI PMC
Timmermans M, Latour S, Ceyssens P-J et al. The AMR-ARRAY: a modular bead array detecting β-lactam, (fluoro) quinolone, colistin, aminoglycoside and macrolide resistance determinants in Gram-negative bacteria. J Microbiol Methods 2022; 196: 106472. 10.1016/j.mimet.2022.106472 PubMed DOI
Gomes C, Martínez-Puchol S, Palma N et al. Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Crit Rev Microbiol 2017; 43: 1–30. 10.3109/1040841X.2015.1136261 PubMed DOI
Gomes C, Ruiz-Roldán L, Mateu J et al. Azithromycin resistance levels and mechanisms in Escherichia coli. Sci Rep 2019; 9: 6089. 10.1038/s41598-019-42423-3 PubMed DOI PMC
Nguyen MCP, Woerther PL, Bouvet M et al. Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis 2009; 15: 1648–50. 10.3201/eid1510.090696 PubMed DOI PMC
Bizot E, Cointe A, Bidet P et al. Azithromycin resistance in Shiga-toxin producing Escherichia coli in France between 2004 and 2020 and detection of mef(C)- mph(G) genes. Antimicrob Agents Chemother 2021; 66: e0194921. 10.1128/AAC.01949-21 PubMed DOI PMC
European Commission . Commission implementing decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (2013/652/EU). https://eur-lex.europa.eu/eli/dec_impl/2013/652/oj.
European Commission . Commission implementing decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing implementing decision 2013/652/EU. (2020/1729/EU). https://eur-lex.europa.eu/eli/dec_impl/2020/1729/oj.
European Food Safety Authority, ECDC . The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21: e07867. 10.2903/j.efsa.2023.7867 PubMed DOI PMC
European Food Safety Authority, Aerts M, Battisti A et al. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J 2019; 17: 5709. 10.2903/j.efsa.2019.5709 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Nurk S, Meleshko D, Korobeynikov A et al. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27: 824–34. 10.1101/gr.213959.116 PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29: 1072–5. 10.1093/bioinformatics/btt086 PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75: 3491–500. 10.1093/jac/dkaa345 PubMed DOI PMC
Gunell M, Kotilainen P, Jalava J et al. In vitro activity of azithromycin against nontyphoidal Salmonella enterica. Antimicrob Agents Chemother 2010; 54: 3498–501. 10.1128/AAC.01678-09 PubMed DOI PMC
Zhang S, den Bakker HC, Li S et al. SeqSero2: rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl Environ Microbiol 2019; 85: e01746-19. 10.1128/AEM.01746-19 PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895–903. 10.1128/AAC.02412-14 PubMed DOI PMC
Siguier P. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34: D32–6. 10.1093/nar/gkj014 PubMed DOI PMC
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. 2nd edn. Springer International Publishing, 2016.
Allaire JJ, Gandrud C, Russell K et al. NetworkD3: D3 JavaScript Network Graphs from R. 2017. https://CRAN.R-project.org/package=networkD3.
Hansen KH, Bortolaia V, Nielsen CA et al. Host-specific patterns of genetic diversity among IncI1-Iγ and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl Environ Microbiol 2016; 82: 4705–14. 10.1128/AEM.00495-16 PubMed DOI PMC
Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 2017; 12: e0185056. 10.1371/journal.pone.0185056 PubMed DOI PMC
Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455–77. 10.1089/cmb.2012.0021 PubMed DOI PMC
Xiang Y, Wu F, Chai Y et al. A new plasmid carrying mphA causes prevalence of azithromycin resistance in enterotoxigenic Escherichia coli serogroup O6. BMC Microbiol 2020; 20: 247. 10.1186/s12866-020-01927-z PubMed DOI PMC
Noguchi N, Takada K, Katayama J et al. Regulation of transcription of the mph(A) gene for macrolide 2-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol 2000; 182: 5052–8. 10.1128/JB.182.18.5052-5058.2000 PubMed DOI PMC
Nair S, Ashton P, Doumith M et al. WGS for surveillance of antimicrobial resistance: a pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK population of non-typhoidal Salmonella. J Antimicrob Chemother 2016; 71: 3400–8. 10.1093/jac/dkw318 PubMed DOI
Nonaka L, Maruyama F, Suzuki S et al. Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett Appl Microbiol 2015; 61: 1–6. 10.1111/lam.12414 PubMed DOI
Sugimoto Y, Suzuki S, Nonaka L et al. The novel mef(C)–mph(G) macrolide resistance genes are conveyed in the environment on various vectors. J Glob Antimicrob Resist 2017; 10: 47–53. 10.1016/j.jgar.2017.03.015 PubMed DOI
González-Santamarina B, Weber M, Menge C et al. Comparative genomic analysis of antimicrobial-resistant Escherichia coli from South American camelids in Central Germany. Microorganisms 2022; 10: 1697. 10.3390/microorganisms10091697 PubMed DOI PMC
Irrgang A, Tenhagen B-A, Pauly N et al. Characterization of VIM-1-producing E. coli isolated from a German fattening pig farm by an improved isolation procedure. Front Microbiol 2019; 10: 2256. 10.3389/fmicb.2019.02256 PubMed DOI PMC
Ma Y, Pirolo M, Subramani P et al. Macrolide resistance and in vitro potentiation by peptidomimetics in porcine clinical Escherichia coli. mSphere 2022; 7: e00402-22. 10.1128/msphere.00402-22 PubMed DOI PMC
Suzuki S, Kadoya A, Masuda N et al. Macrolide resistance genes and mobile genetic elements in waterways from pig farms to the sea in Taiwan. J Glob Antimicrob Resist 2022; 29: 360–70. 10.1016/j.jgar.2022.04.024 PubMed DOI
Cai Y, Tao J, Jiao Y et al. Phenotypic characteristics and genotypic correlation between Salmonella isolates from a slaughterhouse and retail markets in Yangzhou, China. Int J Food Microbiol 2016; 222: 56–64. 10.1016/j.ijfoodmicro.2016.01.020 PubMed DOI
Zhou Z, Li J, Zheng H et al. Diversity of Salmonella isolates and their distribution in a pig slaughterhouse in Huaian, China. Food Control 2017; 78: 238–46. 10.1016/j.foodcont.2017.02.064 DOI
Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol 2006; 70: 296–316. 10.1128/MMBR.00048-05 PubMed DOI PMC
Liu X, Yang X, Ye L et al. Genetic characterization of a conjugative plasmid that encodes azithromycin resistance in Enterobacteriaceae. Microbiol Spectr 2022; 10: e00788-22. 10.1128/spectrum.00788-22 PubMed DOI PMC
Harmer CJ, Holt KE, Hall RM. A type 2 A/C2 plasmid carrying the aacC4 apramycin resistance gene and the erm(42) erythromycin resistance gene recovered from two Salmonella enterica serovars. J Antimicrob Chemother 2015; 70: 1021–5. 10.1093/jac/dku489 PubMed DOI
Chiou C-S, Hong Y-P, Wang Y-W et al. Antimicrobial resistance and mechanisms of azithromycin resistance in nontyphoidal Salmonella isolates in Taiwan, 2017 to 2018. Microbiol Spectr 2023; 11: e03364-22. 10.1128/spectrum.03364-22 PubMed DOI PMC
Kono M. Purification and characterization of macrolide 2′-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett 1992; 97: 89–94. 10.1016/0378-1097(92)90369-y PubMed DOI
Chesneau O, Tsvetkova K, Courvalin P. Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett 2007; 269: 317–22. 10.1111/j.1574-6968.2007.00643.x PubMed DOI
Lund D, Kieffer N, Parras-Moltó M et al. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microb Genomics 2022; 8: 000770. 10.1099/mgen.0.000770 PubMed DOI PMC