Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity

. 2024 Jun 01 ; 45 (8) : e26682.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38825977

Grantová podpora
103703 CIHR - Canada
106469 CIHR - Canada
142255 CIHR - Canada

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.

CIBERSAM Instituto de Salud Carlos 3 Barcelona Spain

Clinical Neuroimaging Laboratory Galway Neuroscience Centre College of Medicine Nursing and Health Sciences University of Galway Galway Ireland

Core Facility Brainimaging Faculty of Medicine University of Marburg Germany

Department of Behavioural Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway

Department of Child Adolescent Psychiatry and Psychotherapy University of Münster Münster Germany

Department of Child and Adolescent Psychiatry Psychology Erasmus University Medical Center Rotterdam The Netherlands

Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden

Department of Complex Systems Institute of Computer Science Czech Academy of Sciences Prague Czech Republic

Department of Cybernetics Czech Technical University Prague Czech Republic

Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden

Department of Medical Neuroscience Dalhousie University Halifax Nova Scotia Canada

Department of Neurology Division of Clinical Neuroscience Oslo University Hospital Oslo Norway

Department of Psychiatry and Behavioral Sciences University of Minnesota Minneapolis Minnesota USA

Department of Psychiatry and Mental Health University of Cape Town Cape Town South Africa

Department of Psychiatry and Psychotherapy Jena University Hospital Jena Germany

Department of Psychiatry and Psychotherapy Philipps University Marburg Marburg Germany

Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada

Department of Psychiatry Psychosomatic Medicine and Psychotherapy Goethe University Frankfurt University Hospital Frankfurt Germany

Department of Psychiatry University Medical Center Groningen University of Groningen Groningen The Netherlands

Department of Psychiatry University Medical Center Utrecht Utrecht The Netherlands

Department of Psychiatry University of California San Diego La Jolla California USA

Department of Psychiatry University of Vermont College of Medicine Burlington Vermont USA

Department of Psychology Education and Child Studies Erasmus University Rotterdam Rotterdam The Netherlands

Department of Psychology Stanford University Stanford California USA

Department of Psychology University of Minnesota Minneapolis Minnesota USA

Desert Pacific MIRECC VA San Diego Healthcare San Diego California USA

Discipline of Psychiatry and Mental Health School of Clinical Medicine Faculty of Medicine and Health University of New South Wales Sydney New South Wales Australia

Division of Neuroscience Psychiatry and Psychobiology Unit IRCCS San Raffaele Scientific Institute Milan Italy

FIDMAG Germanes Hospitalàries Research Foundation Barcelona Spain

German Center for Mental Health Site Jena Magdeburg Halle Germany

Imaging Genetics Center Mark and Mary Stevens Neuroimaging and Informatics Institute Keck School of Medicine University of Southern California Marina del Rey California USA

Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain

Institut d'Investigacions Biomèdiques August Pi i Sunyer CIBERSAM Instituto de Salud Carlos 3 Institute of Neuroscience University of Barcelona Hospital Clínic Barcelona Spain

Institut d'Investigacions Biomèdiques August Pi i Sunyer CIBERSAM Instituto de Salud Carlos 3 University of Barcelona Barcelona Spain

Institute for Mental and Physical Health and Clinical Translation School of Medicine Barwon Health Deakin University Geelong Victoria Australia

Institute for Translational Neuroscience University of Münster Münster Germany

Institute for Translational Psychiatry University of Münster Münster Germany

Institute of Behavioral Science Feinstein Institutes for Medical Research Manhasset New York USA

Institute of Clinical Medicine Department of Neurology University of Oslo Oslo Norway

Institute of Clinical Medicine Norwegian Centre for Mental Disorders Research University of Oslo and Division of Mental Health and Addiction Oslo University Hospital Oslo Norway

Institute of Neuroscience and Physiology Sahlgrenska Academy at Gothenburg University Gothenburg Sweden

Laureate Institute for Brain Research Tulsa Oklahoma USA

Meditation Research Program Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA

Minneapolis VA Health Care System Minneapolis Minnesota USA

National Institute of Mental Health Klecany Czech Republic

Neuroscience Institute University of Cape Town Cape Town South Africa

Neuroscience Research Australia Randwick New South Wales Australia

Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA

Research Group in Psychiatry GIPSI Department of Psychiatry Faculty of Medicine Universidad de Antioquia Medellin Colombia

Research Group Instituto de Alta Tecnología Médica Ayudas diagnósticas SURA Medellin Colombia

School of Biomedical Sciences Faculty of Medicine and Health University of New South Wales Sydney New South Wales Australia

South African MRC Unit on Risk and Resilience in Mental Disorders University of Cape Town Cape Town South Africa

Turner Institute for Brain and Mental Health School of Psychological Sciences and Monash Biomedical Imaging Monash University Melbourne Victoria Australia

UCLA Center for Neurobehavioral Genetics Los Angeles California USA

Unit for Psychosomatics and C L Psychiatry for Adults Oslo University Hospital Oslo Norway

Unit for Psychosomatics CL Outpatient Clinic for Adults Division of Mental Health and Addiction Oslo University Hospital Oslo Norway

University of British Columbia Vancouver British Columbia Canada

Vita Salute San Raffaele University Milan Italy

West Region Institute of Mental Health Singapore Singapore

Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

Zobrazit více v PubMed

Alexander‐Bloch, A. , Giedd, J. N. , & Bullmore, E. (2013). Imaging structural co‐variance between human brain regions. Nature Reviews Neuroscience, 14(5), 322–336. 10.1038/nrn3465 PubMed DOI PMC

Behdinan, T. , Foussias, G. , Wheeler, A. L. , Stefanik, L. , Felsky, D. , Remington, G. , Rajji, T. K. , Mallar Chakravarty, M. , & Voineskos, A. N. (2015). Neuroimaging predictors of functional outcomes in schizophrenia at baseline and 6‐month follow‐up. Schizophrenia Research, 169(1–3), 69–75. 10.1016/j.schres.2015.10.023 PubMed DOI PMC

Cao, Z. , Cupertino, R. B. , Ottino‐Gonzalez, J. , Murphy, A. , Pancholi, D. , Juliano, A. , Chaarani, B. , Albaugh, M. , Yuan, D. , Schwab, N. , Stafford, J. , Goudriaan, A. E. , Hutchison, K. , Li, C. S. R. , Luijten, M. , Groefsema, M. , Momenan, R. , Schmaal, L. , Sinha, R. , … ENIGMA Addiction Working Group . (2023). Cortical profiles of numerous psychiatric disorders and normal development share a common pattern. Molecular Psychiatry, 28(2), 698–709. 10.1038/s41380-022-01855-6 PubMed DOI

Cohen, D. E. , Kim, H. , Levine, A. , Devanand, D. P. , Lee, S. , & Goldberg, T. E. (2023, December 4). Effects of age on the relationship between sleep quality and cognitive performance: Findings from the human connectome project‐aging cohort. International Psychogeriatrics, 1–11. 10.1017/S1041610223000911 PubMed DOI PMC

Comrey, A. L. , & Lee, H. B. (2013). A first course in factor analysis. Psychology Press. 10.4324/9781315827506 DOI

Cruciani, F. , Aparo, A. , Brusini, L. , Combi, C. , Storti, S. F. , Giugno, R. , Menegaz, G. , Boscolo Galazzo, I. , & Alzheimer's Disease Neuroimaging Initiative . (2024). Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's disease. Journal of Biomedical Informatics, 149, 104569. 10.1016/j.jbi.2023.104569 PubMed DOI

Dahl, A. , Eilertsen, E. M. , Rodriguez‐Cabello, S. F. , Norbom, L. B. , Tandberg, A. D. , Leonardsen, E. , Lee, S. H. , Ystrom, E. , Tamnes, C. K. , Alnæs, D. , & Westlye, L. T. (2024). Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions. Developmental Cognitive Neuroscience, 65, 101339. 10.1016/j.dcn.2023.101339 PubMed DOI PMC

Goodkind, M. , Eickhoff, S. B. , Oathes, D. J. , Jiang, Y. , Chang, A. , Jones‐Hagata, L. B. , Ortega, B. N. , Zaiko, Y. V. , Roach, E. L. , Korgaonkar, M. S. , Grieve, S. M. , Galatzer‐Levy, I. , Fox, P. T. , & Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305–315. 10.1001/jamapsychiatry.2014.2206 PubMed DOI PMC

Hajek, T. , Calkin, C. , Blagdon, R. , Slaney, C. , Uher, R. , & Alda, M. (2014). Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology, 39(1740‐634X (Electronic)), 2910–2918. PubMed PMC

Hajek, T. , Kopecek, M. , Hoschl, C. , & Alda, M. (2012). Reduced hippocampal volumes in bipolar disorders are masked by exposure to lithium—Meta‐analysis. Journal of Psychiatry and Neuroscience, 37, 333–343. PubMed PMC

Hajek, T. , McIntyre, R. , & Alda, M. (2016). Bipolar disorders, type 2 diabetes mellitus, and the brain. Current Opinion in Psychiatry, 29(0951‐7367 (Linking)), 1–6. PubMed

Hettwer, M. D. , Larivière, S. , Park, B. Y. , van den Heuvel, O. A. , Schmaal, L. , Andreassen, O. A. , Ching, C. R. K. , Hoogman, M. , Buitelaar, J. , van Rooij, D. , Veltman, D. J. , Stein, D. J. , Franke, B. , van Erp, T. G. M. , ENIGMA ADHD Working Group , ENIGMA Autism Working Group , van Rooij, D. , ENIGMA Bipolar Disorder Working Group , ENIGMA Major Depression Working Group , … Valk, S. L. (2022). Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nature Communications, 13(1), 6851. 10.1038/s41467-022-34367-6 PubMed DOI PMC

Hibar, D. P. , Westlye, L. T. , Doan, N. T. , Jahanshad, N. , Cheung, J. W. , Ching, C. R. K. , Versace, A. , Bilderbeck, A. C. , Uhlmann, A. , Mwangi, B. , Krämer, B. , Overs, B. , Hartberg, C. B. , Abé, C. , Dima, D. , Grotegerd, D. , Sprooten, E. , Bøen, E. , Jimenez, E. , … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Molecular Psychiatry, 23(4), 932–942. 10.1038/mp.2017.73 PubMed DOI PMC

Hibar, D. P. , Westlye, L. T. , van Erp, T. G. , Rasmussen, J. , Leonardo, C. D. , Faskowitz, J. , Haukvik, U. K. , Hartberg, C. B. , Doan, N. T. , Agartz, I. , & Dale, A. M. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(1476–5578 (Electronic)), 1710–1716. PubMed PMC

Johnson, W. E. , Li, C. , & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127. 10.1093/biostatistics/kxj037 PubMed DOI

Maralakunte, M. , Gupta, V. , Grover, S. , Ahuja, C. K. , Sahoo, S. , Kishore, K. , Vyas, S. , Garg, G. , Singh, P. , & Govind, V. (2023). Cross‐sectional analysis of whole‐brain microstructural changes in adult patients with bipolar and unipolar depression by diffusion kurtosis imaging. The Neuroradiology Journal, 36(2), 176–181. 10.1177/19714009221114446 PubMed DOI PMC

Marek, S. , Tervo‐Clemmens, B. , Calabro, F. J. , Montez, D. F. , Kay, B. P. , Hatoum, A. S. , Donohue, M. R. , Foran, W. , Miller, R. L. , Hendrickson, T. J. , Malone, S. M. , Kandala, S. , Feczko, E. , Miranda‐Dominguez, O. , Graham, A. M. , Earl, E. A. , Perrone, A. J. , Cordova, M. , Doyle, O. , … Dosenbach, N. U. F. (2022). Reproducible brain‐wide association studies require thousands of individuals. Nature, 603(7902), 654–660. 10.1038/s41586-022-04492-9 PubMed DOI PMC

Matsumoto, J. , Fukunaga, M. , Miura, K. , Nemoto, K. , Okada, N. , Hashimoto, N. , Morita, K. , Koshiyama, D. , Ohi, K. , Takahashi, T. , Koeda, M. , Yamamori, H. , Fujimoto, M. , Yasuda, Y. , Ito, S. , Yamazaki, R. , Hasegawa, N. , Narita, H. , Yokoyama, S. , … Hashimoto, R. (2023, August 18). Cerebral cortical structural alteration patterns across four major psychiatric disorders in 5549 individuals. Molecular Psychiatry, 28(11), 4915–4923. 10.1038/s41380-023-02224-7 PubMed DOI PMC

McWhinney, S. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , & Dannlowski, U. (2022). Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness‐ENIGMA study in 2436 individuals. Bipolar Disorders, 24(5), 509–520. 10.1111/bdi.13172 PubMed DOI PMC

McWhinney, S. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , Dannlowski, U. , Díaz‐Zuluaga, A. M. , Elvsåshagen, T. , Eyler, L. T. , Fullerton, J. M. , Goikolea, J. M. , Goltermann, J. , Grotegerd, D. , Haarman, B. C. M. , … for the ENIGMA Bipolar Disorders Working Group . (2021). Association between body mass index and subcortical brain volumes in bipolar disorders‐ENIGMA study in 2735 individuals. Molecular Psychiatry, 26(11), 6806–6819. 10.1038/s41380-021-01098-x PubMed DOI PMC

McWhinney, S. , Brosch, K. , Calhoun, V. D. , Crespo‐Facorro, B. , Crossley, N. A. , Dannlowski, U. , Dickie, E. , Dietze, L. M. F. , Donohoe, G. , du Plessis, S. , Ehrlich, S. , Emsley, R. , Furstova, P. , Glahn, D. C. , Gonzalez‐ Valderrama, A. , Grotegerd, D. , Holleran, L. , Kircher, T. T. J. , Knytl, P. , … Hajek, T. (2022). Obesity and brain structure in schizophrenia—ENIGMA study in 3021 individuals. Molecular Psychiatry, 27(9), 3731–3737. 10.1038/s41380-022-01616-5 PubMed DOI PMC

McWhinney, S. , Kolenic, M. , Franke, K. , Fialova, M. , Knytl, P. , Matejka, M. , Spaniel, F. , & Hajek, T. (2021). Obesity as a risk factor for accelerated brain ageing in first‐episode psychosis‐a longitudinal study. Schizophrenia Bulletin, 47(6), 1772–1781. 10.1093/schbul/sbab064 PubMed DOI PMC

McWhinney, S. R. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , & Dannlowski, U. (2023, February). Mega‐analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants. Psychological Medicine, 27, 1–11. 10.1017/S0033291723000223 PubMed DOI PMC

Opel, N. , Goltermann, J. , Hermesdorf, M. , Berger, K. , Baune, B. T. , & Dannlowski, U. (2020, May). Cross‐disorder analysis of brain structural abnormalities in six major psychiatric disorders—A secondary analysis of mega‐ and meta‐analytical findings from the ENIGMA consortium. Biological Psychiatry, 88(9), S0006322320315857. 10.1016/j.biopsych.2020.04.027 PubMed DOI

Radua, J. , Vieta, E. , Shinohara, R. , Kochunov, P. , Quidé, Y. , Green, M. J. , Weickert, C. S. , Weickert, T. , Bruggemann, J. , Kircher, T. , Nenadić, I. , Cairns, M. J. , Seal, M. , Schall, U. , Henskens, F. , Fullerton, J. M. , Mowry, B. , Pantelis, C. , Lenroot, R. , … Pineda‐Zapata, J. (2020). Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage, 218, 116956. 10.1016/j.neuroimage.2020.116956 PubMed DOI PMC

Reddan, M. C. , Lindquist, M. A. , & Wager, T. D. (2017). Effect size estimation in neuroimaging. JAMA Psychiatry, 74(2168‐6238 (Electronic)), 207–208. PubMed

Rehák Bučková, B. , Mareš, J. , Škoch, A. , Kopal, J. , Tintěra, J. , Dineen, R. , Řasová, K. , & Hlinka, J. (2023). Multimodal‐neuroimaging machine‐learning analysis of motor disability in multiple sclerosis. Brain Imaging and Behavior, 17(1), 18–34. 10.1007/s11682-022-00737-3 PubMed DOI

Schwarz, E. , Doan, N. T. , Pergola, G. , Westlye, L. T. , Kaufmann, T. , Wolfers, T. , Brecheisen, R. , Quarto, T. , Ing, A. J. , di Carlo, P. , Gurholt, T. P. , Harms, R. L. , Noirhomme, Q. , Moberget, T. , Agartz, I. , Andreassen, O. A. , Bellani, M. , Bertolino, A. , Blasi, G. , … The IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium . (2019). Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry, 9(1), 12. 10.1038/s41398-018-0225-4 PubMed DOI PMC

Segal, A. , Parkes, L. , Aquino, K. , Kia, S. M. , Wolfers, T. , Franke, B. , Hoogman, M. , Beckmann, C. F. , Westlye, L. T. , Andreassen, O. A. , Zalesky, A. , Harrison, B. J. , Davey, C. G. , Soriano‐Mas, C. , Cardoner, N. , Tiego, J. , Yücel, M. , Braganza, L. , Suo, C. , … Fornito, A. (2023, August 14). Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nature Neuroscience, 26, 1613–1629. 10.1038/s41593-023-01404-6 PubMed DOI PMC

Sprooten, E. , Franke, B. , & Greven, C. U. (2022). The P‐factor and its genomic and neural equivalents: An integrated perspective. Molecular Psychiatry, 27(1), 38–48. 10.1038/s41380-021-01031-2 PubMed DOI PMC

Stekhoven, D. J. , & Bühlmann, P. (2012). MissForest—Non‐parametric missing value imputation for mixed‐type data. Bioinformatics, 28(1), 112–118. 10.1093/bioinformatics/btr597 PubMed DOI

Thompson, P. M. , Jahanshad, N. , Ching, C. R. K. , Salminen, L. E. , Thomopoulos, S. I. , Bright, J. , Baune, B. T. , Bertolín, S. , Bralten, J. , Bruin, W. B. , Bülow, R. , Chen, J. , Chye, Y. , Dannlowski, U. , de Kovel, C. G. F. , Donohoe, G. , Eyler, L. T. , Faraone, S. V. , Favre, P. , … for the ENIGMA Consortium . (2020). ENIGMA and global neuroscience: A decade of large‐scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 100. 10.1038/s41398-020-0705-1 PubMed DOI PMC

van Erp, T. G. M. , Walton, E. , Hibar, D. P. , Schmaal, L. , Jiang, W. , Glahn, D. C. , Pearlson, G. D. , Yao, N. , Fukunaga, M. , Hashimoto, R. , Okada, N. , Yamamori, H. , Bustillo, J. R. , Clark, V. P. , Agartz, I. , Mueller, B. A. , Cahn, W. , de Zwarte, S. M. C. , Hulshoff Pol, H. E. , … Orhan, F. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry, 84(9), 644–654. 10.1016/j.biopsych.2018.04.023 PubMed DOI PMC

Van Gestel, H. , Franke, K. , Petite, J. , Slaney, C. , Garnham, J. , Helmick, C. , Johnson, K. , Uher, R. , Alda, M. , & Hajek, T. (2019, June 27). Brain age in bipolar disorders: Effects of lithium treatment. Australian & New Zealand Journal of Psychiatry, 53(12), 4867419857814. 10.1177/0004867419857814 PubMed DOI

Woo, C. W. , Chang, L. J. , Lindquist, M. A. , & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(1097‐6256 (Linking)), 365–377. PubMed PMC

Writing Committee for the Attention‐Deficit/Hyperactivity Disorder , Autism Spectrum Disorder , Bipolar Disorder , Major Depressive Disorder , Obsessive‐Compulsive Disorder , Schizophrenia ENIGMA Working Groups , Patel, Y. , Parker, N. , Shin, J. , Howard, D. , French, L. , Thomopoulos, S. I. , Pozzi, E. , Abe, Y. , Abé, C. , Anticevic, A. , Alda, M. , Aleman, A. , Alloza, C. , … Paus, T. (2021). Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry, 78(1), 47–63. 10.1001/jamapsychiatry.2020.2694 PubMed DOI PMC

Yeh, P. H. , Zhu, H. , Nicoletti, M. A. , Hatch, J. P. , Brambilla, P. , & Soares, J. C. (2010). Structural equation modeling and principal component analysis of gray matter volumes in major depressive and bipolar disorders: Differences in latent volumetric structure. Psychiatry Research, 184(0165‐1781 (Print)), 177–185. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...