Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
103703
CIHR - Canada
106469
CIHR - Canada
142255
CIHR - Canada
PubMed
38825977
PubMed Central
PMC11144951
DOI
10.1002/hbm.26682
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, bipolar disorder, body mass index, obesity, principal component analysis, psychiatry,
- MeSH
- analýza hlavních komponent * MeSH
- bipolární porucha * diagnostické zobrazování farmakoterapie patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- obezita * diagnostické zobrazování MeSH
- schizofrenie diagnostické zobrazování patologie farmakoterapie patofyziologie MeSH
- shluková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
CIBERSAM Instituto de Salud Carlos 3 Barcelona Spain
Core Facility Brainimaging Faculty of Medicine University of Marburg Germany
Department of Child Adolescent Psychiatry and Psychotherapy University of Münster Münster Germany
Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
Department of Cybernetics Czech Technical University Prague Czech Republic
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Medical Neuroscience Dalhousie University Halifax Nova Scotia Canada
Department of Neurology Division of Clinical Neuroscience Oslo University Hospital Oslo Norway
Department of Psychiatry and Behavioral Sciences University of Minnesota Minneapolis Minnesota USA
Department of Psychiatry and Mental Health University of Cape Town Cape Town South Africa
Department of Psychiatry and Psychotherapy Jena University Hospital Jena Germany
Department of Psychiatry and Psychotherapy Philipps University Marburg Marburg Germany
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry University Medical Center Utrecht Utrecht The Netherlands
Department of Psychiatry University of California San Diego La Jolla California USA
Department of Psychiatry University of Vermont College of Medicine Burlington Vermont USA
Department of Psychology Stanford University Stanford California USA
Department of Psychology University of Minnesota Minneapolis Minnesota USA
Desert Pacific MIRECC VA San Diego Healthcare San Diego California USA
FIDMAG Germanes Hospitalàries Research Foundation Barcelona Spain
German Center for Mental Health Site Jena Magdeburg Halle Germany
Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Institute for Translational Neuroscience University of Münster Münster Germany
Institute for Translational Psychiatry University of Münster Münster Germany
Institute of Behavioral Science Feinstein Institutes for Medical Research Manhasset New York USA
Institute of Clinical Medicine Department of Neurology University of Oslo Oslo Norway
Laureate Institute for Brain Research Tulsa Oklahoma USA
Minneapolis VA Health Care System Minneapolis Minnesota USA
National Institute of Mental Health Klecany Czech Republic
Neuroscience Institute University of Cape Town Cape Town South Africa
Neuroscience Research Australia Randwick New South Wales Australia
Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
Research Group Instituto de Alta Tecnología Médica Ayudas diagnósticas SURA Medellin Colombia
UCLA Center for Neurobehavioral Genetics Los Angeles California USA
Unit for Psychosomatics and C L Psychiatry for Adults Oslo University Hospital Oslo Norway
University of British Columbia Vancouver British Columbia Canada
Vita Salute San Raffaele University Milan Italy
West Region Institute of Mental Health Singapore Singapore
Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
Zobrazit více v PubMed
Alexander‐Bloch, A. , Giedd, J. N. , & Bullmore, E. (2013). Imaging structural co‐variance between human brain regions. Nature Reviews Neuroscience, 14(5), 322–336. 10.1038/nrn3465 PubMed DOI PMC
Behdinan, T. , Foussias, G. , Wheeler, A. L. , Stefanik, L. , Felsky, D. , Remington, G. , Rajji, T. K. , Mallar Chakravarty, M. , & Voineskos, A. N. (2015). Neuroimaging predictors of functional outcomes in schizophrenia at baseline and 6‐month follow‐up. Schizophrenia Research, 169(1–3), 69–75. 10.1016/j.schres.2015.10.023 PubMed DOI PMC
Cao, Z. , Cupertino, R. B. , Ottino‐Gonzalez, J. , Murphy, A. , Pancholi, D. , Juliano, A. , Chaarani, B. , Albaugh, M. , Yuan, D. , Schwab, N. , Stafford, J. , Goudriaan, A. E. , Hutchison, K. , Li, C. S. R. , Luijten, M. , Groefsema, M. , Momenan, R. , Schmaal, L. , Sinha, R. , … ENIGMA Addiction Working Group . (2023). Cortical profiles of numerous psychiatric disorders and normal development share a common pattern. Molecular Psychiatry, 28(2), 698–709. 10.1038/s41380-022-01855-6 PubMed DOI
Cohen, D. E. , Kim, H. , Levine, A. , Devanand, D. P. , Lee, S. , & Goldberg, T. E. (2023, December 4). Effects of age on the relationship between sleep quality and cognitive performance: Findings from the human connectome project‐aging cohort. International Psychogeriatrics, 1–11. 10.1017/S1041610223000911 PubMed DOI PMC
Comrey, A. L. , & Lee, H. B. (2013). A first course in factor analysis. Psychology Press. 10.4324/9781315827506 DOI
Cruciani, F. , Aparo, A. , Brusini, L. , Combi, C. , Storti, S. F. , Giugno, R. , Menegaz, G. , Boscolo Galazzo, I. , & Alzheimer's Disease Neuroimaging Initiative . (2024). Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's disease. Journal of Biomedical Informatics, 149, 104569. 10.1016/j.jbi.2023.104569 PubMed DOI
Dahl, A. , Eilertsen, E. M. , Rodriguez‐Cabello, S. F. , Norbom, L. B. , Tandberg, A. D. , Leonardsen, E. , Lee, S. H. , Ystrom, E. , Tamnes, C. K. , Alnæs, D. , & Westlye, L. T. (2024). Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions. Developmental Cognitive Neuroscience, 65, 101339. 10.1016/j.dcn.2023.101339 PubMed DOI PMC
Goodkind, M. , Eickhoff, S. B. , Oathes, D. J. , Jiang, Y. , Chang, A. , Jones‐Hagata, L. B. , Ortega, B. N. , Zaiko, Y. V. , Roach, E. L. , Korgaonkar, M. S. , Grieve, S. M. , Galatzer‐Levy, I. , Fox, P. T. , & Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305–315. 10.1001/jamapsychiatry.2014.2206 PubMed DOI PMC
Hajek, T. , Calkin, C. , Blagdon, R. , Slaney, C. , Uher, R. , & Alda, M. (2014). Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology, 39(1740‐634X (Electronic)), 2910–2918. PubMed PMC
Hajek, T. , Kopecek, M. , Hoschl, C. , & Alda, M. (2012). Reduced hippocampal volumes in bipolar disorders are masked by exposure to lithium—Meta‐analysis. Journal of Psychiatry and Neuroscience, 37, 333–343. PubMed PMC
Hajek, T. , McIntyre, R. , & Alda, M. (2016). Bipolar disorders, type 2 diabetes mellitus, and the brain. Current Opinion in Psychiatry, 29(0951‐7367 (Linking)), 1–6. PubMed
Hettwer, M. D. , Larivière, S. , Park, B. Y. , van den Heuvel, O. A. , Schmaal, L. , Andreassen, O. A. , Ching, C. R. K. , Hoogman, M. , Buitelaar, J. , van Rooij, D. , Veltman, D. J. , Stein, D. J. , Franke, B. , van Erp, T. G. M. , ENIGMA ADHD Working Group , ENIGMA Autism Working Group , van Rooij, D. , ENIGMA Bipolar Disorder Working Group , ENIGMA Major Depression Working Group , … Valk, S. L. (2022). Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nature Communications, 13(1), 6851. 10.1038/s41467-022-34367-6 PubMed DOI PMC
Hibar, D. P. , Westlye, L. T. , Doan, N. T. , Jahanshad, N. , Cheung, J. W. , Ching, C. R. K. , Versace, A. , Bilderbeck, A. C. , Uhlmann, A. , Mwangi, B. , Krämer, B. , Overs, B. , Hartberg, C. B. , Abé, C. , Dima, D. , Grotegerd, D. , Sprooten, E. , Bøen, E. , Jimenez, E. , … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Molecular Psychiatry, 23(4), 932–942. 10.1038/mp.2017.73 PubMed DOI PMC
Hibar, D. P. , Westlye, L. T. , van Erp, T. G. , Rasmussen, J. , Leonardo, C. D. , Faskowitz, J. , Haukvik, U. K. , Hartberg, C. B. , Doan, N. T. , Agartz, I. , & Dale, A. M. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(1476–5578 (Electronic)), 1710–1716. PubMed PMC
Johnson, W. E. , Li, C. , & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127. 10.1093/biostatistics/kxj037 PubMed DOI
Maralakunte, M. , Gupta, V. , Grover, S. , Ahuja, C. K. , Sahoo, S. , Kishore, K. , Vyas, S. , Garg, G. , Singh, P. , & Govind, V. (2023). Cross‐sectional analysis of whole‐brain microstructural changes in adult patients with bipolar and unipolar depression by diffusion kurtosis imaging. The Neuroradiology Journal, 36(2), 176–181. 10.1177/19714009221114446 PubMed DOI PMC
Marek, S. , Tervo‐Clemmens, B. , Calabro, F. J. , Montez, D. F. , Kay, B. P. , Hatoum, A. S. , Donohue, M. R. , Foran, W. , Miller, R. L. , Hendrickson, T. J. , Malone, S. M. , Kandala, S. , Feczko, E. , Miranda‐Dominguez, O. , Graham, A. M. , Earl, E. A. , Perrone, A. J. , Cordova, M. , Doyle, O. , … Dosenbach, N. U. F. (2022). Reproducible brain‐wide association studies require thousands of individuals. Nature, 603(7902), 654–660. 10.1038/s41586-022-04492-9 PubMed DOI PMC
Matsumoto, J. , Fukunaga, M. , Miura, K. , Nemoto, K. , Okada, N. , Hashimoto, N. , Morita, K. , Koshiyama, D. , Ohi, K. , Takahashi, T. , Koeda, M. , Yamamori, H. , Fujimoto, M. , Yasuda, Y. , Ito, S. , Yamazaki, R. , Hasegawa, N. , Narita, H. , Yokoyama, S. , … Hashimoto, R. (2023, August 18). Cerebral cortical structural alteration patterns across four major psychiatric disorders in 5549 individuals. Molecular Psychiatry, 28(11), 4915–4923. 10.1038/s41380-023-02224-7 PubMed DOI PMC
McWhinney, S. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , & Dannlowski, U. (2022). Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness‐ENIGMA study in 2436 individuals. Bipolar Disorders, 24(5), 509–520. 10.1111/bdi.13172 PubMed DOI PMC
McWhinney, S. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , Dannlowski, U. , Díaz‐Zuluaga, A. M. , Elvsåshagen, T. , Eyler, L. T. , Fullerton, J. M. , Goikolea, J. M. , Goltermann, J. , Grotegerd, D. , Haarman, B. C. M. , … for the ENIGMA Bipolar Disorders Working Group . (2021). Association between body mass index and subcortical brain volumes in bipolar disorders‐ENIGMA study in 2735 individuals. Molecular Psychiatry, 26(11), 6806–6819. 10.1038/s41380-021-01098-x PubMed DOI PMC
McWhinney, S. , Brosch, K. , Calhoun, V. D. , Crespo‐Facorro, B. , Crossley, N. A. , Dannlowski, U. , Dickie, E. , Dietze, L. M. F. , Donohoe, G. , du Plessis, S. , Ehrlich, S. , Emsley, R. , Furstova, P. , Glahn, D. C. , Gonzalez‐ Valderrama, A. , Grotegerd, D. , Holleran, L. , Kircher, T. T. J. , Knytl, P. , … Hajek, T. (2022). Obesity and brain structure in schizophrenia—ENIGMA study in 3021 individuals. Molecular Psychiatry, 27(9), 3731–3737. 10.1038/s41380-022-01616-5 PubMed DOI PMC
McWhinney, S. , Kolenic, M. , Franke, K. , Fialova, M. , Knytl, P. , Matejka, M. , Spaniel, F. , & Hajek, T. (2021). Obesity as a risk factor for accelerated brain ageing in first‐episode psychosis‐a longitudinal study. Schizophrenia Bulletin, 47(6), 1772–1781. 10.1093/schbul/sbab064 PubMed DOI PMC
McWhinney, S. R. , Abé, C. , Alda, M. , Benedetti, F. , Bøen, E. , del Mar Bonnin, C. , Borgers, T. , Brosch, K. , Canales‐Rodríguez, E. J. , Cannon, D. M. , & Dannlowski, U. (2023, February). Mega‐analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants. Psychological Medicine, 27, 1–11. 10.1017/S0033291723000223 PubMed DOI PMC
Opel, N. , Goltermann, J. , Hermesdorf, M. , Berger, K. , Baune, B. T. , & Dannlowski, U. (2020, May). Cross‐disorder analysis of brain structural abnormalities in six major psychiatric disorders—A secondary analysis of mega‐ and meta‐analytical findings from the ENIGMA consortium. Biological Psychiatry, 88(9), S0006322320315857. 10.1016/j.biopsych.2020.04.027 PubMed DOI
Radua, J. , Vieta, E. , Shinohara, R. , Kochunov, P. , Quidé, Y. , Green, M. J. , Weickert, C. S. , Weickert, T. , Bruggemann, J. , Kircher, T. , Nenadić, I. , Cairns, M. J. , Seal, M. , Schall, U. , Henskens, F. , Fullerton, J. M. , Mowry, B. , Pantelis, C. , Lenroot, R. , … Pineda‐Zapata, J. (2020). Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage, 218, 116956. 10.1016/j.neuroimage.2020.116956 PubMed DOI PMC
Reddan, M. C. , Lindquist, M. A. , & Wager, T. D. (2017). Effect size estimation in neuroimaging. JAMA Psychiatry, 74(2168‐6238 (Electronic)), 207–208. PubMed
Rehák Bučková, B. , Mareš, J. , Škoch, A. , Kopal, J. , Tintěra, J. , Dineen, R. , Řasová, K. , & Hlinka, J. (2023). Multimodal‐neuroimaging machine‐learning analysis of motor disability in multiple sclerosis. Brain Imaging and Behavior, 17(1), 18–34. 10.1007/s11682-022-00737-3 PubMed DOI
Schwarz, E. , Doan, N. T. , Pergola, G. , Westlye, L. T. , Kaufmann, T. , Wolfers, T. , Brecheisen, R. , Quarto, T. , Ing, A. J. , di Carlo, P. , Gurholt, T. P. , Harms, R. L. , Noirhomme, Q. , Moberget, T. , Agartz, I. , Andreassen, O. A. , Bellani, M. , Bertolino, A. , Blasi, G. , … The IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium . (2019). Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry, 9(1), 12. 10.1038/s41398-018-0225-4 PubMed DOI PMC
Segal, A. , Parkes, L. , Aquino, K. , Kia, S. M. , Wolfers, T. , Franke, B. , Hoogman, M. , Beckmann, C. F. , Westlye, L. T. , Andreassen, O. A. , Zalesky, A. , Harrison, B. J. , Davey, C. G. , Soriano‐Mas, C. , Cardoner, N. , Tiego, J. , Yücel, M. , Braganza, L. , Suo, C. , … Fornito, A. (2023, August 14). Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nature Neuroscience, 26, 1613–1629. 10.1038/s41593-023-01404-6 PubMed DOI PMC
Sprooten, E. , Franke, B. , & Greven, C. U. (2022). The P‐factor and its genomic and neural equivalents: An integrated perspective. Molecular Psychiatry, 27(1), 38–48. 10.1038/s41380-021-01031-2 PubMed DOI PMC
Stekhoven, D. J. , & Bühlmann, P. (2012). MissForest—Non‐parametric missing value imputation for mixed‐type data. Bioinformatics, 28(1), 112–118. 10.1093/bioinformatics/btr597 PubMed DOI
Thompson, P. M. , Jahanshad, N. , Ching, C. R. K. , Salminen, L. E. , Thomopoulos, S. I. , Bright, J. , Baune, B. T. , Bertolín, S. , Bralten, J. , Bruin, W. B. , Bülow, R. , Chen, J. , Chye, Y. , Dannlowski, U. , de Kovel, C. G. F. , Donohoe, G. , Eyler, L. T. , Faraone, S. V. , Favre, P. , … for the ENIGMA Consortium . (2020). ENIGMA and global neuroscience: A decade of large‐scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 100. 10.1038/s41398-020-0705-1 PubMed DOI PMC
van Erp, T. G. M. , Walton, E. , Hibar, D. P. , Schmaal, L. , Jiang, W. , Glahn, D. C. , Pearlson, G. D. , Yao, N. , Fukunaga, M. , Hashimoto, R. , Okada, N. , Yamamori, H. , Bustillo, J. R. , Clark, V. P. , Agartz, I. , Mueller, B. A. , Cahn, W. , de Zwarte, S. M. C. , Hulshoff Pol, H. E. , … Orhan, F. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry, 84(9), 644–654. 10.1016/j.biopsych.2018.04.023 PubMed DOI PMC
Van Gestel, H. , Franke, K. , Petite, J. , Slaney, C. , Garnham, J. , Helmick, C. , Johnson, K. , Uher, R. , Alda, M. , & Hajek, T. (2019, June 27). Brain age in bipolar disorders: Effects of lithium treatment. Australian & New Zealand Journal of Psychiatry, 53(12), 4867419857814. 10.1177/0004867419857814 PubMed DOI
Woo, C. W. , Chang, L. J. , Lindquist, M. A. , & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(1097‐6256 (Linking)), 365–377. PubMed PMC
Writing Committee for the Attention‐Deficit/Hyperactivity Disorder , Autism Spectrum Disorder , Bipolar Disorder , Major Depressive Disorder , Obsessive‐Compulsive Disorder , Schizophrenia ENIGMA Working Groups , Patel, Y. , Parker, N. , Shin, J. , Howard, D. , French, L. , Thomopoulos, S. I. , Pozzi, E. , Abe, Y. , Abé, C. , Anticevic, A. , Alda, M. , Aleman, A. , Alloza, C. , … Paus, T. (2021). Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry, 78(1), 47–63. 10.1001/jamapsychiatry.2020.2694 PubMed DOI PMC
Yeh, P. H. , Zhu, H. , Nicoletti, M. A. , Hatch, J. P. , Brambilla, P. , & Soares, J. C. (2010). Structural equation modeling and principal component analysis of gray matter volumes in major depressive and bipolar disorders: Differences in latent volumetric structure. Psychiatry Research, 184(0165‐1781 (Print)), 177–185. PubMed PMC