Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
ED431G 2019/02
Fondo Europeo de Desarrollo Regional
BFU2016-78121-P
Fondo Europeo de Desarrollo Regional
Wellcome Trust - United Kingdom
PID2020-115472GB-I00
Ministerio de Ciencia e Innovación
206292/E/17/Z
Wellcome Trust - United Kingdom
ED481A-2018/041
Xunta de Galicia
Asociación Española Contra el Cáncer
21-22593X
Czech Science Foundation
Agencia Estatal de Investigación
PubMed
38832625
PubMed Central
PMC11229367
DOI
10.1093/nar/gkae453
PII: 7687436
Knihovny.cz E-zdroje
- MeSH
- crossing over (genetika) * MeSH
- DNA vazebné proteiny * metabolismus genetika MeSH
- endonukleasy * metabolismus genetika MeSH
- homologní rekombinace MeSH
- resolvasy Hollidayova spoje metabolismus genetika MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- endonukleasy * MeSH
- MUS81 protein, S cerevisiae MeSH Prohlížeč
- resolvasy Hollidayova spoje MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- Yen1 protein, S cerevisiae MeSH Prohlížeč
Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates. Here, we used a biochemical approach to show that the budding yeast SSEs Mus81 and Yen1 possess the ability to cleave the central recombination intermediate known as the displacement loop or D-loop. Moreover, we demonstrate that, consistently with previous genetic data, the simultaneous action of Mus81 and Yen1, followed by ligation, is sufficient to recreate the formation of a half-crossover precursor in vitro. Our results provide not only mechanistic explanation for the formation of a half-crossover, but also highlight the critical importance for precise regulation of these SSEs to prevent chromosomal rearrangements.
Zobrazit více v PubMed
Moynahan M.E., Jasin M.. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 2010; 11:196–207. PubMed PMC
Symington L.S., Rothstein R., Lisby M.. Mechanisms and regulation of mitotic recombination in saccharomyces cerevisiae. Genetics. 2014; 198:795–835. PubMed PMC
Cejka P., Symington L.S.. DNA end resection: mechanism and control. Annu. Rev. Genet. 2021; 55:285–307. PubMed
Krejci L., Altmannova V., Spirek M., Zhao X.. Homologous recombination and its regulation. Nucleic Acids Res. 2012; 40:5795–5818. PubMed PMC
Heyer W.D. Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Biol. 2015; 7:a016501. PubMed PMC
Kowalczykowski S.C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2015; 7:a016410. PubMed PMC
Mehta A., Haber J.E.. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2014; 6:a016428. PubMed PMC
Van Komen S., Petukhova G., Sigurdsson S., Stratton S., Sung P.. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell. 2000; 6:563–572. PubMed
Wright W.D., Heyer W.D.. Rad54 Functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol. Cell. 2014; 53:420–432. PubMed PMC
Petukhova G., Van Komen S., Vergano S., Klein H., Sung P.. Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J. Biol. Chem. 1999; 274:29453–29462. PubMed
Crickard J.B., Moevus C.J., Kwon Y., Sung P., Greene E.C.. Rad54 Drives ATP hydrolysis-dependent DNA sequence alignment during homologous recombination. Cell. 2020; 181:1380–1394. PubMed PMC
Li X., Heyer W.D.. RAD54 controls access to the invading 3′-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 2009; 37:638–646. PubMed PMC
Fasching C.L., Cejka P., Kowalczykowski S.C., Heyer W.D.. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol. Cell. 2015; 57:595–606. PubMed PMC
Liu J., Ede C., Wright W.D., Gore S.K., Jenkins S.S., Freudenthal B.D., Washington M.T., Veaute X., Heyer W.D.. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase d-extending D-loops. eLife. 2017; 6:e22195. PubMed PMC
Ira G., Malkova A., Liberi G., Foiani M., Haber J.E.. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell. 2003; 115:401–411. PubMed PMC
Prakash R., Satory D., Dray E., Papusha A., Scheller J., Kramer W., Krejci L., Klein H., Haber J.E., Sung P.et al. .. Yeast Mphl helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev. 2009; 23:67–79. PubMed PMC
Sebesta M., Burkovics P., Haracska L., Krejci L.. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst.). 2011; 10:567–576. PubMed PMC
Bzymek M., Thayer N.H., Oh S.D., Kleckner N., Hunter N.. Double Holliday junctions are intermediates of DNA break repair. Nature. 2010; 464:937–941. PubMed PMC
Wu L., Hickson I.O.. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003; 426:870–874. PubMed
Bizard A.H., Hickson I.D.. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 2014; 6:a016477. PubMed PMC
Wyatt H.D.M., West S.C.. Holliday junction resolvases. Cold Spring Harb. Perspect. Biol. 2014; 6:a023192. PubMed PMC
Schwartz E.K., Heyer W.D.. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma. 2011; 120:109–127. PubMed PMC
Liu L., Malkova A.. Break-induced replication: unraveling each step. Trends Genet. 2022; 38:752–765. PubMed PMC
Saini N., Ramakrishnan S., Elango R., Ayyar S., Zhang Y., Deem A., Ira G., Haber J.E., Lobachev K.S., Malkova A.. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature. 2013; 502:389–392. PubMed PMC
Donnianni R.A., Symington L.S.. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:13475–13480. PubMed PMC
Wilson M.A., Kwon Y., Xu Y., Chung W.H., Chi P., Niu H., Mayle R., Chen X., Malkova A., Sung P.et al. .. Pif1 helicase and polδ promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013; 502:393–396. PubMed PMC
Mayle R., Campbell I.M., Beck C.R., Yu Y., Wilson M., Shaw C.A., Bjergbaek L., Lupski J.R., Ira G.. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science. 2015; 349:742–747. PubMed PMC
Elango R., Sheng Z., Jackson J., Decata J., Ibrahim Y., Pham N.T., Liang D.H., Sakofsky C.J., Vindigni A., Lobachev K.S.et al. .. Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat. Commun. 2017; 8:1790. PubMed PMC
Sakofsky C.J., Roberts S.A., Malc E., Mieczkowski P.A., Resnick M.A., Gordenin D.A., Malkova A.. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 2014; 7:1640–1648. PubMed PMC
Ruff P., Donnianni R.A., Glancy E., Oh J., Symington L.S.. RPA stabilization of single-stranded DNA is critical for break-induced replication. Cell Rep. 2016; 17:3359–3368. PubMed PMC
Bosco G., Haber J.E.. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics. 1998; 150:1037–1047. PubMed PMC
Malkova A. Break-induced replication: the where, the why, and the How. Trends Genet. 2018; 34:518–531. PubMed PMC
Anand R.P., Tsaponina O., Greenwell P.W., Lee C.S., Du W., Petes T.D., Haber J.E.. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 2014; 28:2394–2406. PubMed PMC
Ruiz J.F., Gómez-González B., Aguilera A.. Chromosomal translocations caused by either Pol32-dependent or Pol32-independent triparental break-induced replication. Mol. Cell. Biol. 2009; 29:5441–5454. PubMed PMC
Pardo B., Aguilera A.. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases. PLoS Genet. 2012; 8:e1002979. PubMed PMC
Deem A., Barker K., VanHulle K., Downing B., Vayl A., Malkova A.. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics. 2008; 179:1845–1860. PubMed PMC
Smith C.E., Lam A.F., Symington L.S.. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase complex. Mol. Cell. Biol. 2009; 29:1432–1441. PubMed PMC
Vasan S., Deem A., Ramakrishnan S., Argueso J.L., Malkova A.. Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet. 2014; 10:e1004119. PubMed PMC
Piazza A., Wright W.D., Heyer W.D.. Multi-invasions are recombination byproducts that induce chromosomal rearrangements. Cell. 2017; 170:760–773. PubMed PMC
Piazza A., Heyer W.D.. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol. 2019; 29:135–149. PubMed PMC
Savocco J., Piazza A.. Recombination-mediated genome rearrangements. Curr. Opin. Genet. Dev. 2021; 71:63–71. PubMed
Reitz D., Djeghmoum Y., Watson R.A., Rajput P., Argueso J.L.. Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability. Genes Dev. 2023; 37:621–639. PubMed PMC
Osman F., Dixon J., Doe C.L., Whitby M.C.. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol. Cell. 2003; 12:761–774. PubMed
Ehmsen K.T., Heyer W.D.. A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by saccharomyces cerevisiae Mus81-Mms4. Nucleic Acids Res. 2009; 37:2026–2036. PubMed PMC
Pepe A., West S.C.. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 2014; 42:3833–3845. PubMed PMC
Ehmsen K.T., Heyer W.D.. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008; 36:2182–2195. PubMed PMC
Ehmsen K.T., Heyer W.D.. A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by saccharomyces cerevisiae Mus81-Mms4. Nucleic Acids Res. 2009; 37:2026–2036. PubMed PMC
Mukherjee S., Wright W.D., Ehmsen K.T., Heyer W.D.. The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage. Nucleic Acids Res. 2014; 42:6511–6522. PubMed PMC
Schwartz E.K., Wright W.D., Ehmsen K.T., Evans J.E., Stahlberg H., Heyer W.-D.. Mus81-Mms4 Functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair. Mol. Cell. Biol. 2012; 32:3065–3080. PubMed PMC
Matulova P., Marini V., Burgess R.C., Sisakova A., Kwon Y., Rothstein R., Sung P., Krejci L.. Cooperativity of Mus81·Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009; 284:7733–7745. PubMed PMC
Chavdarova M., Marini V., Sisakova A., Sedlackova H., Vigasova D., Brill S.J., Lisby M., Krejci L.. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res. 2015; 43:3626–3642. PubMed PMC
Benitez A., Sebald M., Kanagaraj R., Rodrigo-brenni M.C., Chan Y.W., Liang C., West S.C., Benitez A., Sebald M., Kanagaraj R.et al. .. GEN1 promotes common fragile site expression. Cell Rep. 2023; 42:112062. PubMed
Carreira R., Aguado F.J., Lama-Diaz T., Blanco M.G.. Holliday junction resolution. Methods Mol. Biol. 2021; 2153:169–185. PubMed
Princz L.N., Wild P., Bittmann J., Aguado F.J., Blanco M.G., Matos J., Pfander B.. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J. 2017; 36:664–678. PubMed PMC
Van Komen S., Macris M., Sehorn M.G., Sung P.. Purification and assays of saccharomyces cerevisiae homologous recombination proteins. Methods Enzymol. 2006; 408:445–463. PubMed
Petukhova G., Sung P., Klein H.. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 2000; 14:2206–2215. PubMed PMC
Gupta R.K., Gupta P., Yushok W.D., Rose Z.B.. Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem. Biophys. Res. Commun. 1983; 117:210–216. PubMed
Sherman F. Getting started with yeast. Methods Enzymol. 2002; 350:3–41. PubMed
Janke C., Magiera M.M., Rathfelder N., Taxis C., Reber S., Maekawa H., Moreno-Borchart A., Doenges G., Schwob E., Schiebel E.et al. .. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004; 21:947–962. PubMed
Houseley J., Tollervey D.. Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Res. 2011; 39:8778–8791. PubMed PMC
Chee M.K., Haase S.B.. New and redesigned pRS plasmid shuttle vectors for genetic manipulation of saccharomyces cerevisiae. G3: Genes Genomes Genetics. 2012; 2:515–526. PubMed PMC
Blanco M.G., Matos J., Rass U., Ip S.C.Y., West S.C.. Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae. DNA Repair (Amst.). 2010; 9:394–402. PubMed
Pepe A., West S.C.. MUS81-EME2 promotes replication fork restart. Cell Rep. 2014; 7:1048–1055. PubMed PMC
Buzovetsky O., Kwon Y., Pham N.T., Kim C., Ira G., Sung P., Xiong Y.. Role of the Pif1-PCNA complex in pol δ-dependent strand displacement DNA synthesis and break-induced replication. Cell Rep. 2017; 21:1707–1714. PubMed PMC
Killelea T., Saint-Pierre C., Ralec C., Gasparutto D., Henneke G.. Anomalous electrophoretic migration of short oligodeoxynucleotides labelled with 5′-terminal Cy5 dyes. Electrophoresis. 2014; 35:1938–1946. PubMed
Carreira R., Aguado F.J., Hurtado-Nieves V., Blanco M.G.. Canonical and novel non-canonical activities of the Holliday junction resolvase Yen1. Nucleic Acids Res. 2022; 50:259–280. PubMed PMC
Eggler A.L., Inman R.B., Cox M.M.. The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A. J. Biol. Chem. 2002; 277:39280–39288. PubMed
Van Komen S., Petukhova G., Sigurdsson S., Sung P.. Functional cross-talk among Rad51, Rad54, and replication protein A in heteroduplex DNA joint formation. J. Biol. Chem. 2002; 277:43578–43587. PubMed
Li X., Zhang X.P., Solinger J.A., Kiianitsa K., Yu X., Egelman E.H., Heyer W.D.. Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics. Nucleic Acids Res. 2007; 35:4124–4140. PubMed PMC
Ho C.K., Mazón G., Lam A.F., Symington L.S.. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol. Cell. 2010; 40:988–1000. PubMed PMC
Pardo B., Moriel-Carretero M., Vicat T., Aguilera A., Pasero P.. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep. 2020; 21:e49367. PubMed PMC
Bittmann J., Grigaitis R., Galanti L., Amarell S., Wilfling F., Matos J., Pfander B.. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife. 2020; 9:e52459. PubMed PMC
Zaitseva E.M., Zaitsev E.N., Kowalczykowski S.C.. The DNA binding properties of saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 1999; 274:2907–2915. PubMed
Wright W.D., Heyer W.D.. Rad54 Functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol. Cell. 2014; 53:420–432. PubMed PMC
Tavares E.M., Wright W.D., Heyer W.D., Le Cam E., Dupaigne P.. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat. Commun. 2019; 10:4058. PubMed PMC
Li X., Heyer W.D.. RAD54 controls access to the invading 3′-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 2009; 37:638–646. PubMed PMC
Kiianitsa K., Solinger J.A., Heyer W.-D., Kolodner R.D.. Terminal association of Rad54 protein with the Rad51-dsDNA filament. Proc Natl Acad Sci U S A. 2006; 103:9767–9772. PubMed PMC
Di Marco S., Hasanova Z., Kanagaraj R., Chappidi N., Altmannova V., Menon S., Sedlackova H., Langhoff J., Surendranath K., Hühn D.et al. .. RECQ5 Helicase cooperates with MUS81 endonuclease in processing stalled replication forks at common fragile sites during mitosis. Mol. Cell. 2017; 66:658–671. PubMed
Fugger K., Chu W.K., Haahr P., Nedergaard Kousholt A., Beck H., Payne M.J., Hanada K., Hickson I.D., Sørensen C.S.. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress. Nat. Commun. 2013; 4:1423. PubMed
Blanco M.G., Matos J., West S.C.. Dual control of Yen1 nuclease activity and cellular localization by cdk and Cdc14 prevents genome instability. Mol. Cell. 2014; 54:94–106. PubMed PMC
Sakofsky C.J., Ayyar S., Deem A.K., Chung W.H., Ira G., Malkova A.. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol. Cell. 2015; 60:860–872. PubMed PMC
Malkova A., Naylor M.L., Yamaguchi M., Ira G., Haber J.E.. RAD51 -Dependent break-induced replication differs in kinetics and checkpoint responses from RAD51 -mediated gene conversion. Mol. Cell. Biol. 2005; 25:933–944. PubMed PMC
Jain S., Sugawara N., Lydeard J., Vaze M., Gac N.T.L., Haber J.E. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 2009; 23:291–303. PubMed PMC
Jain S., Sugawara N., Mehta A., Ryu T., Haber J.E.. Sgs1 and Mph1 helicases enforce the recombination execution checkpoint during DNA double-strand break repair in saccharomyces cerevisiae. Genetics. 2016; 203:667–675. PubMed PMC
Blanco M.G., Matos J.. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1. Front. Genet. 2015; 6:253. PubMed PMC