CD20 expression regulates CD37 levels in B-cell lymphoma - implications for immunotherapies

. 2024 ; 13 (1) : 2362454. [epub] 20240604

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38846084

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.

Zobrazit více v PubMed

Shaw J, Harvey C, Richards C, Kim C.. Temporal trends in treatment and survival of older adult diffuse large B-Cell lymphoma patients in the SEER-Medicare linked database. Leuk Lymphoma grudzień. 2019;60(13):3235–12. doi:10.1080/10428194.2019.1623886. PubMed DOI

Glass B, Dohm AJ, Truemper LH, Pfreundschuh M, Bleckmann A, Wulf GG, Rosenwald, Ziepert M, Schmitz N, I in A. et al. Refractory or relapsed aggressive B-cell lymphoma failing (R)-CHOP: an analysis of patients treated on the RICOVER-60 trial. Ann Oncol Off J Eur Soc Med Oncol. 2017. 1 grudzień 28(12):3058–3064. doi:10.1093/annonc/mdx556. PubMed DOI

Jazirehi AR, Vega MI, Bonavida B. Development of Rituximab-Resistant Lymphoma Clones with Altered Cell Signaling and Cross-Resistance to Chemotherapy. Cancer Res. 2007. 1. 67(3):1270–1281. doi:10.1158/0008-5472.CAN-06-2184. PubMed DOI

Olejniczak SH, Hernandez-Ilizaliturri FJ, Clements JL, Czuczman MS. Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression. Clin Cancer Res. [2008 Mar 1]. 14(5):1550–1560. doi:10.1158/1078-0432.CCR-07-1255. PubMed DOI

Takei K, Yamazaki T, Sawada U, Ishizuka H, Aizawa S. Analysis of changes in CD20, CD55, and CD59 expression on established rituximab-resistant B-lymphoma cell lines. Leuk Res. 2006. 1. 30(5):625–631. doi:10.1016/j.leukres.2005.09.008. PubMed DOI

Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson, Gill D, I in D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol listopad. 2002;119(2):412–416. doi:10.1046/j.1365-2141.2002.03843.x. PubMed DOI

Maeshima AM, Taniguchi H, Nomoto J, Maruyama D, Kim SW, Watanabe T, Kobayashi, Tobinai K, Matsuno Y, I in Y. et al. Histological and immunophenotypic changes in 59 cases of B-cell non-Hodgkin’s lymphoma after rituximab therapy. Cancer Sci. 2009;100(1):54–61. doi:10.1111/j.1349-7006.2008.01005.x. PubMed DOI PMC

AACR Annual Meeting . Itinerary Planner. https://www.abstractsonline.com/pp8/#!/10517/presentation/21748.

de Winde Cm, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor CG, van Spriel AB, de Winde CM. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol sierpień. 2015;144(2):133–146. doi:10.1007/s00418-015-1326-2. PubMed DOI PMC

Barrena S, Almeida J, Yunta M, López A, Fernández-Mosteirín N, Giralt M, Romero, Perdiguer L, I in M, Perdiguer L. et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia sierpień. 2005;19(8):1376–1383. doi:10.1038/sj.leu.2403822. PubMed DOI

Scarfò I, Ormhøj M, Frigault MJ, Castano AP, Lorrey S, Bouffard AA, van Scoyk, van Scoyk A, Rodig SJ, Shay AJ. et al. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood. 2018. 4. 132(14):1495–1506. doi:10.1182/blood-2018-04-842708. PubMed DOI PMC

Köksal H, Dillard P, Josefsson SE, Maggadottir SM, Pollmann S, Fåne A, Blaker, I in YN, Beiske K, Huse K. et al. Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv. 2019. 12. 3(8):1230–1243. doi:10.1182/bloodadvances.2018029678. PubMed DOI PMC

Okuno S, Adachi Y, Terakura S, Julamanee J, Sakai T, Umemura K, Miyao, I in K, Goto T, Murase A. et al. Spacer Length Modification Facilitates Discrimination between Normal and Neoplastic Cells and Provides Clinically Relevant CD37 CAR T Cells. J Immunol Baltim Md. 2021. 15. 1950; 206(12):2862–2874. doi:10.4049/jimmunol.2000768. PubMed DOI

Golubovskaya V, Zhou H, Li F, Valentine M, Sun J, Berahovich R, Xu, I in S, Quintanilla M, Ma MC. et al. Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma. Cancers. 2021. 26. 13(5):981. doi:10.3390/cancers13050981. PubMed DOI PMC

Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors—More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci styczeń. 2020;21(24):9531. doi:10.3390/ijms21249531. PubMed DOI PMC

de Winde Cm, Veenbergen S, Young KH, Xu-Monette ZY, Zy X-M XX, Xia II, Y CM, Jabbar KJ, van den Brand M, van der Schaaf A. et al. Tetraspanin CD37 protects against the development of B cell lymphoma. J Clin Invest Luty. 2016;126(2):653–666. doi:10.1172/JCI81041. PubMed DOI PMC

Peeters R, Cuenca-Escalona J, Zaal EA, Hoekstra AT, Balvert ACG, Vidal-Manrique M, Blomberg, van Deventer SJ, Stienstra R, Jellusova J. et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat Commun. 2022. 13. 13(1):5371. doi:10.1038/s41467-022-33138-7. PubMed DOI PMC

Xu-Monette ZY, Li L, Byrd JC, Jabbar KJ, Manyam GC, Maria de Winde C, van den Brand, I in M, Tzankov A, Visco C. et al. Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood. 2016. 29. 128(26):3083–3100. doi:10.1182/blood-2016-05-715094. PubMed DOI PMC

Wälchli S, Løset GÅ, Kumari S, Johansen JN, Yang W, Sandlie I, Olweus, I in J, Olweus J. A practical approach to T-cell receptor cloning and expression. PLoS One. 2011;6(11):e27930. doi:10.1371/journal.pone.0027930. PubMed DOI PMC

Caculitan NG, Dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, Pillow, I in TH, Sadowsky J, Cheung TK. et al. Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody–Drug Conjugates. Cancer Res. 2017. 15. 77(24):7027–7037. doi:10.1158/0008-5472.CAN-17-2391. PubMed DOI

Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister, Lister TA, I in TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol Off J Am Soc Clin Oncol. 2014. 20. 32(27):3059–3067. doi:10.1200/JCO.2013.54.8800. PubMed DOI PMC

Czuczman MS, Olejniczak S, Gowda A, Kotowski A, Binder A, Kaur H, Knight, Starostik P, I in J, Starostik P. et al. Acquirement of Rituximab Resistance in Lymphoma Cell Lines Is Associated with Both Global CD20 Gene and Protein Down-Regulation Regulated at the Pretranscriptional and Posttranscriptional Levels. Clin Cancer Res. [2008 Mar 1]. 14(5):1561–1570. doi:10.1158/1078-0432.CCR-07-1254. PubMed DOI

Oostindie SC, van der Horst Hj, Lindorfer MA, Cook EM, Tupitza JC, Zent CS, Burack, van der Horst HJ, I in R, VanDermeid KR. et al. CD20 and CD37 antibodies synergize to activate complement by Fc-mediated clustering. Haematologica wrzesień. 2019;104(9):1841–1852. doi:10.3324/haematol.2018.207266. PubMed DOI PMC

Hicks SW, Lai KC, Gavrilescu LC, Yi Y, Sikka S, Shah P, Kelly, I in ME, Lee J, Lanieri L. et al. The Antitumor Activity of IMGN529, a CD37-Targeting Antibody-Drug Conjugate, Is Potentiated by Rituximab in Non-Hodgkin Lymphoma Models. Neoplasia. 2017. 1. 19(9):661–671. doi:10.1016/j.neo.2017.06.001. PubMed DOI PMC

van MT, Rs van R, Hol S, Hagenbeek A, Ebeling SB. Complement-Induced Cell Death by Rituximab Depends on CD20 Expression Level and Acts Complementary to Antibody-Dependent Cellular Cytotoxicity. Clin Cancer Res. 2006. 1. 12(13):4027–4035. doi:10.1158/1078-0432.CCR-06-0066. PubMed DOI

Oostindie SC, van der Horst Hj, Kil LP, Strumane K, Overdijk MB, van den Brink En, van den Brakel, van der Horst HJ, van den Brink EN, I in JHN. et al. DuoHexaBody-CD37®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020. 28. 10(3):30. doi:10.1038/s41408-020-0292-7. PubMed DOI PMC

de Jong Rn, Beurskens FJ, Verploegen S, Strumane K, van Kampen Md, Voorhorst M, Horstman, de Jong RN, van Kampen MD, I in W. et al. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface. PLoS Biol styczeń. 2016;14(1):e1002344. doi:10.1371/journal.pbio.1002344. PubMed DOI PMC

Strasser J, de Jong Rn, Beurskens FJ, Wang G, Heck AJR, Schuurman J, Parren, Hinterdorfer P, Preiner J, Preiner J. et al. Unraveling the Macromolecular Pathways of IgG Oligomerization and Complement Activation on Antigenic Surfaces. Nano Lett. 2019. 10. 19(7):4787–4796. doi:10.1021/acs.nanolett.9b02220. PubMed DOI

Farooq U, Maurer MJ, Thompson CA, Thanarajasingam G, Inwards DJ, Micallef I, Macon, I in W, Syrbu S, Lin T. et al. Clinical heterogeneity of diffuse large B cell lymphoma following failure of front-line immunochemotherapy. Br J Haematol. 2017;179(1):50–60. doi:10.1111/bjh.14813. PubMed DOI PMC

Ames A, Lee D. Updates in the Diffuse Large B-Cell Lymphoma Treatment Landscape. J Adv Pract Oncol kwiecień. 2022;13(3):341–344. doi:10.6004/jadpro.2022.13.3.33. PubMed DOI PMC

van der Horst Hj, Oostindie SC, Cillessen SAGM, Gelderloos AT, Sagm C, Nijhof IS, Zweegman, Chamuleau MED, Mutis T, Breij ECW. et al. Potent Preclinical Efficacy of DuoHexaBody-CD37 in B-Cell Malignancies. HemaSphere styczeń. 2021;5(1):e504. doi:10.1097/HS9.0000000000000504. PubMed DOI PMC

Vaisitti T, Vitale N, Micillo M, Brandimarte L, Iannello A, Papotti MG, Di Napoli, Orlik C, I in A, Orlik C. et al. Anti-CD37 alpha-amanitin conjugated antibodies as potential therapeutic weapons for Richter’s Syndrome. Blood. 2022;blood.2022016211. 1(Supplement 1):791–791. doi:10.1182/blood-2021-150280. PubMed DOI PMC

Arribas AJ, Gaudio E, Napoli S, Herbaux CJY, Tarantelli C, Bordone RP, I in. PI3Kδ activation, IL6 over-expression, and CD37 loss cause resistance to the targeting of CD37-positive lymphomas with the antibody-drug conjugate naratuximab emtansine [Internet]. bioRxiv; 2023 [accessed 2024 Apr 20]. https://w ww.biorxiv.org/content/1 0.1101/2023.11.14.566994v1.

Elfrink S, Ter Beest M, Janssen L, Baltissen MP, Pwtc J, Kenyon AN, Steen, I in RM, de Windt D, Hagemann PM. et al. IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Adv. 2022. 4. 6(7):2254–2266. doi:10.1182/bloodadvances.2021004366. PubMed DOI PMC

Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust, I in JH, Kadapakkam M, Weber EW. et al. Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discov. maj 2020;10(5):702–723. doi:10.1158/2159-8290.CD-19-0945. PubMed DOI PMC

Harris DT, Hager MV, Smith SN, Cai Q, Stone JD, Kruger P, Lever, I in M, Dushek O, Schmitt TM. et al. Comparison of T Cell Activities Mediated by Human TCRs and CARs That Use the Same Recognition Domains. J Immunol Baltim Md 1950. 2018. 1. 200(3):1088–1100. doi:10.4049/jimmunol.1700236. PubMed DOI PMC

Zuidscherwoude M, Göttfert F, Dunlock VME, Figdor CG, van den Bogaart G, van SA. The tetraspanin web revisited by super-resolution microscopy. Sci Rep. 2015. 17. 5(1):12201. doi:10.1038/srep12201. PubMed DOI PMC

Szöllósi J, Horejsí V, Bene L, Angelisová P, Damjanovich S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol Baltim Md 1950. 1996. 1. 157(7):2939–2946. doi:10.4049/jimmunol.157.7.2939. PubMed DOI

Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell. 2015. 1. 26(9):1711–1727. doi:10.1091/mbc.E14-07-1221. PubMed DOI PMC

Zhao H, Pomicter AD, Eiring AM, Franzini A, Ahmann J, Hwang JY, Senina, I in A, Helton B, Iyer S. et al. MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood. 2022. 3. 139(5):761–778. doi:10.1182/blood.2021011802. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...