Circulating beta-hydroxybutyrate levels in advanced heart failure with reduced ejection fraction: Determinants and prognostic impact

. 2024 Sep ; 26 (9) : 1931-1940. [epub] 20240610

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38853653

Grantová podpora
AZV NU22-02-00161 Ministry of Health of the Czech Republic
IN 00023001 Institute for Clinical and Experimental Medicine - IKEM
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases of the Czech Republic
European Union - Next Generation EU

AIMS: Patients with heart failure (HF) display metabolic alterations, including heightened ketogenesis, resulting in increased beta-hydroxybutyrate (β-OHB) formation. We aimed to investigate the determinants and prognostic impact of circulating β-OHB levels in patients with advanced HF and reduced ejection fraction (HFrEF). METHODS AND RESULTS: A total of 867 patients with advanced HFrEF (age 57 ± 11 years, 83% male, 45% diabetic, 60% New York Heart Association class III), underwent clinical and echocardiographic examination, circulating metabolite assessment, and right heart catheterization (n = 383). The median β-OHB level was 64 (interquartile range [IQR] 33-161) μmol/L (normal 0-74 μmol/L). β-OHB levels correlated with increased markers of lipolysis (free fatty acids [FFA]), higher natriuretic peptides, worse pulmonary haemodynamics, and lower humoral regulators of ketogenesis (insulin/glucagon ratio). During a median follow-up of 1126 (IQR 410-1781) days, there were 512 composite events, including 324 deaths, 81 left ventricular assist device implantations and 107 urgent cardiac transplantations. In univariable Cox regression, increased β-OHB levels (T3 vs. T1: hazard ratio [HR] 1.39, 95% confidence interval [CI] 1.13-1.72, p = 0.002) and elevated FFA levels (T3 vs. T1: HR 1.39, 95% CI 1.09-1.79, p = 0.008) were both predictors of a worse prognosis. In multivariable Cox analysis evaluating the simultaneous associations of FFA and β-OHB levels with outcomes, only FFA levels remained significantly associated with adverse outcomes. CONCLUSIONS: In patients with advanced HFrEF, increased plasma β-OHB correlate with FFA levels, worse right ventricular function, greater neurohormonal activation and other markers of HF severity. The association between plasma β-OHB and adverse outcomes is eliminated after accounting for FFA levels, suggesting that increased β-OHB is a consequence reflecting heightened lipolytic state, rather than a cause of worsening HF.

Zobrazit více v PubMed

Dávila‐Román VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271–277. https://doi.org/10.1016/S0735‐1097(02)01967‐8

Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: More than just fats and carbohydrates. Circ Res 2016;119:1173–1176. https://doi.org/10.1161/CIRCRESAHA.116.310078

Cahill GF Jr. Fuel metabolism in starvation. Annu Rev Nutr 2006;26:1–22. https://doi.org/10.1146/annurev.nutr.26.061505.111258

Matsuura TR, Puchalska P, Crawford PA, Kelly DP. Ketones and the heart: Metabolic principles and therapeutic implications. Circ Res 2023;132:882–898. https://doi.org/10.1161/CIRCRESAHA.123.321872

Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 2020;141:1800–1812. https://doi.org/10.1161/CIRCULATIONAHA.119.045033

Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone therapy for heart failure: Current evidence for clinical use. Cardiovasc Res 2022;118:977–987. https://doi.org/10.1093/cvr/cvab068

Selvaraj S, Fu Z, Jones P, Kwee LC, Windsor SL, Ilkayeva O, et al.; DEFINE‐HF Investigators. Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE‐HF. Circulation 2022;146:808–818. https://doi.org/10.1161/CIRCULATIONAHA.122.060402

Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 2020;11:2127. https://doi.org/10.1038/s41467‐020‐15983‐6

Monzo L, Melenovsky V. Letter by Monzo and Melenovsky regarding article, “Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE‐HF”. Circulation 2023;147:920–921. https://doi.org/10.1161/CIRCULATIONAHA.122.061155

Monzo L, Sedlacek K, Hromanikova K, Tomanova L, Borlaug BA, Jabor A, et al. Myocardial ketone body utilization in patients with heart failure: The impact of oral ketone ester. Metabolism 2021;115:154452. https://doi.org/10.1016/j.metabol.2020.154452

Yokokawa T, Sugano Y, Shimouchi A, Shibata A, Jinno N, Nagai T, et al. Exhaled acetone concentration is related to hemodynamic severity in patients with non‐ischemic chronic heart failure. Circ J 2016;80:1178–1186. https://doi.org/10.1253/circj.CJ‐16‐0011

Christensen KH, Nielsen RR, Schou M, Gustafsson I, Jorsal A, Flyvbjerg A, et al. Circulating 3‐hydroxy butyrate predicts mortality in patients with chronic heart failure with reduced ejection fraction. ESC Heart Fail 2024;11:837–845. https://doi.org/10.1002/ehf2.14476

Marcondes‐Braga FG, Batista GL, Gutz IG, Saldiva PH, Mangini S, Issa VS, et al. Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF). One year of clinical follow‐up. PLoS One 2016;11:e0168790. https://doi.org/10.1371/journal.pone.0168790

Stryeck S, Gastrager M, Degoricija V, Trbusic M, Potocnjak I, Radulovic B, et al. Serum concentrations of citrate, tyrosine, 2‐ and 3‐ hydroxybutyrate are associated with increased 3‐month mortality in acute heart failure patients. Sci Rep 2019;9:6743. https://doi.org/10.1038/s41598‐019‐42937‐w

de Koning MLY, Westenbrink BD, Assa S, Garcia E, Connelly MA, van Veldhuisen DJ, et al. Association of circulating ketone bodies with functional outcomes after ST‐segment elevation myocardial infarction. J Am Coll Cardiol 2021;78:1421–1432. https://doi.org/10.1016/j.jacc.2021.07.054

Obokata M, Negishi K, Sunaga H, Ishida H, Ito K, Ogawa T, et al. Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 2017;6:e006885. https://doi.org/10.1161/JAHA.117.006885

Shemesh E, Chevli PA, Islam T, German CA, Otvos J, Yeboah J, et al. Circulating ketone bodies and cardiovascular outcomes: The MESA study. Eur Heart J 2023;44:1636–1646. https://doi.org/10.1093/eurheartj/ehad087

Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013;304:H1060–H1076. https://doi.org/10.1152/ajpheart.00646.2012

Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol 2013;62:1660–1670. https://doi.org/10.1016/j.jacc.2013.06.046

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al.; CKD‐EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. https://https://doi.org/10.7326/0003‐4819‐150‐9‐200905050‐00006

Rosenkranz S, Preston IR. Right heart catheterisation: Best practice and pitfalls in pulmonary hypertension. Eur Respir Rev 2015;24:642–652. https://doi.org/10.1183/16000617.0062‐2015

Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974;32:77–97. https://doi.org/10.1079/BJN19740060

Byrne NJ, Levasseur J, Sung MM, Masson G, Boisvenue J, Young ME, et al. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 2016;110:249–257. https://doi.org/10.1093/cvr/cvw051

Lommi J, Kupari M, Koskinen P, Naveri H, Leinonen H, Pulkki K, et al. Blood ketone bodies in congestive heart failure. J Am Coll Cardiol 1996;28:665–672. https://doi.org/10.1016/0735‐1097(96)00214‐8

Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, et al. Cardiac insulin‐resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure‐overload hypertrophy. Circ Heart Fail 2013;6:1039–1048. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000228

Bedi KC Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 2016;133:706–716. https://doi.org/10.1161/CIRCULATIONAHA.115.017545

Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, et al. The failing heart utilizes 3‐hydroxybutyrate as a metabolic stress defense. JCI Insight 2019;4:e124079. https://doi.org/10.1172/jci.insight.124079

Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res 2019;115:1606–1616. https://doi.org/10.1093/cvr/cvz045

Niezen S, Connelly MA, Hirsch C, Kizer JR, Benitez ME, Minchenberg S, et al. Elevated plasma levels of ketone bodies are associated with all‐cause mortality and incidence of heart failure in older adults: The CHS. J Am Heart Assoc 2023;12:e029960. https://doi.org/10.1161/JAHA.123.029960

Melenovsky V, Kotrc M, Polak J, Pelikanova T, Bendlova B, Cahova M, et al. Availability of energetic substrates and exercise performance in heart failure with or without diabetes. Eur J Heart Fail 2012;14:754–763. https://doi.org/10.1093/eurjhf/hfs080

Kintscher U, Foryst‐Ludwig A, Haemmerle G, Zechner R. The role of adipose triglyceride lipase and cytosolic lipolysis in cardiac function and heart failure. Cell Rep Med 2020;1:100001. https://doi.org/10.1016/j.xcrm.2020.100001

Polak J, Kotrc M, Wedellova Z, Jabor A, Malek I, Kautzner J, et al. Lipolytic effects of B‐type natriuretic peptide 1‐32 in adipose tissue of heart failure patients compared with healthy controls. J Am Coll Cardiol 2011;58:1119–1125. https://doi.org/10.1016/j.jacc.2011.05.042

Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J Cachexia Sarcopenia Muscle 2020;11:1614–1627. https://doi.org/10.1002/jcsm.12631

Johansen MO, Afzal S, Vedel‐Krogh S, Nielsen SF, Smith GD, Nordestgaard BG. From plasma triglycerides to triglyceride metabolism: Effects on mortality in the Copenhagen General Population Study. Eur Heart J 2023;44:4174–4182. https://doi.org/10.1093/eurheartj/ehad330

Marcondes‐Braga FG, Gioli‐Pereira L, Bernardez‐Pereira S, Batista GL, Mangini S, Issa VS, et al. Exhaled breath acetone for predicting cardiac and overall mortality in chronic heart failure patients. ESC Heart Fail 2020;7:1744–1752. https://doi.org/10.1002/ehf2.12736

Djousse L, Benkeser D, Arnold A, Kizer JR, Zieman SJ, Lemaitre RN, et al. Plasma free fatty acids and risk of heart failure: The Cardiovascular Health Study. Circ Heart Fail 2013;6:964–969. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000521

Miedema MD, Maziarz M, Biggs ML, Zieman SJ, Kizer JR, Ix JH, et al. Plasma‐free fatty acids, fatty acid‐binding protein 4, and mortality in older adults (from the Cardiovascular Health Study). Am J Cardiol 2014;114:843–848. https://doi.org/10.1016/j.amjcard.2014.06.012

Pilz S, Scharnagl H, Tiran B, Wellnitz B, Seelhorst U, Boehm BO, et al. Elevated plasma free fatty acids predict sudden cardiac death: A 6.85‐year follow‐up of 3315 patients after coronary angiography. Eur Heart J 2007;28:2763–2769. https://doi.org/10.1093/eurheartj/ehm343

Han L, Liu J, Zhu L, Tan F, Qin Y, Huang H, et al. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids Health Dis 2018;17:185. https://doi.org/10.1186/s12944‐018‐0834‐1

Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol 2018;15:457–470. https://doi.org/10.1038/s41569‐018‐0044‐6

Oram JF, Bornfeldt KE. Direct effects of long‐chain non‐esterified fatty acids on vascular cells and their relevance to macrovascular complications of diabetes. Front Biosci 2004;9:1240–1253. https://doi.org/10.2741/1300

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...