Enhanced control strategy for photovoltaic emulator operating in continuously changing environmental conditions based on shift methodology

. 2024 Jun 11 ; 14 (1) : 13406. [epub] 20240611

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38862672
Odkazy

PubMed 38862672
PubMed Central PMC11166939
DOI 10.1038/s41598-024-64092-7
PII: 10.1038/s41598-024-64092-7
Knihovny.cz E-zdroje

This article investigates an inventive methodology for precisely and efficiently controlling photovoltaic emulating (PVE) prototypes, which are employed in the assessment of solar systems. A modification to the Shift controller (SC), which is regarded as a leading PVE controller, is proposed. In addition to efficiency and accuracy, the novel controller places a high emphasis on improving transient performance. The novel piecewise linear-logarithmic adaptation utilized by the Modified-Shift controller (M-SC) enables the controller to linearly adapt to the load burden within a specified operating range. At reduced load resistances, the transient sped of the PVE can be increased through the implementation of this scheme. An exceedingly short settling time of the PVE is ensured by a logarithmic modification of the control action beyond the critical point. In order to analyze the M-SC in the context of PVE control, numerical investigations implemented in MATLAB/Simulink (Version: Simulink 10.4, URL: https://in.mathworks.com/products/simulink.html ) were utilized. To assess the effectiveness of the suggested PVE, three benchmarking profiles are presented: eight scenarios involving irradiance/PVE load, continuously varying irradiance/temperature, and rapidly changing loads. These profiles include metrics such as settling time, efficiency, Integral of Absolute Error (IAE), and percentage error (epve). As suggested, the M-SC attains an approximate twofold increase in speed over the conventional SC, according to the findings. This is substantiated by an efficiency increase of 2.2%, an expeditiousness enhancement of 5.65%, and an IAE rise of 5.65%. Based on the results of this research, the new M-SC enables the PVE to experience perpetual dynamic operation enhancement, making it highly suitable for evaluating solar systems in ever-changing environments.

Zobrazit více v PubMed

Yang Y, Si Z, Jia L, Wang P, Huang L, Zhang Y, Ji C. Whether rural rooftop photovoltaics can effectively fight the power consumption conflicts at the regional scale – A case study of Jiangsu Province. Energy Build. 2024;306:113921. doi: 10.1016/j.enbuild.2024.113921. DOI

Henry Alombah N, Harrison A, Kamel S, Bertrand Fotsin H, Aurangzeb M. Development of an efficient and rapid computational solar photovoltaic emulator utilizing an explicit PV model. Sol. Energy. 2024;271:112426. doi: 10.1016/j.solener.2024.112426. DOI

Zhu W, Harrison A. A novel simplified buck power system control algorithm: application to the emulation of photovoltaic solar panels. Comput. Electr. Eng. 2024;116:109161. doi: 10.1016/j.compeleceng.2024.109161. DOI

Ayop R, Tan CW. A comprehensive review on photovoltaic emulator. Renew. Sustain. Energy Rev. 2017;80:430–452. doi: 10.1016/j.rser.2017.05.217. DOI

Ramyar A, Avestruz A-T. Reconfigurable photovoltaic emulator for differential diffusion charge redistribution solar modules. IEEE Open J. Ind. Appl. 2021;2:36–46. doi: 10.1109/OJIA.2021.3063842. DOI

Harrison A, Alombah NH. A new piecewise segmentation based solar photovoltaic emulator using artificial neural networks and a nonlinear backstepping controller. Appl. Sol. Energy. 2023;59:283–304. doi: 10.3103/S0003701X23600285. DOI

Harrison A, Alombah NH. A new high-performance photovoltaic emulator suitable for simulating and validating maximum power point tracking controllers. Int. J. Photoenergy. 2023;2023:1–21. doi: 10.1155/2023/4225831. DOI

Ayop R, Wei Tan C. Lawan bukar, simple and fast computation photovoltaic emulator using shift controller. IET Renew. Power Gener. 2020;14:2017–2026. doi: 10.1049/iet-rpg.2019.1504. DOI

Lyu W, Hu Y, Liu J, Chen K, Liu P, Deng J, Zhang S. Impact of battery electric vehicle usage on air quality in three Chinese first-tier cities. Sci. Rep. 2024;14:21. doi: 10.1038/s41598-023-50745-6. PubMed DOI PMC

Hu J, Zou Y, Soltanov N. A multilevel optimization approach for daily scheduling of combined heat and power units with integrated electrical and thermal storage. Expert Syst. Appl. 2024;250:123729. doi: 10.1016/j.eswa.2024.123729. DOI

Kumar N, Singh B, Panigrahi BK. Grid synchronisation framework for partially shaded solar PV-based microgrid using intelligent control strategy. IET Gener. Transm. Distrib. 2019;13:829–837. doi: 10.1049/iet-gtd.2018.6079. DOI

Kumar N, Singh B, Wang J, Panigrahi BK. A framework of L-HC and AM-MKF for accurate harmonic supportive control schemes, IEEE trans. Circuits Syst. I Regul. Pap. 2020;67:5246–5256. doi: 10.1109/TCSI.2020.2996775. DOI

Kumari P, Kumar N, Panigrahi BK. A framework of reduced sensor rooftop SPV system using parabolic curve fitting MPPT technology for household consumers. IEEE Trans. Consum. Electron. 2023;69:29–37. doi: 10.1109/TCE.2022.3209974. DOI

Awan MMA, Asghar AB, Javed MY, Conka Z. Ordering technique for the maximum power point tracking of an islanded solar photovoltaic system. Sustainability. 2023;15:3332. doi: 10.3390/su15043332. DOI

Awan MMA, Javed MY, Asghar AB, Ejsmont K. Performance optimization of a ten check MPPT algorithm for an off-grid solar photovoltaic system. Energies. 2022;15:2104. doi: 10.3390/en15062104. DOI

Awan MMA. Technical review of MPPT algorithms for solar photovoltaic system: SWOT analysis of MPPT algorithms, sir Syed univ. Res. J. Eng. Technol. 2022;12:98–106. doi: 10.33317/ssurj.433. DOI

Awan MMA, Mahmood T. Modified flower pollination algorithm for an off-grid solar photovoltaic system, Mehran Univ. Res. J. Eng. Technol. 2022;41:95. doi: 10.22581/muet1982.2204.10. DOI

Awan MMA. Strategic Perturb and observe algorithm for partial shading conditions, sir Syed Univ. Res. J. Eng. Technol. 2022;12:26–32. doi: 10.33317/ssurj.497. DOI

Harrison A, Feudjio C. A new framework for improving MPPT algorithms through search space reduction. Results Eng. 2024;22:101998. doi: 10.1016/j.rineng.2024.101998. DOI

Nguimfack-Ndongmo JD, Kenné G, Kuate-Fochie R, Tchouani Njomo AF, Mbaka NE. Adaptive neuro-synergetic control technique for SEPIC converter in PV systems. Int. J. Dyn. Control. 2022;10(1):203–216. doi: 10.1007/s40435-021-00808-1. DOI

Zhang X, Gong L, Zhao X, Li R, Yang L, Wang B. Voltage and frequency stabilization control strategy of virtual synchronous generator based on small signal model. Energy Rep. 2023;9:583–590. doi: 10.1016/j.egyr.2023.03.071. DOI

Song J, Mingotti A, Zhang J, Peretto L, Wen H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. Meas. 2022;71:1–4. doi: 10.1109/TIM.2022.3220300. DOI

Harrag A, Messalti S. Three, five and seven PV model parameters extraction using PSO. Energy Procedia. 2017;119:767–774. doi: 10.1016/j.egypro.2017.07.104. DOI

Bana S, Saini RP. Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints. Renew. Energy. 2017;101:1299–1310. doi: 10.1016/j.renene.2016.10.010. DOI

Nayak B, Mohapatra A, Mohanty KB. Parameter estimation of single diode PV module based on GWO algorithm. Renew. Energy Focus. 2019;30:1–12. doi: 10.1016/j.ref.2019.04.003. DOI

Lidaighbi S, Elyaqouti M, Hmamou DB, Saadaoui D, Assalaou K, Arjdal E. A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Conv. Manag: X. 2022;1(15):100234. doi: 10.1016/j.ecmx.2022.100234. DOI

Fan J, Zhou X. Optimization of a hybrid solar/wind/storage system with bio-generator for a household by emerging metaheuristic optimization algorithm. J. Energy Storage. 2023;73:108967. doi: 10.1016/j.est.2023.108967. DOI

Alaoui M, Maker H, Mouhsen A. An accurate photovoltaic source emulator with high-bandwidth using a backstepping controller. In2019 4th world conference on complex systems (WCCS) 2019 Apr 22 (pp. 1-6). IEEE.10.1109/ICoCS.2019.8930786

Duan Y, Zhao Y, Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis. Sustain. Energy, Grids Netw. 2023;34:101004. doi: 10.1016/j.segan.2023.101004. DOI

Shirkhani M, Tavoosi J, Danyali S, Sarvenoee AK, Abdali A, Mohammadzadeh A, Zhang C. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep. 2023;10:368–380. doi: 10.1016/j.egyr.2023.06.022. DOI

Ayop R, Tan CW. A novel photovoltaic emulator based on current-resistor model using binary search computation. Sol. Energy. 2018;160:186–199. doi: 10.1016/j.solener.2017.12.005. DOI

Ayop R, Tan CW. Rapid prototyping of photovoltaic emulator using buck converter based on fast convergence resistance feedback method. IEEE Trans. Power Electron. 2019;34:8715–8723. doi: 10.1109/TPEL.2018.2886927. DOI

Zheng S, Hai Q, Zhou X, Stanford RJ. A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: thermodynamic, economic, and environmental analysis. Energy. 2024;290:130084. doi: 10.1016/j.energy.2023.130084. DOI

Yang C, Kumar Nutakki TU, Alghassab MA, Alkhalaf S, Alturise F, Alharbi FS, Elmasry Y, Abdullaev S. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: Dynamic modeling, data-driven optimization, and case study. J. Clean. Prod. 2024;447:141405. doi: 10.1016/j.jclepro.2024.141405. DOI

Messaoudi H, Bennani AB, Bellaaj NM, Orabi M. †Design and implementation of a solar PV emulator’. InFirst International Refrigeration Energy and Environment Colloquium (IREEC1) 2016 (p. 8).

Saraswathi KT, Arumugam P, Swaminathan GV, Periasamy S. An artificial neural network-based comprehensive solar photovoltaic emulator. Int. J. Photoenergy. 2022;2022:1–14. doi: 10.1155/2022/4741428. DOI

Gao J, Zhang Y, Li X, Zhou X, Kilburn ZJ. Thermodynamic and thermoeconomic analysis and optimization of a renewable-based hybrid system for power, hydrogen, and freshwater production. Energy. 2024;295:131002. doi: 10.1016/j.energy.2024.131002. DOI

Li X, Wang Z, Yang C, Bozkurt A. An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms. Energy. 2024;296:131259. doi: 10.1016/j.energy.2024.131259. DOI

Mallal Y, El Bahir L, Hassboun T. High-Performance Emulator for Fixed Photovoltaic Panels. Int. J. Photoenergy. 2019;2019:1–11. doi: 10.1155/2019/3951841. DOI

Ayop R, Tan CW. Improved control strategy for photovoltaic emulator using resistance comparison method and binary search method. Sol. Energy. 2017;153:83–95. doi: 10.1016/j.solener.2017.05.043. DOI

Basha CH, Rani C. Design and analysis of transformerless, high step-up, boost DC-DC converter with an improved VSS-RBFA based MPPT controller. Int. Trans. Electr. Energy Syst. 2020;30:2036. doi: 10.1002/2050-7038.12633. DOI

Jayawardana IDG, Ho CNM, Pokharel M, Valderrama GE. A fast-dynamic control scheme for a power-electronics-based PV emulator. IEEE J. Photovoltaics. 2021;11:485–495. doi: 10.1109/JPHOTOV.2020.3041188. DOI

Iqbal MT, Tariq M, Ahmad MK, Arif MS. Modeling, analysis and control of buck converter and Z-source converter for photo voltaic emulator. In2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) 2016 Jul 4 (pp. 1-6). IEEE.10.1109/ICDRET.2016.7421477

Ayop R, Tan CW, Ayob SM, Muhamad ND, Jamian JJ, Noorden ZA. Photovoltaic emulator using error adjustment fuzzy logic proportional-integral controller. Int. J. Power Electr. Drive Syst. (IJPEDS) 2022;13(2):1111–1118. doi: 10.11591/ijpeds.v13.i2.pp1111-1118. DOI

Alaoui M, Maker H, Mouhsen A, Hihi H. Photovoltaic emulator of different solar array configurations under partial shading conditions using damping injection controller. Int. J. Power Electr. Drive Syst. 2020;11(2):1019. doi: 10.11591/ijpeds.v11.i2.pp1019-1030. DOI

Jenkal MOS, Kourchi M, Rachdy A, Oussalem O, Ajaamoum M. Modeling a photovoltaic emulator using four methods and buck-boost converter. Eng. Lett. 2021;29:408–415.

Lu DDC, Nguyen QN. A photovoltaic panel emulator using a buck-boost DC/DC converter and a low cost micro-controller. Sol. Energy. 2012;86:1477–1484. doi: 10.1016/j.solener.2012.02.008. DOI

Cordeiro A, Foito D, Pires VF. A PV panel simulator based on a two quadrant DC/DC power converter with a sliding mode controller. In2015 International Conference on Renewable Energy Research and Applications (ICRERA) 2015 Nov 22 (pp. 928-932). IEEE.10.1109/ICRERA.2015.7418545

Li Y, Lee T, Peng FZ, Liu D. A hybrid control strategy for photovoltaic simulator. In2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition 2009 Feb 15 (pp. 899-903). IEEE.10.1109/APEC.2009.4802769

Qais MH, Hasanien HM, Alghuwainem S. Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl. Energy. 2019;250:109–117. doi: 10.1016/j.apenergy.2019.05.013. DOI

Wang R. Parameter identification of photovoltaic cell model based on enhanced particle swarm optimization. Sustainability. 2021;13:840. doi: 10.3390/su13020840. DOI

C.W. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia Rep. - SAND2015–2065 (2015) 1–68. 10.13140/RG.2.1.4336.7842.

Kyocera, KC200GT Kyocera PV module datasheet, https//www.Solarelectricsupply.Com/Kyocera-Kc200gt-Solar-Panel (Accessed April 10, 2023) (2018).

Ayop R, Tan CW, Nasir SN, Lau KY, Toh CL. Buck converter design for photovoltaic emulator application. In2020 IEEE International Conference on Power and Energy (PECon) 2020 Dec 7 (pp. 293-298). IEEE.10.1109/PECon48942.2020.9314582

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...