No evidence for the consistent effect of supplementary feeding on home range size in terrestrial mammals

. 2024 Jun ; 291 (2024) : 20232889. [epub] 20240612

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38864336

Grantová podpora
Internal Grant Agency (IGA) of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences in Prague
Národní Agentura pro Zemědělský Výzkum
Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague

Food availability and distribution are key drivers of animal space use. Supplemental food provided by humans can be more abundant and predictable than natural resources. It is thus believed that supplementary feeding modifies the spatial behaviour of wildlife. Yet, such effects have not been tested quantitatively across species. Here, we analysed changes in home range size owing to supplementary feeding in 23 species of terrestrial mammals using a meta-analysis of 28 studies. Additionally, we investigated the moderating effect of factors related to (i) species biology (sex, body mass and taxonomic group), (ii) feeding regimen (duration, amount and purpose), and (iii) methods of data collection and analysis (source of data, estimator and spatial confinement). We found no consistent effect of supplementary feeding on changes in home range size. While an overall tendency of reduced home range was observed, moderators varied in the direction and strength of the trends. Our results suggest that multiple drivers and complex mechanisms of home range behaviour can make it insensitive to manipulation with supplementary feeding. The small number of available studies stands in contrast with the ubiquity and magnitude of supplementary feeding worldwide, highlighting a knowledge gap in our understanding of the effects of supplementary feeding on ranging behaviour.

Zobrazit více v PubMed

Pyke GH, Pulliam HR, Charnov EL. 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52, 137–154. (10.1086/409852) DOI

Börger L, Dalziel BD, Fryxell JM. 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650. (10.1111/j.1461-0248.2008.01182.x) PubMed DOI

Mysterud A. 2010. Still walking on the wild side? Management actions as steps towards ‘semi‐domestication’ of hunted ungulates. J. Appl. Ecol. 47, 920–925. (10.1111/j.1365-2664.2010.01836.x) DOI

Newsome D, Rodger K. 2013. Feeding of wildlife: an acceptable practice in ecotourism? In International handbook on ecotourism (eds Ballantyne R, Packer J), pp. 436–451. Cheltenham, UK: Edward Elgar. (10.4337/9780857939975) DOI

Robb GN, McDonald RA, Chamberlain DE, Bearhop S. 2008. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484. (10.1890/060152) DOI

Griffin LL, Ciuti S. 2023. Should we feed wildlife? A call for further research into this recreational activity. Conservat. Sci. and Prac. 5, e12958. (10.1111/csp2.12958) DOI

Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A. 2013. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514. (10.1111/ele.12187) PubMed DOI

Newsome T, van Eeden L. 2017. The effects of food waste on wildlife and humans. Sustainability 9, 1269. (10.3390/su9071269) DOI

Ewen JG, Walker L, Canessa S, Groombridge JJ. 2015. Improving supplementary feeding in species conservation. Conserv. Biol. 29, 341–349. (10.1111/cobi.12410) PubMed DOI PMC

Penteriani V, Lamamy C, Kojola I, Heikkinen S, Bombieri G, del Mar Delgado M. 2021. Does artificial feeding affect large carnivore behaviours? The case study of brown bears in a hunted and tourist exploited subpopulation. Biol. Conserv. 254, 108949. (10.1016/j.biocon.2021.108949) DOI

Sahlsten J, Bunnefeld N, Månsson J, Ericsson G, Bergström R, Dettki H. 2010. Can supplementary feeding be used to redistribute moose Alces alces? Wildlife Biol. 16, 85–92. (10.2981/08-085) DOI

Gundersen H, Andreassen HP, Storaas T stein. 2004. Supplemental feeding of migratory moose Alces alces: forest damage at two spatial scales. Wildlife Biol. 10, 213–223. (10.2981/wlb.2004.027) DOI

Boutin S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can. J. Zool 68, 203–220. (10.1139/z90-031) DOI

Calenge C, Maillard D, Fournier P, Fouque C. 2004. Efficiency of spreading maize in the garrigues to reduce wild boar (Sus scrofa) damage to Mediterranean vineyards. Eur. J. Wildl. Res. 50, 112–120. (10.1007/s10344-004-0047-y) DOI

Jerina K. 2012. Roads and supplemental feeding affect home-range size of Slovenian red deer more than natural factors. J. Mammal. 93, 1139–1148. (10.1644/11-MAMM-A-136.1) DOI

Campbell TA, Long DB, Shriner SA. 2013. Wildlife contact rates at artificial feeding sites in Texas. Environ. Manage. 51, 1187–1193. (10.1007/s00267-013-0046-4) PubMed DOI

Fersterer P, Nolte DL, Ziegltrum GJ, Gossow H, Fersterer P. 2001. Effect of feeding stations on the home ranges of American black bears in western Washington. Ursus 12, 51–53.

Hoset K, Steen H. 2007. Relaxed competition during winter may explain the coexistence of two sympatric Microtus species. Ann. Zool. Fenn. 44, 415–424.

Webb S, Hewitt D, Marquardt D, Hellickson M. 2008. Spatial distributions of adult male white-tailed deer relative to supplemental feed sites. Texas Journal of Agriculture and Natural Resources 21, 32–42.

Milner JM, Van Beest FM, Schmidt KT, Brook RK, Storaas T. 2014. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. Jour. Wild. Mgmt 78, 1322–1334. (10.1002/jwmg.798) DOI

Putman RJ, Staines BW. 2004. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mamm. Rev. 34, 285–306. (10.1111/j.1365-2907.2004.00044.x) DOI

Lindstedt SL, Miller BJ, Buskirk SW. 1986. Home range, time, and body size in mammals. Ecology 67, 413–418. (10.2307/1938584) DOI

Makarieva AM, Gorshkov VG, Li BL. 2005. Why do population density and inverse home range scale differently with body size? Ecol. Complex. 2, 259–271. (10.1016/j.ecocom.2005.04.006) DOI

McNab BK. 1963. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140. (10.1086/282264) DOI

Desy EA, Batzli GO, Liu J. 1990. Effects of food and predation on behavior of prairie voles: a field experiment. Oikos 58, 159. (10.2307/3545423) DOI

Aronsson M, Persson J. 2018. Female breeding dispersal in wolverines, a solitary carnivore with high territorial fidelity. Eur. J. Wildl. Res. 64, 7. (10.1007/s10344-018-1164-3) DOI

Logan KA, Sweanor LL. 2009. Behavior and social organization of a solitary carnivore. In Cougar ecology and conservation (eds Hornocker M, Negri S), pp. 105–117. Chicago, IL: University of Chicago Press.

Støen OG, Bellemain E, Sæbø S, Swenson JE. 2005. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. (Print) 59, 191–197. (10.1007/s00265-005-0024-9) DOI

Wauters L, Dhondt AA. 1992. Spacing behaviour of red squirrels, Sciurus vulgaris: variation between habitats and the sexes. Anim. Behav. 43, 297–311. (10.1016/S0003-3472(05)80225-8) DOI

Begg CM, Begg KS, Toit JT, Mills MGL. 2005. Spatial organization of the honey badger Mellivora capensis in the southern Kalahari: home‐range size and movement patterns. J. Zool. 265, 23–35. (10.1017/S0952836904005989) DOI

Kjellander P, Hewison AJM, Liberg O, Angibault JM, Bideau E, Cargnelutti B. 2004. Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L.): a comparison of two long-term studies. Oecologia 139, 478–485. (10.1007/s00442-004-1529-z) PubMed DOI

Young JK, Glasscock SN, Shivik JA. 2008. Does spatial structure persist despite resource and population changes. J. Mammal 89, 1094–1104. (10.1644/07-MAMM-A-198.1) DOI

van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A. 2011. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J. Anim. Ecol. 80, 771–785. (10.1111/j.1365-2656.2011.01829.x) PubMed DOI

Dahle B, Swenson JE. 2003. Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. J. Anim. Ecol. 72, 660–667. (10.1046/j.1365-2656.2003.00737.x) PubMed DOI

Grignolio S, Rossi IVA, Bertolotto E, Bassano B, Apollonio M. 2007. Influence of the kid on space use and habitat selection of female Alpine ibex. J. Wildl. Manage. 71, 713–719. (10.2193/2005-675) DOI

Akbar Z, Gorman ML. 1993. The effect of supplementary feeding upon the sizes of the home ranges of woodmice Apodemus sylvaticus living on a system of maritime sand‐dunes. J. Zool. 231, 233–237. (10.1111/j.1469-7998.1993.tb01914.x) DOI

FitzGerald RW. 1986. Sex differences in spatial ability: an evolutionary hypothesis and test. Am. Nat. 127, 74–88. (10.1086/284468) DOI

Singer FJ, Otto DK, Tipton AR, Hable CP. 1981. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manage. 45, 343. (10.2307/3807917) DOI

Perdue BM, Snyder RJ, Zhihe Z, Marr MJ, Maple TL. 2011. Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora. Biol. Lett. 7, 380–383. (10.1098/rsbl.2010.1116) PubMed DOI PMC

Broekman MJE, Hilbers JP, Hoeks S, Huijbregts MAJ, Schipper AM, Tucker MA. 2024. Environmental drivers of global variation in home range size of terrestrial and marine mammals. J. Anim. Ecol. 93, 488–500. (10.1111/1365-2656.14073) PubMed DOI

Stephens DW, Krebs JR. 1986. Foraging theory. (10.2307/j.ctvs32s6b). See http://www.jstor.org/stable/10.2307/j.ctvs32s6b. DOI

Powell RA, Mitchell MS. 2012. What is a home range? J. Mammal. 93, 948–958. (10.1644/11-MAMM-S-177.1) DOI

Séguigne C, Vignaud T, Meyer C, Bierwirth J, Clua É. 2023. Evidence of long-lasting memory of a free-ranging top marine predator, the bull shark Carcharhinus leucas. Behaviour 160, 1303–1318. (10.1163/1568539X-bja10240) DOI

Sorensen A, van Beest FM, Brook RK. 2014. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: a synthesis of knowledge. Prev. Vet. Med. 113, 356–363, (10.1016/j.prevetmed.2013.11.010) PubMed DOI

Groot Bruinderink G, Hazebroek E, Van Der Voot H. 1994. Diet and condition of wild boar, Sus scrofu scrofu, without supplementary feeding. J. Zool. 233, 631–648. (10.1111/j.1469-7998.1994.tb05370.x) DOI

Bartoskewitz M, Hewitt D, Pitts J, Bryant F. 2003. Supplemental feed use by free-ranging white-tailed deer in southern Texas. Wildl. Soc. Bull. 31, 1218–1228.

Mateo‐Tomás P, Olea PP, Moleón M, Vicente J, Botella F, Selva N, Viñuela J, Sánchez‐Zapata JA. 2015. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers. Distrib. 21, 913–924. (10.1111/ddi.12330) DOI

Zamora R, Gómez JM, Hódar JA, Castro J, García D. 2001. Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. For. Ecol. Manage. 144, 33–42. (10.1016/S0378-1127(00)00362-5) DOI

van Beest FM, Gundersen H, Mathisen KM, Milner JM, Skarpe C. 2010. Long-term browsing impact around diversionary feeding stations for moose in Southern Norway. For. Ecol. Manage. 259, 1900–1911. (10.1016/j.foreco.2010.02.002) DOI

Felton AM, Felton A, Cromsigt J, Edenius L, Malmsten J, Wam HK. 2017. Interactions between ungulates, forests, and supplementary feeding: the role of nutritional balancing in determining outcomes. Mamm. Res. 62, 1–7. (10.1007/s13364-016-0301-1) DOI

Murray MH, Becker DJ, Hall RJ, Hernandez SM. 2016. Wildlife health and supplemental feeding: a review and management recommendations. Biol. Conserv. 204, 163–174. (10.1016/j.biocon.2016.10.034) DOI

Vicente J, et al. . 2011. Big game waste production: sanitary and ecological implications. Integrated Waste Management - Volume II (10.5772/935) DOI

Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T. 2006. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405. (10.1111/j.1365-2656.2006.01164.x) PubMed DOI

Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. 2014. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154–67. (10.1086/675504) PubMed DOI

Gurarie E, Cagnacci F, Peters W, Fleming CH, Calabrese JM, Mueller T, Fagan WF. 2017. A framework for modelling range shifts and migrations: asking when, whither, whether and will it return. J. Anim. Ecol. 86, 943–959. (10.1111/1365-2656.12674) PubMed DOI

Boitani L, Fuller T. 2000. Research techniques in animal ecology: controversies and consequences. New York, NY: Columbia University Press.

Signer J, Fieberg JR. 2021. A fresh look at an old concept: home-range estimation in a tidy world. PeerJ 9, e11031. (10.7717/peerj.11031) PubMed DOI PMC

Belotti E, Kreisinger J, Romportl D, Heurich M, Bufka L. 2014. Eurasian lynx hunting red deer: is there an influence of a winter enclosure system? Eur. J. Wildl. Res. 60, 441–457. (10.1007/s10344-014-0801-8) DOI

Heurich M, Brand TTG, Kaandorp MY, Šustr P, Müller J, Reineking B. 2015. Country, cover or protection: what shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem? PLoS One 10, e0120960. (10.1371/journal.pone.0120960) PubMed DOI PMC

Baker PJ, Funk SM, Harris S, White PCL. 2000. Flexible spatial organization of urban foxes, Vulpes vulpes, before and during an outbreak of sarcoptic mange. Anim. Behav. 59, 127–146. (10.1006/anbe.1999.1285) PubMed DOI

Boutin S, Schweiger S. 1988. Manipulation of intruder pressure in red squirrels (Tamiasciurus hudsonicus): effects on territory size and acquisition. Can. J. Zool 66, 2270–2274. (10.1139/z88-337) DOI

Foo Y, O’Dea R, Koricheva J, Nakagawa S, Lagisz M. 2021. A practical guide to question formation, systematic searching and study screening for literature reviews in Ecology and evolution. Life Sciences. (10.32942/OSF.IO/6V54P). See 10.32942/osf.io/6v54p. DOI

Wickham H, François R, Henry L, Müller K, Vaughan D, Software P. 2023. dplyr: a grammar of data manipulation.

R Core Team . 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Drahota A, Beller E. 2023. Revman calculator. Cochrane Handbook. See https://training.cochrane.org/resource/revman-calculator (accessed 2 May 2023).

Jones KE, et al. . 2009. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648. (10.1890/08-1494.1) DOI

Wasserman S, Hedges LV, Olkin I. 1988. Statistical methods for meta-analysis. J. Educ. Stat. 13, 75. (10.2307/1164953) DOI

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. (10.18637/jss.v036.i03) DOI

Sterne JA, Egger M. 2001. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 54, 1046–1055. (10.1016/s0895-4356(01)00377-8) PubMed DOI

Egger M, Davey Smith G, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. (10.1136/bmj.315.7109.629) PubMed DOI PMC

Higgins JPT, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558. (10.1002/sim.1186) PubMed DOI

Arel-Bundock V. 2022. Modelsummary: data and model summaries in R. See https://www.jstatsoft.org/article/view/v103i01.

Broughton SK, Dickman CR. 1991. The effect of supplementary food on home range of the southern brown bandicoot, Isoodon obesulus (Marsupialia: Peramelidae). Aust. J. Ecol. 16, 71–78. (10.1111/j.1442-9993.1991.tb01482.x) DOI

Campbell TA, Langdon CA, Laseter BR, Ford WM, Edwards JW, Miller KV. 2006. Movements of female white-tailed deer to bait sites in West Virginia, USA. Wildl. Res. 33, 1. (10.1071/WR04090) DOI

Cooper SM, Owens MK, Cooper RM, Ginnett TF. 2006. Effect of supplemental feeding on spatial distribution and browse utilization by white-tailed deer in semi-arid rangeland. J. Arid Environ. 66, 716–726. (10.1016/j.jaridenv.2005.11.015) DOI

Dickman CR. 1989. Demographic responses of Antechinus stuartii (Marsupialia) to supplementary food. Aust. J. Ecol. 14, 387–398. (10.1111/j.1442-9993.1989.tb01449.x) DOI

Gilchrist JS, Otali E. 2002. The effects of refuse-feeding on home-range use, group size, and intergroup encounters in the banded mongoose. Can. J. Zool 80, 1795–1802. (10.1139/z02-113) DOI

Grenier D, Crête M, Dumont A. 1999. Effets du nourrissage artificiel sur les dépalacements hivernaux de Cerfs de Virginie, Odocoileus virginianus, vivant au nord de leur aire de réparition. The Canadian Field-Naturalist 113, 609–615. (10.5962/p.358662) DOI

Hall LS, Morrison ML. 1998. Responses of mice to fluctuating habitat quality II. Supplementation experiment. Southwest. Nat. 43, 137–146.

Haspel C, Calhoon RE. 1989. Home ranges of free-ranging cats (Felis catus) in Brooklyn, New York. Can. J. Zool. 67, 178–181. (10.1139/z89-023) DOI

Hidalgo‐Mihart MG, Cantú‐Salazar L, López‐González CA, Fernandez EC, González‐Romero A. 2004. Effect of a landfill on the home range and group size of coyotes (Canis latrans) in a tropical deciduous forest. J. Zool. 263, 55–63. (10.1017/S0952836904004868) DOI

Lacki MJ, Gregory MJ, Williams PK. 1984. Spatial response of an eastern chipmunk population to supplemented food. Am. Midl. Nat. 111, 414. (10.2307/2425338) DOI

López‐Bao JV, Palomares F, Rodríguez A, Delibes M. 2010. Effects of food supplementation on home‐range size, reproductive success, productivity and recruitment in a small population of Iberian lynx. Anim. Conserv. 13, 35–42. (10.1111/j.1469-1795.2009.00300.x) DOI

McRae JE, Schlichting PE, Snow NP, Davis AJ, VerCauteren KC, Kilgo JC, Keiter DA, Beasley JC, Pepin KM. 2020. Factors affecting bait site visitation: area of influence of baits. Wildl. Soc. Bull. 44, 362–371. (10.1002/wsb.1074) DOI

Monadjem A, Perrin M. 1998. The effect of supplementary food on the home range of the multimammate mouse Mastomys natalensis. S. Afr. J. Wildl. 28, 1–3.

Morris G, Conner LM, Oli MK. 2011. Effects of mammalian predator exclusion and supplemental feeding on space use by hispid cotton rats. J. Mammal. 92, 583–589. (10.1644/10-MAMM-A-309.1) PubMed DOI

Mysterud A, Rivrud IM, Brekkum Ø, Meisingset EL. 2023. Effect of legal regulation of supplemental feeding on space use of red deer in an area with chronic wasting disease. Eur. J. Wildl. Res. 69, 3. (10.1007/s10344-022-01630-6) DOI

Ranc N, Moorcroft PR, Hansen KW, Ossi F, Sforna T, Ferraro E, Brugnoli A, Cagnacci F. 2020. Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci. Rep. 10, 11946. (10.1038/s41598-020-68046-7) PubMed DOI PMC

Reinecke H, Leinen L, Thißen I, Meißner M, Herzog S, Schütz S, Kiffner C. 2014. Home range size estimates of red deer in Germany: environmental, individual and methodological correlates. Eur. J. Wildl. Res. 60, 237–247. (10.1007/s10344-013-0772-1) DOI

Rotem G, Berger H, King R, (Kutiel) PB, Saltz D. 2011. The effect of anthropogenic resources on the space‐use patterns of golden jackals. J. Wildl. Manage. 75, 132–136. (10.1002/jwmg.9) DOI

Schoepf I, Schmohl G, König B, Pillay N, Schradin C. 2015. Manipulation of population density and food availability affects home range sizes of African striped mouse females. Anim. Behav. 99, 53–60. (10.1016/j.anbehav.2014.10.002) DOI

Sulok M, Slade NA, Doonan TJ. 2004. Effects of supplemental food on movements of cotton rats (Sigmodon hispidus) in northeastern Kansas. J. Mammal. 85, 1102–1105. (10.1644/BEH-112.1) DOI

Teferi T, Millar JS. 1994. Effect of supplemental food on the dispersal of young Peromyscus maniculatus. Écoscience 1, 115–118. (10.1080/11956860.1994.11682235) DOI

Todorov VR, Zlatanova DP, Valchinkova KV, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Balkani Wildlife Society, Sofia University 'St. Kliment Ohridski', Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences . 2020. Home range, mobility and hibernation of brown bears (Ursus arctos, Ursidae) in areas with supplementary feeding. Nat. Conserv. Res 5. (10.24189/ncr.2020.050) DOI

Verdolin JL. 2006. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. (Print) 60, 457–464. (10.1007/s00265-006-0172-6) DOI

Lima SL, Valone TJ, Caraco T. 1985. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Anim. Behav. 33, 155–165. (10.1016/S0003-3472(85)80129-9) DOI

Bonnot N, Morellet N, Verheyden H, Cargnelutti B, Lourtet B, Klein F, Hewison AJM. 2013. Habitat use under predation risk: hunting, roads and human dwellings influence the spatial behaviour of roe deer. Eur. J. Wildl. Res. 59, 185–193. (10.1007/s10344-012-0665-8) DOI

Cowlishaw G. 1997. Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. Anim. Behav. 53, 667–686. (10.1006/anbe.1996.0298) PubMed DOI

Ballard WB, Gardner CL, Miller SD. 1980. Influence of predators on summer movements of moose in southcentral Alaska. Alces: A Journal Devoted to the Biology and Management of Moose 16, 338–359.

Bertrand MR, DeNicola AJ, Beissinger SR, Swihart RK. 1996. Effects of parturition on home ranges and social affiliations of female white-tailed deer. J. Wildl. Manage. 60, 899. (10.2307/3802391) DOI

Wright CA, McRoberts JT, Rota CT, Wiskirchen KH, Keller BJ, Millspaugh JJ. 2021. Female white-tailed deer (Odocoileus virginianus) behavior during pregnancy, parturition, and lactation in 2 contrasting ecoregions. Wildl. Soc. Bull. 45, 430–444. (10.1002/wsb.1207) DOI

Morelle K, Podgórski T, Prévot C, Keuling O, Lehaire F, Lejeune P. 2015. Towards understanding wild boar Sus scrofa movement: a synthetic movement ecology approach. Mamm. Rev. 45, 15–29. (10.1111/mam.12028) DOI

de Beer Y, van Aarde RJ. 2008. Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa’s arid savannas? J. Arid Environ. 72, 2017–2025. (10.1016/j.jaridenv.2008.07.002) DOI

Tomaszewski EM, Jennings MK, Botta R, Curtis KM, Lewison RL. 2022. Limited resources shape home range patterns of an insular ungulate in a semi-arid ecosystem. J. Arid Environ. 200, 104728. (10.1016/j.jaridenv.2022.104728) DOI

Jetz W, Carbone C, Fulford J, Brown JH. 2004. The scaling of animal space use. Science 306, 266–268. (10.1126/science.1102138) PubMed DOI

Degen AA. 1998. Energy expenditure and efficiency of energy use in rodents: desert and non-desert species. J. Basic Clin. Physiol. Pharmacol. 9, 29–49. (10.1515/jbcpp.1998.9.1.29) PubMed DOI

Klug H. 2011. Animal mating systems. In Encyclopedia of life sciences. (10.1002/047001590X) DOI

Dahle B, Støen OG, Swenson JE. 2006. Factors influencing home-range size in subadult brown bears. J. Mammal. 87, 859–865. (10.1644/05-MAMM-A-352R1.1) DOI

Loveridge AJ, Valeix M, Davidson Z, Murindagomo F, Fritz H, Macdonald DW. 2009. Changes in home range size of African lions in relation to pride size and prey biomass in a semi‐arid savanna. Ecography 32, 953–962. (10.1111/j.1600-0587.2009.05745.x) DOI

Tucker MA, Ord TJ, Rogers TL. 2014. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Global Ecology and Biogeography 23, 1105–1114. (10.1111/geb.12194) DOI

Kelt DA, Van Vuren DH. 2001. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645. (10.1086/320621) PubMed DOI

Kolowski JM, Holekamp KE. 2008. Effects of an open refuse pit on space use patterns of spotted hyenas. Afr. J. Ecol. 46, 341–349. (10.1111/j.1365-2028.2007.00846.x) DOI

Ballesteros M, Bårdsen BJ, Fauchald P, Langeland K, Stien A, Tveraa T. 2013. Combined effects of long‐term feeding, population density and vegetation green‐up on reindeer demography. Ecosphere 4, 1–13. (10.1890/ES13-00015.1) DOI

Peterson C, Messmer TA. 2007. Effects of winter-feeding on mule deer in northern Utah. J. Wildl. Manage. 71, 1440–1445. (10.2193/2006-202) DOI

Newey S, Allison P, Thirgood S, Smith AA, Graham IM. 2010. Population and individual level effects of over‐winter supplementary feeding mountain hares. J. Zool. 282, 214–220. (10.1111/j.1469-7998.2010.00728.x) DOI

Laundré JW, Hernández L, Altendorf KB. 2001. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool 79, 1401–1409. (10.1139/z01-094) DOI

Mao JS, Boyce MS, Smith DW, Singer FJ, Vales DJ, Vore JM, Merrill EH. 2005. Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. J. Wildl. Manage. 69, 1691–1707. (10.2193/0022-541X(2005)69[1691:HSBEBA]2.0.CO;2) DOI

Börger L, Fieberg J, Horne J, Rachlow J, Calabrese J, Fleming C. 2020. Animal home ranges: concepts, uses, and estimation. In Population ecology in practice (eds Murray DL, Sandercock BK), pp. 315–332. Chichester, UK: Wiley.

Nilsen EB, Pedersen S, Linnell JDC. 2008. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecol. Res. 23, 635–639. (10.1007/s11284-007-0421-9) DOI

Burgman MA, Fox JC. 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim. Conserv. 6, 19–28. (10.1017/S1367943003003044) DOI

Olejarz A. 2024. Data for: No evidence for the consistent effect of supplementary feeding on home range size in terrestrial mammals.Dryad Digital Repository (10.5061/dryad.qjq2bvqp5) PubMed DOI PMC

Olejarz A, Podgórski T. 2024. Supplementary material from: No evidence for the consistent effect of supplementary feeding on home range size in terrestrial mammals. Figshare (10.6084/m9.figshare.c.7227090) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...