• This record comes from PubMed

Pulmonary Vein Morphology in Patients Undergoing Catheter Ablation of Atrial Fibrillation

. 2024 Oct ; 15 (5) : 616-622. [epub] 20240618

Language English Country United States Media print-electronic

Document type Journal Article, Observational Study

Grant support
SV/MUNI/A/1450/2021 Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1412/2022 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 38890232
DOI 10.1007/s13239-024-00738-x
PII: 10.1007/s13239-024-00738-x
Knihovny.cz E-resources

PURPOSE: Variations in the anatomy of pulmonary veins can influence selection of approaches of atrial fibrillation catheter ablation. Therefore, preprocedural evaluation and knowledge of pulmonary veins anatomy is crucial for proper mapping and the successful ablation of atrial fibrillation. The aim of this observational study was to assess CT angiography scans and perform detailed analysis of pulmonary veins morphology in patients scheduled for catheter ablation of atrial fibrillation. METHODS: CT angiography was performed in 771 individuals (223 females, 548 males, mean age 58.4 ± 10.7 years). Pulmonary veins anatomy was evaluated using 3D models. The patterns used for evaluation included typical anatomy with four separate pulmonary veins, a common left ostium, and various types of accessory veins either alone or in combination with common left ostia. RESULTS: An anatomical variant with common left ostium was observed as the most prevalent anatomy (44%). The typical variant was observed in 34.8% of patients. Accessory pulmonary veins were observed predominantly on the right side. The prevalence of anatomical variants did not differ between sexes with the exception of the unclassifiable category U (4.4% vs. 9%, p < 0.05). CONCLUSIONS: Our study shows that a considerable number of atypical anatomies is present in patients undergoing AF catheter ablation. This knowledge may influence the choice of instrumentation. The data could be possibly helpful also in development of new ablation techniques.

See more in PubMed

Saito, T., K. Waki, and A. E. Becker. Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. J. Cardiovasc. Electrophysiol. 11(8):888–894, 2000. https://doi.org/10.1111/j.1540-8167.2000.tb00068.x . PubMed DOI

Chugh, S. S., et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 129(8):837–847, 2014. https://doi.org/10.1161/CIRCULATIONAHA.113.005119 . PubMed DOI

Hindricks, G., et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 42(5):373–498, 2021. https://doi.org/10.1093/eurheartj/ehaa612 . PubMed DOI

Kirchhof, P., et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37(38):2893–2962, 2016. https://doi.org/10.1093/eurheartj/ehw210 . PubMed DOI

Istratoaie, S., et al. The impact of pulmonary vein anatomy on the outcomes of catheter ablation for atrial fibrillation. Medicina. 55(11):1–10, 2019. https://doi.org/10.3390/medicina55110727 . DOI

Xu, J., J. G. Y. Luc, and K. Phan. Atrial fibrillation: review of current treatment strategies. J. Thorac. Dis. 8(9):E886–E900, 2016. PubMed DOI PMC

Gebhard, C., et al. Characterization of pulmonary vein dimensions using high-definition 64-slice computed tomography prior to radiofrequency catheter ablation for atrial fibrillation. Cardiol. Res. Pract. 2014:1–8, 2014. https://doi.org/10.1155/2014/179632 . DOI

Cheruiyot, I., J. Munguti, B. Olabu, and P. Gichangi. A meta-analysis of the relationship between anatomical variations of pulmonary veins and atrial fibrillation. Acta Cardiol. 75(1):1–9, 2020. https://doi.org/10.1080/00015385.2018.1544204 . PubMed DOI

Hong, K. L., J. Borges, and B. Glover. Catheter ablation for the management of atrial fibrillation: current technical perspectives. Open Hear.7(1):e001207, 2020. https://doi.org/10.1136/openhrt-2019-001207 . DOI

Reddy, V. Y., et al. Pulsed field ablation of paroxysmal atrial fibrillation. JACC Clin. Electrophysiol. 7(5):614–627, 2021. https://doi.org/10.1016/j.jacep.2021.02.014 . PubMed DOI

Andrade, J. G. Cryoablation for atrial fibrillation. Hear. Rhythm O2. 1(1):44–58, 2020. https://doi.org/10.1016/j.hroo.2020.02.004 . DOI

Altinkaynak, D., and A. Koktener. Evaluation of pulmonary venous variations in a large cohort: multidetector computed tomography study with new variations. Wien. Klin. Wochenschr. 131(19–20):475–484, 2019. https://doi.org/10.1007/s00508-019-1517-2 . PubMed DOI

Mansour, M., et al. Three-dimensional anatomy of the left atrium by magnetic resonance angiography: implications for catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 17(7):719–723, 2006. https://doi.org/10.1111/j.1540-8167.2006.00491.x . PubMed DOI

Polaczek, M., P. Szaro, I. Baranska, B. Burakowska, and B. Ciszek. Morphology and morphometry of pulmonary veins and the left atrium in multi-slice computed tomography. Surg. Radiol. Anat. 41(7):721–730, 2019. https://doi.org/10.1007/s00276-019-02210-1 . PubMed DOI PMC

Kato, R., et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 107(15):2004–2010, 2003. https://doi.org/10.1161/01.CIR.0000061951.81767.4E . PubMed DOI

Bittner, A., et al. Pulmonary vein variants predispose to atrial fibrillation: a case-control study using multislice contrast-enhanced computed tomography. Europace. 13(10):1394–1400, 2011. https://doi.org/10.1093/europace/eur145 . PubMed DOI

Chu, Z. G., et al. Pulmonary veins of the patients with atrial fibrillation: dual-source computed tomography evaluation prior to radiofrequency catheter ablation. Int. J. Cardiol. 148(2):245–248, 2011. https://doi.org/10.1016/j.ijcard.2010.02.076 . PubMed DOI

Woźniak-Skowerska, I., et al. Comparison of pulmonary veins anatomy in patients with and without atrial fibrillation: analysis by multislice tomography. Int. J. Cardiol. 146(2):181–185, 2011. https://doi.org/10.1016/j.ijcard.2009.06.047 . PubMed DOI

Skowerski, M., et al. Pulmonary vein anatomy variants as a biomarker of atrial fibrillation—CT angiography evaluation. BMC Cardiovasc. Disord. 18(1):1–7, 2018. https://doi.org/10.1186/s12872-018-0884-3 . DOI

Angulo Hervias, E., M. E. Guillén Subirán, D. Yagüe Romeo, A. Castán Senar, P. Seral Moral, and M. E. Núñez Motilva. Multidetector computed tomography in planning the treatment of atrial fibrillation. Radiol. (English Ed.). 62(2):148–159, 2020. https://doi.org/10.1016/j.rxeng.2019.11.002 . DOI

Schwartzman, D., R. Bazaz, and J. Nosbisch. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J. Cardiovasc. Electrophysiol. 15(5):560–566, 2004. https://doi.org/10.1046/j.1540-8167.2004.03351.x . PubMed DOI

Chen, J., Z. G. Yang, H. Y. Xu, K. Shi, Q. H. Long, and Y. K. Guo. Assessments of pulmonary vein and left atrial anatomical variants in atrial fibrillation patients for catheter ablation with cardiac CT. Eur. Radiol. 27(2):660–670, 2017. https://doi.org/10.1007/s00330-016-4411-6 . PubMed DOI

Tsao, H. M., et al. Role of right middle pulmonary vein in patients with paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 12(12):1353–1357, 2001. https://doi.org/10.1046/j.1540-8167.2001.01353.x . PubMed DOI

Jongbloed, M. R. M. M., et al. Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation—initial experience. Radiology. 234(3):702–709, 2005. https://doi.org/10.1148/radiol.2343031047 . PubMed DOI

Mansour, M., et al. Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J. Cardiovasc. Electrophysiol. 15(4):387–393, 2004. https://doi.org/10.1046/j.1540-8167.2004.03515.x . PubMed DOI

Mlčochová, H., J. Tintěra, V. Porod, P. Peichl, R. Čihák, and J. Kautzner. Magnetic resonance angiography of pulmonary veins: implications for catheter ablation of atrial fibrillation. PACE Pacing Clin. Electrophysiol. 28(10):1073–1080, 2005. https://doi.org/10.1111/j.1540-8159.2005.00228.x . PubMed DOI

Ahmed, J., S. Sohal, Z. J. Malchano, G. Holmvang, J. N. Ruskin, and V. Y. Reddy. Three-dimensional analysis of pulmonary venous ostial and antral anatomy: Implications for balloon catheter-based pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 17(3):251–255, 2006. https://doi.org/10.1111/j.1540-8167.2005.00339.x . PubMed DOI

Anselmino, M., et al. Morphologic analysis of left atrial anatomy by magnetic resonance angiography in patients with atrial fibrillation: a large single center experience. J. Cardiovasc. Electrophysiol. 22(1):1–7, 2011. https://doi.org/10.1111/j.1540-8167.2010.01853.x . PubMed DOI

Vermond, R. A., et al. Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality a community-based study from the Netherlands. J. Am. Coll. Cardiol. 66(9):1000–1007, 2015. https://doi.org/10.1016/j.jacc.2015.06.1314 . PubMed DOI

Heeringa, J., et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27(8):949–953, 2006. https://doi.org/10.1093/eurheartj/ehi825 . PubMed DOI

Schnabel, R. B., et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 386(9989):154–162, 2015. https://doi.org/10.1016/S0140-6736(14)61774-8 . PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...