Molecular characterization of carbapenem and ceftazidime-avibactam-resistant Enterobacterales and horizontal spread of bla NDM-5 gene at a Lebanese medical center
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38962322
PubMed Central
PMC11219574
DOI
10.3389/fcimb.2024.1407246
Knihovny.cz E-resources
- Keywords
- Escherichia coli, Klebsiella pneumoniae, ST383, blaNDM-5, carbapenem resistance,
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Azabicyclo Compounds * pharmacology MeSH
- Bacterial Proteins genetics metabolism MeSH
- beta-Lactamases * genetics metabolism MeSH
- Ceftazidime * pharmacology MeSH
- Tertiary Care Centers MeSH
- Carbapenem-Resistant Enterobacteriaceae genetics drug effects isolation & purification MeSH
- Escherichia coli * genetics drug effects MeSH
- Drug Combinations * MeSH
- Genome, Bacterial MeSH
- Carbapenems * pharmacology MeSH
- Klebsiella pneumoniae * genetics drug effects MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial * genetics MeSH
- Plasmids genetics MeSH
- Gene Transfer, Horizontal MeSH
- Whole Genome Sequencing * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Lebanon MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- avibactam, ceftazidime drug combination MeSH Browser
- Azabicyclo Compounds * MeSH
- Bacterial Proteins MeSH
- beta lactamase NDM-5, E coli MeSH Browser
- beta-Lactamases * MeSH
- Ceftazidime * MeSH
- Drug Combinations * MeSH
- Carbapenems * MeSH
INTRODUCTION: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. METHODS: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). RESULTS: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. DISCUSSION: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.
Department of Microbiology University Hospital of Larissa Larissa Greece
Faculty of Health Sciences University of Balamand Beirut Lebanon
See more in PubMed
Ahmed El-Domany R., El-Banna T., Sonbol F., Abu-Sayedahmed S. H. (2021). Co-existence of NDM-1 and OXA-48 genes in Carbapenem Resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh, Egypt. Afr Health Sci. 21, 489–496. doi: 10.4314/ahs.v21i2.2 PubMed DOI PMC
Alousi S., Salloum T., Arabaghian H., Matar G. M., Araj G. F., Tokajian S. T. (2018). Genomic Characterization of MDR Escherichia coli Harboring bla(OXA-48) on the IncL/M-type Plasmid Isolated from Blood Stream Infection. BioMed. Res. Int. 2018, 3036143. doi: 10.1155/2018/3036143 PubMed DOI PMC
Al-Zahrani I. A., Alsiri B. A. (2018). The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med. J. 39, 23–30. doi: 10.15537/smj.2018.1.21094 PubMed DOI PMC
Ambler R. P. (1980). The structure of beta-lactamases. Philos. Trans. R Soc. Lond B Biol. Sci. 289, 321–331. doi: 10.1098/rstb.1980.0049 PubMed DOI
Andrews S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Aqel A. A., Giakkoupi P., Alzoubi H., Masalha I., Ellington M. J., Vatopoulos A. (2017). Detection of OXA-48-like and NDM carbapenemases producing Klebsiella pneumoniae in Jordan: A pilot study. J. Infect. Public Health 10, 150–155. doi: 10.1016/j.jiph.2016.02.002 PubMed DOI
Araj G. F., Avedissian A. Z., Itani L. Y., Obeid J. A. (2018). Antimicrobial agents active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates in Lebanon. J. Infect. Dev. Ctries 12, 164–170. doi: 10.3855/jidc.9729 PubMed DOI
Arndt D., Grant J. R., Marcu A., Sajed T., Pon A., Liang Y., et al. . (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21. doi: 10.1093/nar/gkw387 PubMed DOI PMC
(2023) Clinical breakpoints - breakpoints and guidance v13.0. Available online at: https://www.eucast.org/clinical_breakpoints
Avolio M., Vignaroli C., Crapis M., Camporese A. (2017). Co-production of NDM-1 and OXA-232 by ST16 klebsiella pneumoniae, Italy, 2016. Future Microbiol. 12, 1119–1122. doi: 10.2217/fmb-2017-0041 PubMed DOI
Baroud M., Dandache I., Araj G. F., Wakim R., Kanj S., Kanafani Z., et al. . (2013). Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int. J. Antimicrobial Agents 41, 75–79. doi: 10.1016/j.ijantimicag.2012.08.010 PubMed DOI
Beyrouthy R., Robin F., Dabboussi F., Mallat H., Hamze M., Bonnet R. (2014). Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: evolution via endemic spread of OXA-48. J. Antimicrob. Chemother. 69, 2699–2705. doi: 10.1093/jac/dku181 PubMed DOI
Bitar I., Dagher C., Araj G., Tokajian S. (2018). First report of an Escherichia coli from Lebanon carrying an OXA-181 carbapenemase resistance determinant. J. Global Antimicrobial Resistance 12, 113–114. doi: 10.1016/j.jgar.2018.01.002 PubMed DOI
Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., et al. . (2009). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 4, e4982. doi: 10.1371/journal.pone.0004982 PubMed DOI PMC
Bruen T. C., Philippe H., Bryant D. (2006). A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665–2681. doi: 10.1534/genetics.105.048975 PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. . (2009). BLAST+: architecture and applications. BMC Bioinf. 10, 421. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC
Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., et al. . (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. doi: 10.1128/AAC.02412-14 PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Chudejova K., Kraftova L., Mattioni Marchetti V., Hrabak J., Papagiannitsis C. C., Bitar I. (2021). Genetic plurality of OXA/NDM-encoding features characterized from enterobacterales recovered from Czech hospitals. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.641415 PubMed DOI PMC
Daaboul D., Oueslati S., Rima M., Kassem I. I., Mallat H., Birer A., et al. . (2023). The emergence of carbapenemase-producing Enterobacterales in hospitals: a major challenge for a debilitated healthcare system in Lebanon. Front. Public Health 11. doi: 10.3389/fpubh.2023.1290912 PubMed DOI PMC
Dandachi I., Salem Sokhn E., Najem E., Azar E., Daoud Z. (2016). Carriage of beta-lactamase-producing Enterobacteriaceae among nursing home residents in north Lebanon. Int. J. Infect. Dis. 45, 24–31. doi: 10.1016/j.ijid.2016.02.007 PubMed DOI
Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S. (2005). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43, 4178–4182. doi: 10.1128/JCM.43.8.4178-4182.2005 PubMed DOI PMC
Doi Y., O'Hara J. A., Lando J. F., Querry A. M., Townsend B. M., Pasculle A. W., et al. . (2014). Co-production of NDM-1 and OXA-232 by klebsiella pneumoniae. Emerg. Infect. Dis. 20, 163–165. doi: 10.3201/eid2001.130904 PubMed DOI PMC
Dortet L., Poirel L., Nordmann P. (2014). Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int . 2014 249856. doi: 10.1155/2014/249856 PubMed DOI PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Edward E. A., Mohamed N. M., Zakaria A. S. (2022). Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of bla(CTX-M-14) on IncL/M Plasmid and bla(CTX-M-15) on Convergent IncHI1B/IncFIB Plasmid from Egypt. Microorganisms 10. doi: 10.3390/microorganisms10061097 PubMed DOI PMC
El-Herte R. I., Araj G. F., Matar G. M., Baroud M., Kanafani Z. A., Kanj S. S. (2012). Detection of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae producing NDM-1 in Lebanon. J. Infect. Dev. Ctries 6, 457–461. doi: 10.3855/jidc.2340 PubMed DOI
Florensa A. F., Kaas R. S., Clausen P., Aytan-Aktug D., Aarestrup F. M. (2022). ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom 8. doi: 10.1099/mgen.0.000748 PubMed DOI PMC
Gagaletsios L. A., Papagiannitsis C. C., Petinaki E. (2022). Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol. Genet. Genomics 297, 1767–1776. doi: 10.1007/s00438-022-01957-4 PubMed DOI
Gupta N., Limbago B. M., Patel J. B., Kallen A. J. (2011). Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin. Infect. Dis. 53, 60–67. doi: 10.1093/cid/cir202 PubMed DOI
Haft D. H., DiCuccio M., Badretdin A., Brover V., Chetvernin V., O'Neill K., et al. . (2018). RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 46, D851–D860. doi: 10.1093/nar/gkx1068 PubMed DOI PMC
Hornsey M., Phee L., Wareham D. W. (2011). A novel variant, NDM-5, of the New Delhi metallo-beta-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 55, 5952–5954. doi: 10.1128/AAC.05108-11 PubMed DOI PMC
Iskandar K., Roques C., Hallit S., Husni-Samaha R., Dirani N., Rizk R., et al. . (2021). The healthcare costs of antimicrobial resistance in Lebanon: a multi-centre prospective cohort study from the payer perspective. BMC Infect. Dis. 21, 404. doi: 10.1186/s12879-021-06084-w PubMed DOI PMC
Kopotsa K., Osei Sekyere J., Mbelle N. M. (2019). Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann. N Y Acad. Sci. 1457, 61–91. doi: 10.1111/nyas.14223 PubMed DOI
Lee K., Lim Y. S., Yong D., Yum J. H., Chong Y. (2003). Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41, 4623–4629. doi: 10.1128/JCM.41.10.4623-4629.2003 PubMed DOI PMC
Li W., O'Neill K. R., Haft D. H., DiCuccio M., Chetvernin V., Badretdin A., et al. . (2021). RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 49, D1020–D1028. doi: 10.1093/nar/gkaa1105 PubMed DOI PMC
Linkevicius M., Bonnin R. A., Alm E., Svartstrom O., Apfalter P., Hartl R., et al. . (2023). Rapid cross-border emergence of NDM-5-producing Escherichia coli in the European Union/European Economic Area, 2012 to June 2022. Euro Surveill 28. doi: 10.2807/1560-7917.ES.2023.28.19.2300209 PubMed DOI PMC
Liu B., Zheng D., Jin Q., Chen L., Yang J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692. doi: 10.1093/nar/gky1080 PubMed DOI PMC
Lorenzin G., Gona F., Battaglia S., Spitaleri A., Saluzzo F., Trovato A., et al. . (2022). Detection of NDM-1/5 and OXA-48 co-producing extensively drug-resistant hypervirulent Klebsiella pneumoniae in Northern Italy. J. Glob Antimicrob. Resist. 28, 146–150. doi: 10.1016/j.jgar.2022.01.001 PubMed DOI
Mairi A., Pantel A., Sotto A., Lavigne J. P., Touati A. (2018). OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 37, 587–604. doi: 10.1007/s10096-017-3112-7 PubMed DOI
Matar G. M., Cuzon G., Araj G. F., Naas T., Corkill J., Kattar M. M., et al. . (2008). Oxacillinase-mediated resistance to carbapenems in Klebsiella pneumoniae from Lebanon. Clin. Microbiol. Infection 14, 887–888. doi: 10.1111/j.1469-0691.2008.02059.x PubMed DOI
Nawfal Dagher T., Azar E., Al-Bayssari C., Chamieh A. S., Rolain J. M. (2019). First detection of colistin-resistant klebsiella pneumoniae in association with NDM-5 carbapenemase isolated from clinical lebanese patients. Microb. Drug Resist. 25, 925–930. doi: 10.1089/mdr.2018.0383 PubMed DOI
Nordmann P., Poirel L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 20, 821–830. doi: 10.1111/1469-0691.12719 PubMed DOI
Nordmann P., Poirel L., Walsh T. R., Livermore D. M. (2011). The emerging NDM carbapenemases. Trends Microbiol. 19, 588–595. doi: 10.1016/j.tim.2011.09.005 PubMed DOI
Otlu B., Yakupogullari Y., Gursoy N. C., Duman Y., Bayindir Y., Tekerekoglu M. S., et al. . (2018). [Co-production of OXA-48 and NDM-1 Carbapenemases in Providencia rettgeri: the first report]. Mikrobiyol Bul 52, 300–307. doi: 10.5578/mb.67153 PubMed DOI
Papagiannitsis C. C., Giakkoupi P., Vatopoulos A. C., Tryfinopoulou K., Miriagou V., Tzouvelekis L. S. (2010). Emergence of Klebsiella pneumoniae of a novel sequence type (ST383) producing VIM-4, KPC-2 and CMY-4 beta-lactamases. Int. J. Antimicrob. Agents 36, 573–574. doi: 10.1016/j.ijantimicag.2010.07.018 PubMed DOI
Papagiannitsis C. C., Izdebski R., Baraniak A., Fiett J., Herda M., Hrabak J., et al. . (2015). Survey of metallo-beta-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008–11. J. Antimicrob. Chemother. 70, 1981–1988. doi: 10.1093/jac/dkv055 PubMed DOI
Paskova V., Medvecky M., Skalova A., Chudejova K., Bitar I., Jakubu V., et al. . (2018). Characterization of NDM-encoding plasmids from enterobacteriaceae recovered from czech hospitals. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.01549 PubMed DOI PMC
Poirel L., Bonnin R. A., Nordmann P. (2012. a). Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob. Agents Chemother. 56, 559–562. doi: 10.1128/AAC.05289-11 PubMed DOI PMC
Poirel L., Heritier C., Tolun V., Nordmann P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48, 15–22. doi: 10.1128/AAC.48.1.15-22.2004 PubMed DOI PMC
Poirel L., Potron A., Nordmann P. (2012. b). OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67, 1597–1606. doi: 10.1093/jac/dks121 PubMed DOI
Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490. doi: 10.1371/journal.pone.0009490 PubMed DOI PMC
Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. (2020). Using SPAdes de novo assembler. Curr. Protoc. Bioinf. 70, e102. doi: 10.1002/cpbi.102 PubMed DOI
Rima M., Oueslati S., Dabos L., Daaboul D., Mallat H., Bou Raad E., et al. . (2022). Prevalence and molecular mechanisms of carbapenem resistance among gram-negative bacilli in three hospitals of Northern Lebanon. Antibiotics (Basel) 11. doi: 10.3390/antibiotics11101295 PubMed DOI PMC
Rojas L. J., Hujer A. M., Rudin S. D., Wright M. S., Domitrovic T. N., Marshall S. H., et al. . (2017). NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the americas. Antimicrob. Agents Chemother. 61. doi: 10.1128/AAC.00454-17 PubMed DOI PMC
Rotova V., Papagiannitsis C. C., Skalova A., Chudejova K., Hrabak J. (2017). Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods . 137, 30–33. doi: 10.1016/j.mimet.2017.04.003 PubMed DOI
Seeman T. (2015) snippy: fast bacterial variant calling from NGS reads. Available online at: https://github.com/tseemann/snippy.
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. doi: 10.1093/bioinformatics/btu153 PubMed DOI
Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. (2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36. doi: 10.1093/nar/gkj014 PubMed DOI PMC
Simner P. J., Bergman Y., Conzemius R., Jacobs E., Tekle T., Beisken S., et al. . (2023). An NDM-producing escherichia coli clinical isolate exhibiting resistance to cefiderocol and the combination of ceftazidime-avibactam and aztreonam: another step toward pan-beta-lactam resistance. Open Forum Infect. Dis. 10, ofad276. doi: 10.1093/ofid/ofad276 PubMed DOI PMC
Sobh G. M., El Karaaoui A. K., El Chaar M., Araj G. F. (2021). Emerging ceftazidime-avibactam resistance against carbapenem resistant Escherichia coli and Klebsiella pneumoniae in Lebanon. Int. Arabic J. Antimicrobial Agents. 10, 2–3. doi: 10.3823/858 DOI
Solgi H., Nematzadeh S., Giske C. G., Badmasti F., Westerlund F., Lin Y. L., et al. . (2020). Molecular epidemiology of OXA-48 and NDM-1 producing enterobacterales species at a university hospital in tehran, Iran, between 2015 and 2016. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00936 PubMed DOI PMC
Sullivan M. J., Petty N. K., Beatson S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010. doi: 10.1093/bioinformatics/btr039 PubMed DOI PMC
Tao G., Tan H., Chen Q. (2023). The First Report of Escherichia coli and Klebsiella pneumoniae Strains That Produce Both NDM-5 and OXA-181 in Jiangsu Province, China. Infect. Drug Resist. 16, 3245–3255. doi: 10.2147/IDR.S412678 PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. . (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624. doi: 10.1093/nar/gkw569 PubMed DOI PMC
Treangen T. J., Ondov B. D., Koren S., Phillippy A. M. (2014). The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524. doi: 10.1186/s13059-014-0524-x PubMed DOI PMC
Tsui C. K., Ben Abid F., Al Ismail K., McElheny C. L., Al Maslamani M., Omrani A. S., et al. . (2023). Genomic epidemiology of carbapenem-resistant klebsiella in Qatar: emergence and dissemination of hypervirulent klebsiella pneumoniae sequence type 383 strains. Antimicrob. Agents Chemother. 67, e0003023. doi: 10.1128/aac.00030-23 PubMed DOI PMC
Turton J. F., Payne Z., Coward A., Hopkins K. L., Turton J. A., Doumith M., et al. . (2018). Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and 'non-hypervirulent' types ST147, ST15 and ST383. J. Med. Microbiol. 67, 118–128. doi: 10.1099/jmm.0.000653 PubMed DOI
van Duin D., Doi Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8, 460–469. doi: 10.1080/21505594.2016.1222343 PubMed DOI PMC
Wirth T., Falush D., Lan R., Colles F., Mensa P., Wieler L. H., et al. . (2006). Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x PubMed DOI PMC
Wu W., Feng Y., Tang G., Qiao F., McNally A., Zong Z. (2019). NDM metallo-beta-lactamases and their bacterial producers in health care settings. Clin. Microbiol. Rev. 32. doi: 10.1128/CMR.00115-18 PubMed DOI PMC
Ye Y., Xu L., Han Y., Chen Z., Liu C., Ming L. (2018). Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Exp. Ther. Med. 15, 1143–1149. doi: 10.3892/etm.2017.5485 PubMed DOI PMC
Zakhour J., El Ayoubi L. W., Kanj S. S. (2024). Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev. Anti Infect. Ther., 1–13. doi: 10.1080/14787210.2024.2311213 PubMed DOI