A Cost-Affordable Methodology of 3D Printing of Bone Fractures Using DICOM Files in Traumatology
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
38976137
PubMed Central
PMC11231013
DOI
10.1007/s10916-024-02084-w
PII: 10.1007/s10916-024-02084-w
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, Image-guided surgery, Medical education, Patient-specific models, Preoperative planning, Surgery,
- MeSH
- 3D tisk * MeSH
- anatomické modely MeSH
- fraktury kostí * diagnostické zobrazování chirurgie MeSH
- lidé MeSH
- počítačová rentgenová tomografie * metody MeSH
- radiologické informační systémy organizace a řízení MeSH
- traumatologie MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Three-dimensional (3D) printing has gained popularity across various domains but remains less integrated into medical surgery due to its complexity. Existing literature primarily discusses specific applications, with limited detailed guidance on the entire process. The methodological details of converting Computed Tomography (CT) images into 3D models are often found in amateur 3D printing forums rather than scientific literature. To address this gap, we present a comprehensive methodology for converting CT images of bone fractures into 3D-printed models. This involves transferring files in Digital Imaging and Communications in Medicine (DICOM) format to stereolithography format, processing the 3D model, and preparing it for printing. Our methodology outlines step-by-step guidelines, time estimates, and software recommendations, prioritizing free open-source tools. We also share our practical experience and outcomes, including the successful creation of 72 models for surgical planning, patient education, and teaching. Although there are challenges associated with utilizing 3D printing in surgery, such as the requirement for specialized expertise and equipment, the advantages in surgical planning, patient education, and improved outcomes are evident. Further studies are warranted to refine and standardize these methodologies for broader adoption in medical practice.
1st Surgical Department General Teaching Hospital Prague Czech Republic
Department of Anesthesiology and Intensive Care General Teaching Hospital Prague Czech Republic
Institute of Biophysics and Informatics 1st Medical Faculty Charles University Prague Czech Republic
Zobrazit více v PubMed
Beaman JJ, Barlow JW, Bourell DL, Crawford RH, Marcus HL, McAlea KP (1997) Solid Freeform Fabrication: A New Direction in Manufacturing. Springer US, Boston, MA
Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52:1770–1773. 10.1063/1.1136492
Wohlers T, Gornet T, Mostow N, Campbell I, Diegel O, Kowen J, Huff R, Stucker B, Fidan I, Doukas A (2016) History of additive manufacturing. Wohlers Assoc Inc
Klein A, Warszawski J, Hillengaß J, Maier-Hein KH (2019) Automatic bone segmentation in whole-body CT images. Int J Comput Assist Radiol Surg 14:21–29. 10.1007/s11548-018-1883-7 PubMed
Li C, Cheung TF, Fan VC, Sin KM, Wong CWY, Leung GKK (2017) Applications of Three-Dimensional Printing in Surgery. Surg Innov 24:82–88. 10.1177/1553350616681889 PubMed
Jacobs S, Grunert R, Mohr FW, Falk V (2008) 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg 7:6–9. 10.1510/icvts.2007.156588 PubMed
Liu Y, Xu L, Zhu H, Liu SS-Y (2014) Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng OnLine 13:63. 10.1186/1475-925X-13-63 PubMed PMC
Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, Baskaradas A (2015) Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 199:512–522. 10.1016/j.jss.2015.06.051 PubMed
Martelli N, Serrano C, Van Den Brink H, Pineau J, Prognon P, Borget I, El Batti S (2016) Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 159:1485–1500. 10.1016/j.surg.2015.12.017 PubMed
Yang L, Grottkau B, He Z, Ye C (2017) Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 41:2381–2387. 10.1007/s00264-017-3627-7 PubMed
Zheng W, Su J, Cai L, Lou Y, Wang J, Guo X, Tang J, Chen H (2018) Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res 104:83–88. 10.1016/j.otsr.2017.11.012 PubMed
Levesque JN, Shah A, Ekhtiari S, Yan JR, Thornley P, Williams DS (2020) Three-dimensional printing in orthopaedic surgery: a scoping review. EFORT Open Rev 5:430–441. 10.1302/2058-5241.5.190024 PubMed PMC
Kloesel B, Juhnke B, Irvine L, Donadio JV, Erdman A, Belani K (2021) Computer-Generated Three-Dimensional Airway Models as a Decision-Support Tool for Preoperative Evaluation and Procedure-Planning in Pediatric Anesthesiology. J Med Syst 45:21. 10.1007/s10916-020-01698-0 PubMed PMC
Chiu HY, Ng KS, Ma SK, Chan CH, Ng SW, Tipoe GL, Chan LK (2012) Voices of donors: Case reports of body donation in Hong Kong. Anat Sci Educ 5:295–300. 10.1002/ase.1280 PubMed
Ugidos Lozano MT, Haro FB, Ruggiero A, Manzoor S, Juanes Méndez JA (2019) Evaluation of the Applicability of 3d Models as Perceived by the Students of Health Sciences. J Med Syst 43:108. 10.1007/s10916-019-1238-0 PubMed
AbouHashem Y, Dayal M, Savanah S, Štrkalj G (2015) The application of 3D printing in anatomy education. Med Educ Online 20:29847. 10.3402/meo.v20.29847 PubMed PMC