High contextual interference improves retention in motor learning: systematic review and meta-analysis

. 2024 Jul 10 ; 14 (1) : 15974. [epub] 20240710

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, systematický přehled, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid38987617
Odkazy

PubMed 38987617
PubMed Central PMC11237090
DOI 10.1038/s41598-024-65753-3
PII: 10.1038/s41598-024-65753-3
Knihovny.cz E-zdroje

The effect of practice schedule on retention and transfer has been studied since the first publication on contextual interference (CI) in 1966. However, strongly advocated by scientists and practitioners, the CI effect also aroused some doubts. Therefore, our objective was to review the existing literature on CI and to determine how it affects retention in motor learning. We found 1255 articles in the following databases: Scopus, EBSCO, Web of Science, PsycINFO, ScienceDirect, supplemented by the Google Scholar search engine. We screened full texts of 294 studies, of which 54 were included in the meta-analysis. In the meta-analyses, two different models were applied, i.e., a three-level mixed model and random-effects model with averaged effect sizes from single studies. According to both analyses, high CI has a medium beneficial effect on the whole population. These effects were statistically significant. We found that the random practice schedule in laboratory settings effectively improved motor skills retention. On the contrary, in the applied setting, the beneficial effect of random practice on the retention was almost negligible. The random schedule was more beneficial for retention in older adults (large effect size) and in adults (medium effect size). In young participants, the pooled effect size was negligible and statically insignificant.

Zobrazit více v PubMed

Raviv L, Lupyan G, Green SC. How variability shapes learning and generalization. Trends Cogn Sci. 2022;26:462–483. doi: 10.1016/j.tics.2022.03.007. PubMed DOI

Battig WF. Facilitation and interference. In: Bilodeau EA, editor. Acquis Ski. Academic Press; 1966. pp. 215–244.

Lin CHJ, Knowlton BJ, Chiang MC, Iacoboni M, Udompholkul P, Wu AD. Brain–behavior correlates of optimizing learning through interleaved practice. Neuroimage. 2011;56:1758–1772. doi: 10.1016/j.neuroimage.2011.02.066. PubMed DOI

Schorn JM, Knowlton BJ. Interleaved practice benefits implicit sequence learning and transfer. Mem. Cogn. 2021;49:1436–1452. doi: 10.3758/s13421-021-01168-z. PubMed DOI PMC

Kim, T., Wright, D.L. & Feng, W. Commentary: Variability of practice, information processing, and decision making—How much do we know? Front. Psychol. [Internet]. 10.3389/fpsyg.2021.685749/full. Accessed 12 Aug 2021 (2021). PubMed PMC

Shea, J.B. & Morgan, R.L. Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Mem. [Internet] 5, 179–187. http://content.apa.org/journals/xlm/5/2/179. Accessed 29 Sep 2017 (1979).

Brady, F. Contextual interference: A meta-analytic study. Percept. Mot. Skills [Internet]. 99, 116–126. 10.2466/pms.99.1.116-126 (2017). PubMed

Coker CA. Motor Learning and Control for Practitioners. 3. Routledge; 2017.

Magill RA, Anderson DI. Motor Learning and Control: Concepts and Applications. 11. McGraw-Hill Education; 2017.

Wright DL, Kim T. Contextual interference: New findings, insights, and implications for skill acquisition. In: Hodges NJ, Williams AM, editors. Skill Acquisition in Sport: Research, Theory and Practice. 3. Routledge; 2020. pp. 99–118.

Al-Mustafa, A.A. Contextual Interference: Laboratory Artifact or Sport Skill Learning Related. Unpublished Dissertation. (University of Pittsburgh, 1989).

Barreiros, J., Figueiredo, T. & Godinho, M. The contextual interference effect in applied settings. Eur. Phys. Educ. Rev. [Internet] 13, 195–208 10.1177/1356336X07076876 (2007).

Lee TD, Simon D. Contextual interference. In: Williams AM, Hodges EJ, editors. Skill Acquisition in Sport: Research, Theory and Practice. Routledge; 2004. pp. 29–44.

Magill, R.A. & Hall, K.G. A review of the contextual interference effect in motor skill acquisition. Hum. Mov. Sci. [Internet] 9, 241–89. http://www.sciencedirect.com/science/article/pii/016794579090005X (1990).

Merbah, S. & Meulemans, T. Learning a motor skill: Effects of blocked versus random practice a review. Psychol. Belg. [Internet] 51, 15–48. http://orbi.ulg.ac.be/bitstream/2268/105261/1/Merbah&Meulemans2011PsychologicaBelgica.pdf (2011).

Wright, D., Verwey, W., Buchanen, J., Chen, J., Rhee, J. & Immink, M. Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning. Psychon. Bull. Rev. [Internet] 23, 1–21 10.3758/s13423-015-0887-3. Accessed 25 Sep 2017 (2016). PubMed

Henz, D., John, A., Merz, C. & Schöllhorn, W.I. Post-task effects on EEG brain activity differ for various differential learning and contextual interference protocols. Front. Hum. Neurosci. (2018). PubMed PMC

Ammar A, Trabelsi K, Boujelbane MA, Boukhris O, Glenn JM, Chtourou H, et al. The myth of contextual interference learning benefit in sports practice: A systematic review and meta-analysis. Educ. Res. Rev. 2023;39:100537. doi: 10.1016/j.edurev.2023.100537. DOI

Brady, F. A theoretical and empirical review of the contextual interference effect and the learning of motor skills. Quest [Internet] 50, 266–293. 10.1080/00336297.1998.10484285. Accessed 26 Sep 2017 (2017).

Lee TD. Contextual interference: Generalizability and limitations. In: Hodges NJ, Williams AM, editors. Skill Acquisition in Sport: Research, Theory and Practice. 2. Routledge; 2012. pp. 105–119.

Lage GM, Faria LO, Ambrósio NFA, Borges AMP, Apolinário-Souza T. What is the level of contextual interference in serial practice? A meta-analytic review. J. Mot. Learn. Dev. 2021;10:224–242. doi: 10.1123/jmld.2021-0020. DOI

Graser, J. V., Bastiaenen, C.H.G. & van Hedel, H.J.A. The role of the practice order: A systematic review about contextual interference in children. PLoS One14 (2019). PubMed PMC

Sattelmayer, M., Elsig, S., Hilfiker, R. & Baer, G. A systematic review and meta-analysis of selected motor learning principles in physiotherapy and medical education. BMC Med. Educ. (BioMed Central Ltd.) (2016). PubMed PMC

Methley, A.M., Campbell, S., Chew-Graham, C., McNally, R. & Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. (2014). PubMed PMC

Page MJ, Moher D. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement and extensions: A scoping review. Syst. Rev. 2017;6:11. doi: 10.1186/s13643-017-0663-8. PubMed DOI PMC

Thomas H, Ciliska D, Dobbins M, Micucci S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid.-Based Nurs. 2004;1:176–184. doi: 10.1111/j.1524-475X.2004.04006.x. PubMed DOI

Diekelmann S, Born J. The memory function of sleep. Nat. Rev. Neurosci. 2010;11:114–126. doi: 10.1038/nrn2762. PubMed DOI

Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science (80-) 2014;344:1173–1178. doi: 10.1126/science.1249098. PubMed DOI PMC

Dundar, Y. & Fleeman, N. Applying inclusion and exclusion criteria. In Doing a Systematic Review: A Student's Guide (Boland, A., Cherry, G.M., Dickson, R. eds.). 79–91 (SAGE, 2017).

Shi J, Luo D, Weng H, Zeng X-T, Lin L, Chu H, et al. Optimally estimating the sample standard deviation from the five-number summary. Res. Synth. Methods. 2020;11:641–654. doi: 10.1002/jrsm.1429. PubMed DOI

Shi, J., Luo, D., Wan, X., Liu, Y., Liu, J., Bian, Z. et al. Detecting the skewness of data from the sample size and the five-number summary. ArXiv (2020). PubMed

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014;14:14. doi: 10.1186/1471-2288-14-135. PubMed DOI PMC

Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018;27:1785–1805. doi: 10.1177/0962280216669183. PubMed DOI

Deeks, J. & Higgins, J. Statistical algorithms in review manager 5. Stat. Methods Gr. Cochrane Collab. [Internet]. https://training.cochrane.org/handbook/current/statistical-methods-revman5 (2010).

Higgins, J.P.T. & Deeks, J. Chapter 6: Choosing effect measures and computing estimates of effect. In (Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M, et al. eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 63 [Internet]. https://www.training.cochrane.org/handbook (Cochrane, 2022).

Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J. et al. Cochrane Handbook for Systematic Reviews of Interventions | Cochrane Training. Version 6.2 (updated Feb 2021). (Cochrane, 2021).

Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. Cochrane Handb Syst Rev Interv. 2019;2019:241–284. doi: 10.1002/9781119536604.ch10. DOI

Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2nd Ed. (Routledge, 1988).

Assink M, Wibbelink CJM. Fitting three-level meta-analytic models in R: A step-by-step tutorial. Quant. Methods Psychol. 2016;12:154–174. doi: 10.20982/tqmp.12.3.p154. DOI

Cheung MWL. Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychol. Methods. 2014;19:211–229. doi: 10.1037/a0032968. PubMed DOI

Van den Noortgate, W., López-López, J.A., Marín-Martínez, F. & Sánchez-Meca, J. Three-level meta-analysis of dependent effect sizes. Behav. Res. Methods [Internet] 45, 576–594 10.3758/s13428-012-0261-6. Accessed 28 Apr 2024 (2013). PubMed

Becker BJ. Multivariate meta-analysis. In: Tinsley HEA, Brown ED, editors. The Handbook of Applied Multivariate Statistics and Mathematical Modeling. Academic Press; 2000. pp. 499–525.

Cheung SF, Chan DKS. Dependent correlations in meta-analysis. Educ. Psychol. Meas. 2008;68:760–777. doi: 10.1177/0013164408315263. DOI

Thomas H. Quality Assessment Tool for Quantitative Studies. Effective Public Health Practice Project. McMaster University; 2003.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Esp. Nutr. Hum. Diet. 2016;20:148–160. PubMed PMC

Ste-Marie DM, Clark SE, Findlay LC, Latimer AE. High levels of contextual interference enhance handwriting skill acquisition. J. Mot. Behav. 2010;36:115–126. doi: 10.3200/JMBR.36.1.115-126. PubMed DOI

Porter JM, Magill RA. Systematically increasing contextual interference is beneficial for learning sport skills. J. Sport Sci. 2010;28:1277–1285. doi: 10.1080/02640414.2010.502946. PubMed DOI

Shea CH, Lai Q, Wright DL, Immink M, Black C. Consistent and variable practice conditions: Effects on relative and absolute timing. J. Mot. Behav. 2001;33:139–152. doi: 10.1080/00222890109603146. PubMed DOI

Chua LK, Dimapilis MK, Iwatsuki T, Abdollahipour R, Lewthwaite R, Wulf G. Practice variability promotes an external focus of attention and enhances motor skill learning. Hum. Mov. Sci. 2019;64:307–319. doi: 10.1016/j.humov.2019.02.015. PubMed DOI

Broadbent, D.P., Causer, J., Williams, A.M. & Ford, P.R. The role of error processing in the contextual interference effect during the training of perceptual-cognitive skills. J. Exp. Psychol. Hum. Percept. Perform. [Internet] 43, 1329–1342 /fulltext/2017-12046-001.html (2017). PubMed

Sherwood DE. The benefits of random variable practice for spatial accuracy and error detection in a rapid aiming task. Res. Q. Exerc. Sport. 1996;67:35–43. doi: 10.1080/02701367.1996.10607923. PubMed DOI

Beik M, Taheri H, Saberi Kakhki A, Ghoshuni M. Neural mechanisms of the contextual interference effect and parameter similarity on motor learning in older adults: An EEG study. Front. Aging Neurosci. 2020;12:173. doi: 10.3389/fnagi.2020.00173. PubMed DOI PMC

Wong AWK, Whitehill TL, Ma EPM, Masters R. Effects of practice schedules on speech motor learning. Int. J. Speech Lang. Pathol. 2013;15:511–523. doi: 10.3109/17549507.2012.761282. PubMed DOI

Porter, J.M., Landin, D., Hebert, E.P. & Baum, B. The effects of three levels of contextual interference on performance outcomes and movement patterns in golf skills. Int. J. Sports Sci. Coach. 2, 243–255 10.1260/174795407782233100 (2007).

Porter JM, Saemi E. Moderately skilled learners benefit by practicing with systematic increases in contextual interference. Int. J. Coach Sci. 2010;4:61–71.

Del Rey P, Liu X, Simpson KJ. Does retroactive inhibition influence contextual interference effects? Res. Q. Exerc. Sport. 1994;65:120–126. doi: 10.1080/02701367.1994.10607606. PubMed DOI

French KE, Rink JE, Werner PH. Effects of contextual interference on retention of three volleyball skills. Percept. Mot. Skills. 1990;71:179–186. doi: 10.2466/pms.1990.71.1.179. PubMed DOI

Goodwin JE, Meeuwsen HJ. Investigation of the contextual interference effect in the manipulation of the motor parameter of over-all force. Percept. Mot. Skills. 1996;83:735–743. doi: 10.2466/pms.1996.83.3.735. PubMed DOI

Naimo MA, Zourdos MC, Wilson JM, Kim JS, Ward EG, Eccles DW, et al. Contextual interference effects on the acquisition of skill and strength of the bench press. Hum. Mov. Sci. 2013;32:472–484. doi: 10.1016/j.humov.2013.02.002. PubMed DOI

Beik M, Taheri H, Saberi Kakhki A, Ghoshuni M. Algorithm-based practice schedule and task similarity enhance motor learning in older adults. J. Mot. Behav. 2021;53:458–470. doi: 10.1080/00222895.2020.1797620. PubMed DOI

Kim T, Kim H, Wright DL. Improving consolidation by applying anodal transcranial direct current stimulation at primary motor cortex during repetitive practice. Neurobiol. Learn. Mem. 2021;178:107365. doi: 10.1016/j.nlm.2020.107365. PubMed DOI

Porter C, Greenwood D, Panchuk D, Pepping GJ. Learner-adapted practice promotes skill transfer in unskilled adults learning the basketball set shot. Eur. J. Sport Sci. 2020;20:61–71. doi: 10.1080/17461391.2019.1611931. PubMed DOI

Kaipa R, Mariam KR. Role of constant, random and blocked practice in an electromyography-based oral motor learning task. J. Mot. Behav. 2018;50:599–613. doi: 10.1080/00222895.2017.1383226. PubMed DOI

Parab S, Bose M, Ganesan S. Influence of random and blocked practice schedules on motor learning in children aged 6–12 years. Crit. Rev. Phys. Rehabil. Med. 2018;30:239–254. doi: 10.1615/CritRevPhysRehabilMed.2018027737. DOI

Li Y, Lima RP. Rehearsal of task variations and contextual interference effect in a field setting. Percept. Mot. Skills. 2002;94:750–752. doi: 10.2466/pms.2002.94.3.750. PubMed DOI

Green S, Sherwood DE. The benefits of random variable practice for accuracy and temporal error detection in a rapid aiming task. Res. Q. Exerc. Sport. 2000;71:398–402. doi: 10.1080/02701367.2000.10608922. PubMed DOI

Brady F. Contextual interference and teaching golf skills. Percept. Mot. Skills. 1997;84:347–350. doi: 10.2466/pms.1997.84.1.347. PubMed DOI

Fazeli D, Taheri HR, Saberi KA. Random versus blocked practice to enhance mental representation in golf putting. Percept. Mot. Skills. 2017;124:674–688. doi: 10.1177/0031512517704106. PubMed DOI

Bortoli L, Robazza C, Durigon V, Carra C. Effects of contextual interference on learning technical sports skills. Percept. Mot. Skills. 1992;75:555–562. doi: 10.2466/pms.1992.75.2.555. PubMed DOI

Pasand F, Fooladiyanzadeh H, Nazemzadegan G. The effect of gradual increase in contextual interference on acquisition, retention and transfer of volleyball skillsce on acquisition, retention and transfer of volleyball skills. Int. J. Kinesiol. Sport Sci. 2016;4:72–77.

Zetou E, Michalopoulou M, Giazitzi K, Kioumourtzoglou E. Contextual interference effects in learning volleyball skills. Percept Mot. Skills. 2007;104:995–1004. doi: 10.2466/pms.104.3.995-1004. PubMed DOI

Cheong JPG, Lay B, Robert Grove J, Medic N, Razman R. Practicing field hockey skills along the contextual interference continuum: A comparison of five practice schedules. J. Sports Sci. Med. 2012;11:304. PubMed PMC

Cheong JPG, Lay B, Razman R. Investigating the contextual interference effect using combination sports skills in open and closed skill environments. J. Sports Sci. Med. 2016;15:167. PubMed PMC

Jeon MJ, Jeon HS, Yi CH, Kwon OY, You SH, Park JH. Block and random practice: A wii fit dynamic balance training in older adults. Res. Q Exerc. Sport. 2020;92:352–360. doi: 10.1080/02701367.2020.1733456. PubMed DOI

Broadbent DP, Causer J, Ford PR, Williams AM. Contextual interference effect on perceptual-cognitive skills training. Med. Sci. Sports Exerc. 2015;47:1243–1250. doi: 10.1249/MSS.0000000000000530. PubMed DOI

Frömer R, Stürmer B, Sommer W. (Don’t) Mind the effort: Effects of contextual interference on ERP indicators of motor preparation. Psychophysiology. 2016;53:1577–1586. doi: 10.1111/psyp.12703. PubMed DOI

Moreno J, Avila F, Damas S, Luis V, Reina L, et al. Contextual interference in learning precision skills. Percept. Mot. Skills. 2003;97:121–128. doi: 10.2466/pms.2003.97.1.121. PubMed DOI

Bertollo M, Berchicci M, Carraro A, Comani S, Robazza C. Blocked and random practice organization in the learning of rhythmic dance step sequences. Percept. Mot. Skills. 2010;110:77–84. doi: 10.2466/pms.110.1.77-84. PubMed DOI

Pollatou E, Kioumourtzoglou E, Agelousis N, Mavromatis G. Contextual interference effects in learning novel motor skills. Percept. Mot. Skills. 1997;84:487–496. doi: 10.2466/pms.1997.84.2.487. PubMed DOI

Jiménez-Díaz J, Morera-Castro M, Salazar W. The contextual interference effect on the performance of fundamental motor skills in adults. Hum. Mov. 2018;19:20–25. doi: 10.5114/hm.2018.73608. DOI

Saemi E, Porter JM, Ghotbi Varzaneh A, Zarghami M, Shafinia P. Practicing along the contextual interference continuum: A comparison of three practice schedules in an elementary physical education setting. Kinesiology. 2012;44:191–198.

Tsutsui S, Satoh M, Yamamoto K. Contextual interference modulated by pitcher skill level. Int. J. Sport Health Sci. 2013;3:12.

Vera JG, Montilla MM. Practice schedule and acquisition, retention, and transfer of a throwing task in 6-yr-old children. Percept. Mot. Skills. 2003;96:1015–1024. doi: 10.2466/pms.2003.96.3.1015. PubMed DOI

Smith PJK, Davies M. Applying contextual interference to the Pawlata roll. J. Sports Sci. 1995;13:455–462. doi: 10.1080/02640419508732262. PubMed DOI

Moretto NA, Marcori AJ, Okazaki VHA. Contextual interference effects on motor skill acquisition, retention and transfer in sport riffle schooting. Hum. Mov. 2018;19:99–104. doi: 10.5114/hm.2018.74065. DOI

Rivard JD, Vergis AS, Unger BJ, Gillman LM, Hardy KM, Park J. The effect of blocked versus random task practice schedules on the acquisition and retention of surgical skills. Am. J. Surg. 2015;209:93–100. doi: 10.1016/j.amjsurg.2014.08.038. PubMed DOI

Shewokis PA, Shariff FU, Liu Y, Ayaz H, Castellanos A, Lind DS. Acquisition, retention and transfer of simulated laparoscopic tasks using fNIR and a contextual interference paradigm. Am. J. Surg. 2017;213:336–345. doi: 10.1016/j.amjsurg.2016.11.043. PubMed DOI

Li Y, Wright DL. An assessment of the attention demands during random- and blocked-practice schedules. Q. J. Exp. Psychol. Sect. A Hum. Exp. Psychol. 2000;53:591–606. doi: 10.1080/713755890. PubMed DOI

Simon DA. Contextual interference effects with two tasks. Percept. Mot. Skills. 2007;105:177–183. doi: 10.2466/pms.105.1.177-183. PubMed DOI

Simon DA, Lee TD, Cullen JD. Win-shift, lose-stay: Contingent switching and contextual interference in motor learning. Percept. Mot. Skills. 2008;107:407–418. doi: 10.2466/pms.107.2.407-418. PubMed DOI

Wright DL, Li Y, Whitacre C. The contribution of elaborative processing to the contextual interference effect. Res. Q. Exerc. Sport. 1992;63:30–37. doi: 10.1080/02701367.1992.10607554. PubMed DOI

Lin CH, Yang HC, Knowlton BJ, Wu AD, Iacoboni M, Ye YL, et al. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage. 2018;181:1–15. doi: 10.1016/j.neuroimage.2018.06.081. PubMed DOI

Lin CHJ, Chiang MC, Wu AD, Iacoboni M, Udompholkul P, Yazdanshenas O, et al. Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neuroimage. 2012;62:2007–2020. doi: 10.1016/j.neuroimage.2012.05.015. PubMed DOI

Beik M, Fazeli D. The effect of learner-adapted practice schedule and task similarity on motivation and motor learning in older adults. Psychol. Sport Exerc. 2021;54:101911. doi: 10.1016/j.psychsport.2021.101911. DOI

Chalavi S, Pauwels L, Heise KF, Zivariadab H, Maes C, Puts NAJ, et al. The neurochemical basis of the contextual interference effect. Neurobiol. Aging. 2018;66:85–96. doi: 10.1016/j.neurobiolaging.2018.02.014. PubMed DOI

Immink MA, Pointon M, Wright DL, Marino FE. Prefrontal cortex activation during motor sequence learning under interleaved and repetitive practice: A two-channel near-infrared spectroscopy study. Front. Hum. Neurosci. 2021;15:229. doi: 10.3389/fnhum.2021.644968. PubMed DOI PMC

Russell DM, Newell KM. How persistent and general is the contextual interference effect? Res. Q. Exerc. Sport. 2007;78:318–327. doi: 10.1080/02701367.2007.10599429. PubMed DOI

Porter JM, Beckerman T. Practicing with gradual increases in contextual interference enhances visuomotor learning. Kinesiology. 2016;48:244–250. doi: 10.26582/k.48.2.5. DOI

Smith PJK. Task duration in contextual interference. Percept. Mot. Skills. 2002;95:1155–1162. doi: 10.2466/pms.2002.95.3f.1155. PubMed DOI

Kim T, Chen J, Verwey WB, Wright DL. Improving novel motor learning through prior high contextual interference training. Acta Psychol. Amst. 2018;182:31. doi: 10.1016/j.actpsy.2017.11.005. PubMed DOI

Thomas JL, Fawver B, Taylor S, Miller MW, Williams AM, Lohse KR. Using error-estimation to probe the psychological processes underlying contextual interference effects. Hum. Mov. Sci. 2021;79:102854. doi: 10.1016/j.humov.2021.102854. PubMed DOI

Broadbent DP, Causer J, Mark Williams A, Ford PR. The role of error processing in the contextual interference effect during the training of perceptual-cognitive skills. J. Exp. Psychol. Hum. Percept. Perform. 2017;43:1329. doi: 10.1037/xhp0000375. PubMed DOI

Aiken CA, Genter AM. The effects of blocked and random practice on the learning of three variations of the golf chip shot. Int. J. Perform. Anal. Sport. 2018;18:339–349. doi: 10.1080/24748668.2018.1475199. DOI

Waqqash E, Low J. Effects of contextual interference (CI) in basic squash shots practice. Malays. J. Sport Sci. Recreat. 2015;11:13–19.

Smith PJK, Davies M. Applying contextual interference to the Pawlata roll. J. Sport Sci. 2008;13:455–462. doi: 10.1080/02640419508732262. PubMed DOI

De Souza MGTX, Nunes MES, Corrêa UC, Dos Santos S. The contextual interference effect on sport-specific motor learning in older adults. Hum. Mov. 2015;16:112–118. doi: 10.1515/humo-2015-0036. DOI

Broadbent, D.P., Causer, J., Ford, P.R. & Williams, A.M. Contextual interference effect on perceptual-cognitive skills training. Med. Sci. Sports Exerc. [Internet] 47, 1243–1250 https://pubmed.ncbi.nlm.nih.gov/25255127/ (2015). PubMed

Van Aert RCM, Wicherts JM, Van Assen MALM. Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PLoS One. 2019;14:e0215052. doi: 10.1371/journal.pone.0215052. PubMed DOI PMC

Lee TD, White MA. Influence of an unskilled model’s practice schedule on observational motor learning. Hum. Mov. Sci. 1990;9:349–367. doi: 10.1016/0167-9457(90)90008-2. DOI

Hebert EP, Landin D, Solmon MA. Practice schedule effects on the performance and learning of low- and high-skilled students: An applied study. Res. Q. Exerc. Sport. 1996;67:52–58. doi: 10.1080/02701367.1996.10607925. PubMed DOI

Wulf G, Shea CH. Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon. Bull. Rev. Psychon. Soc. Inc. 2002;2002:185–211. doi: 10.3758/BF03196276. PubMed DOI

Landin D, Hebert EP. A comparison of three practice schedules along the contextual interference continuum. Res. Q. Exerc. Sport. 1997;68:357–361. doi: 10.1080/02701367.1997.10608017. PubMed DOI

Sekiya H, Magill RA. The contextual interference effect in learning force and timing parameters of the same generalized program. J. Hum. Mov. Stud. 2000;39:45–71.

Sekiya H, Magill RA, Anderson DI. The contextual interference effect in parameter modifications of the same generalized motor program. Res. Q. Exerc. Sport. 1996;67:59–68. doi: 10.1080/02701367.1996.10607926. PubMed DOI

Sekiya H, Magill RA, Sidaway B, Anderson DI. The contextual interference effect for skill variations from the same and different generalized motor programs. Res. Q. Exerc. Sport. 1994;65:330–338. doi: 10.1080/02701367.1994.10607637. PubMed DOI

Wulf G, Lee TD. Contextual interference in movements of the same class: Differential effects on program and parameter learning. J. Mot. Behav. 1993;25:254–263. doi: 10.1080/00222895.1993.9941646. PubMed DOI

Smith PJK. Applying contextual interference to snowboarding skills. Percept. Mot. Skills. 2002;95:999–1005. doi: 10.2466/pms.2002.95.3.999. PubMed DOI

Smith PJK, Gregory SK, Davies M. Alternating versus blocked practice in learning a cartwheel. Percept. Mot. Skills. 2003;96:1255–1264. doi: 10.2466/pms.2003.96.3c.1255. PubMed DOI

Wrisberg CA, Liu Z. The effect of contextual variety on the practice, retention, and transfer of an applied motor skill. Res. Q. Exerc. Sport. 1991;62:406–412. doi: 10.1080/02701367.1991.10607541. PubMed DOI

Hall KG, Magill RA. Variability of practice and contextual interference in motor skill learning. J. Mot. Behav. 1995;27:299–309. doi: 10.1080/00222895.1995.9941719. PubMed DOI

Lee TD, Wulf G, Schmidt RA. Contextual interference in motor learning: Dissociated effects due to the nature of task variations. Q. J. Exp. Psychol. Sect. A. 1992;44:627–644. doi: 10.1080/14640749208401303. DOI

Shea JB, Titzer RC. The influence of reminder trials on contextual interference effects. J. Mot. Behav. 1993;25:264–274. doi: 10.1080/00222895.1993.9941647. PubMed DOI

Bortoli L, Spagolla G, Robazza C. Variability effects on retention of a motor skill in elementary school children. Percept. Mot. Skills. 2001;93:51–63. doi: 10.2466/pms.2001.93.1.51. PubMed DOI

Huedo-Medina T, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods. 2006;11:193. doi: 10.1037/1082-989X.11.2.193. PubMed DOI

Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I2 in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 2008;8:1–9. doi: 10.1186/1471-2288-8-79. PubMed DOI PMC

Schroll JB, Moustgaard R, Gøtzsche PC. Dealing with substantial heterogeneity in Cochrane reviews. Cross-sectional study. BMC Med. Res. Methodol. 2011;11:1–8. doi: 10.1186/1471-2288-11-22. PubMed DOI PMC

Alba AC, Alexander PE, Chang J, Macisaac J, Defry S, Guyatt GH. High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes. J. Clin. Epidemiol. 2016;70:129–135. doi: 10.1016/j.jclinepi.2015.09.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...