The effect of contextual interference on transfer in motor learning - a systematic review and meta-analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
39205981
PubMed Central
PMC11349744
DOI
10.3389/fpsyg.2024.1377122
Knihovny.cz E-zdroje
- Klíčová slova
- blocked practice, contextual interference, motor learning, practice schedule, random practice, transfer,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Since the initial study on contextual interference (CI) in 1966, research has explored how practice schedules impact retention and transfer. Apart from support from scientists and practitioners, the CI effect has also faced skepticism. Therefore, we aimed to review the existing literature on the CI effect and determine how it affects transfer in laboratory and applied settings and in different age groups. We found 1,287 articles in the following databases: Scopus, EBSCO, Web of Science, ScienceDirect, supplemented by the Google Scholar search engine and manual search. Of 300 fully screened articles, 42 studies were included in the systematic review and 34 in the quantitative analysis (meta-analysis). The overall CI effect on transfer in motor learning was medium (SMD = 0.55), favoring random practice. Random practice was favored in the laboratory and applied settings. However, in laboratory studies, the medium effect size was statistically significant (SMD = 0.75), whereas, in applied studies, the effect size was small and statistically non-significant (SMD = 0.34). Age group analysis turned out to be significant only in adults and older adults. In both, the random practice was favored. In adults, the effect was medium (SMD = 0.54), whereas in older adults was large (SMD = 1.28). In young participants, the effect size was negligible (SMD = 0.12). Systematic review registration: https://clinicaltrials.gov/, identifier CRD42021228267.
Zobrazit více v PubMed
Alba A. C., Alexander P. E., Chang J., Macisaac J., Defry S., Guyatt G. H. (2016). High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes. J. Clin. Epidemiol. 70, 129–135. doi: 10.1016/J.JCLINEPI.2015.09.005, PMID: PubMed DOI
Al-Mustafa A. A. (1989). Contextual interference: laboratory artifact or sport skill learning related. Unpublished dissertation: University of Pittsburgh.
Ammar A., Trabelsi K., Boujelbane M. A., Boukhris O., Glenn J. M., Chtourou H., et al. . (2023). The myth of contextual interference learning benefit in sports practice: a systematic review and meta-analysis. Educ. Res. Rev. 39:100537. doi: 10.1016/J.EDUREV.2023.100537 DOI
Assink M., Wibbelink C. J. M. (2016). Fitting three-level meta-analytic models in R: a step-by-step tutorial. Quant. Methods Psychol. 12, 154–174. doi: 10.20982/tqmp.12.3.p154 DOI
Battig W. F. (1966). Facilitation and interference. In Acquisition of skill. ed. Bilodeau E. A. (New York: Academic Press; ), 215–244.
Battig W. F. (1972). “Intratask interference as a source of facilitation in transfer and retention” in Topics in learning and performance. eds. Thompson R. F., Voss J. F. (New York: Academic Press; ), 131–159.
Beik M., Fazeli D. (2021). The effect of learner-adapted practice schedule and task similarity on motivation and motor learning in older adults. Psychol. Sport Exerc. 54:101911. doi: 10.1016/J.PSYCHSPORT.2021.101911 DOI
Beik M., Taheri H., Saberi Kakhki A., Ghoshuni M. (2021). Algorithm-based practice schedule and task similarity enhance motor learning in older adults. J. Mot. Behav. 53, 458–470. doi: 10.1080/00222895.2020.1797620, PMID: PubMed DOI
Bortoli L., Robazza C., Durigon V., Carra C. (1992). Effects of contextual interference on learning technical sports skills. Percept. Mot. Skills 75, 555–562. doi: 10.2466/pms.1992.75.2.555 PubMed DOI
Bortoli L., Spagolla G., Robazza C. (2001). Variability effects on retention of a motor skill in elementary school children. Percept. Mot. Skills 93, 51–63. doi: 10.2466/pms.2001.93.1.51, PMID: PubMed DOI
Brady F. (2004). Contextual interference: a meta-analytic study. Percept. Mot. Skills 99, 116–126. doi: 10.2466/pms.99.1.116-126 PubMed DOI
Broadbent D. P., Causer J., Ford P. R., Williams A. M. (2015). Contextual interference effect on perceptual-cognitive skills training. Med. Sci. Sports Exerc. 47, 1243–1250. doi: 10.1249/MSS.0000000000000530, PMID: PubMed DOI
Cheong J. P. G., Lay B., Razman R. (2016). Investigating the contextual interference effect using combination sports skills in open and closed skill environments. J. Sports Sci. Med. 15, 167–175, PMID: PubMed PMC
Cheung M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol. Methods 19, 211–229. doi: 10.1037/A0032968, PMID: PubMed DOI
Chua L. K., Dimapilis M. K., Iwatsuki T., Abdollahipour R., Lewthwaite R., Wulf G. (2019). Practice variability promotes an external focus of attention and enhances motor skill learning. Hum. Mov. Sci. 64, 307–319. doi: 10.1016/j.humov.2019.02.015 PubMed DOI
Cohen J. (1988). “Statistical power analysis for the behavioral sciences” in Statistical power analysis for the behavioral sciences. 2nd ed (New York: Routledge; ).
Cumpston M., Chandler J. (2019). “Chapter IV: updating a review” in Cochrane handbook for systematic reviews of interventions version 6.0 (version 6.). Cochrane. eds. Higgins J., Thomas J., Chandler J., Cumpston M., Li T., Page M., et al.. Available at: https://training.cochrane.org/handbook/current/chapter-iv
Czyż S. H., Wójcik A. M., Solarská P., Kiper P. (2023). High contextual interference improves retention in motor learning: systematic review and meta-analysis. Scientific Reports. 14:15974. PubMed PMC
De Souza M. G. T. X., Nunes M. E. S., Corrêa U. C., Dos Santos S. (2015). The contextual interference effect on sport-specific motor learning in older adults. Hum. Mov. 16, 112–118. doi: 10.1515/HUMO-2015-0036 DOI
Deeks J. J., Higgins J. P. T., Altman D. G. (2019). “Analysing data and undertaking meta-analyses” in Cochrane handbook for systematic reviews of Interventions. eds. Higgins J. P. T., Thomas J., Chandler J., Cumpston M., Li T., Page M. J., et al.. (Wiley Online Library; ), 241–284.
Del Rey P., Liu X., Simpson K. J. (1994). Does retroactive inhibition influence contextual interference effects? Res. Q. Exerc. Sport 65, 120–126. doi: 10.1080/02701367.1994.10607606, PMID: PubMed DOI
Del Rey P., Whitehurst M., Wood J. M. (1983a). Effects of experience and contextual interference on learning and transfer by boys and girls. Percept. Mot. Skills 56, 581–582. doi: 10.2466/PMS.1983.56.2.581 DOI
Del Rey P., Whitehurst M., Wughalter E., Barnwell J. (1983b). Contextual interference and experience in acquisition and transfer. Percept. Mo 57, 241–242. doi: 10.2466/PMS.1983.57.1.241 DOI
Diekelmann S., Born J. (2010). The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126. doi: 10.1038/nrn2762 PubMed DOI
Dundar Y., Fleeman N. (2017). “Applying inclusion and exclusion criteria” in Doing a systematic review. a student’s guide. eds. Boland A., Cherry G. M., Dickson R. (SAGE; ), 79–91.
Dunham P., Jr., Lemke M., Moran P. (1991). Effect of equal and random amounts of varied practice on transfer task performance. Percept. Mot. Skills 73, 673–674. doi: 10.2466/PMS.1991.73.2.673, PMID: PubMed DOI
Fialho J. V. A. P., Benda R. N., Ugrinotitsch H. (2006). The contextual interference effect in a serve skill acquisition with experienced volleyball players. J. Hum. Mov. Stud. 50, 65–77.
Frömer R., Stürmer B., Sommer W. (2016). Come to think of it: contributions of reasoning abilities and training schedule to skill acquisition in a virtual throwing task. Acta Psychol. 170, 58–65. doi: 10.1016/j.actpsy.2016.06.010, PMID: PubMed DOI
Goodwin J. E., Meeuwsen H. J. (1996). Investigation of the contextual interference effect in the manipulation of the motor parameter of over-all force. Percept. Mot. Skills 83, 735–743. doi: 10.2466/pms.1996.83.3.735 PubMed DOI
Graser J. V., Bastiaenen C. H. G., van Hedel H. J. A. (2019). The role of the practice order: a systematic review about contextual interference in children. PLoS One 14:e0209979. doi: 10.1371/journal.pone.0209979, PMID: PubMed DOI PMC
Green S., Sherwood D. E. (2000). The benefits of random variable practice for accuracy and temporal error detection in a rapid aiming task. Res. Q. Exerc. Sport 71, 398–402. doi: 10.1080/02701367.2000.10608922, PMID: PubMed DOI
Gunnell K., Poitras V. J., Tod D. (2020). Questions and answers about conducting systematic reviews in sport and exercise psychology. Int. Rev. Sport Exerc. Psychol. 13, 297–318. doi: 10.1080/1750984X.2019.1695141 DOI
Hall K. G., Domingues D. A., Cavazos R. (1994). Contextual interference effects with skilled baseball players. Percept. Mot. Skills 78, 835–841. doi: 10.1177/003151259407800331, PMID: PubMed DOI
Hall K. G., Magill R. A. (1995). Variability of practice and contextual interference in motor skill learning. J. Mot. Behav. 27, 299–309. doi: 10.1080/00222895.1995.9941719 PubMed DOI
Hebert E. P., Landin D., Solmon M. A. (1996). Practice schedule effects on the performance and learning of low-and high-skilled students: an applied study. Res. Q. Exerc. Sport 67, 52–58. doi: 10.1080/02701367.1996.10607925, PMID: PubMed DOI
Herzog M., Focke A., Maurus P., Thürer B., Stein T. (2022). Random practice enhances retention and spatial transfer in force field adaptation. Front. Hum. Neurosci. 16:816197. doi: 10.3389/fnhum.2022.816197, PMID: PubMed DOI PMC
Higgins J. P. T., Thomas J., Chandler J., Cumpston M., Li T., Page M. J., et al. . (2021). “Cochrane handbook for systematic reviews of interventions|Cochrane training” in Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021) (Cochrane; ).
Huedo-Medina T., Sanchez-Meca J., Marin-Martinez F., Botella J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 11, 193–206. doi: 10.1037/1082-989X.11.2.193 PubMed DOI
Jackson J. L., Kuriyama A. (2019). How often do systematic reviews exclude articles not published in English? J. Gen. Intern. Med. 34, 1388–1389. doi: 10.1007/s11606-019-04976-x, PMID: PubMed DOI PMC
Jeon M. J., Jeon H. S., Yi C. H., Kwon O. Y., You S. H., Park J. H. (2020). Block and random practice: a Wii fit dynamic balance training in older adults. Res. Q. Exerc. Sport 92, 352–360. doi: 10.1080/02701367.2020.1733456, PMID: PubMed DOI
Johnson G. G. R. J., Park J., Vergis A., Gillman L. M., Rivard J. D. (2022). Contextual interference for skills development and transfer in laparoscopic surgery: a randomized controlled trial. Surg. Endosc. 36, 6377–6386. doi: 10.1007/S00464-021-08946-5, PMID: PubMed DOI
Lage G. M., Faria L. O., Ambrósio N. F. A., Borges A. M. P., Apolinário-Souza T. (2021). What is the level of contextual interference in serial practice? A meta-analytic review. J. Motor Learn. Dev. 10, 224–242. doi: 10.1123/jmld.2021-0020 DOI
Lage G. M., Vieira M. M., Palhares L. R., Ugrinowitsch H., Benda R. N. (2006). Practice schedules and number of skills as contextual interference factors in the learning of positioning timing tasks. J. Hum. Mov. Stud. 50, 185–200.
Landin D., Hebert E. P. (1997). A comparison of three practice schedules along the contextual interference continuum. Res. Q. Exerc. Sport 68, 357–361. doi: 10.1080/02701367.1997.10608017, PMID: PubMed DOI
Lee T. D., Wulf G., Schmidt R. A. (1992). Contextual interference in motor learning: dissociated effects due to the nature of task variations. Q. J. Exp. Psychol. A 44, 627–644. doi: 10.1080/14640749208401303 DOI
Lin C. H., Yang H. C., Knowlton B. J., Wu A. D., Iacoboni M., Ye Y. L., et al. . (2018). Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage 181, 1–15. doi: 10.1016/J.NEUROIMAGE.2018.06.081, PMID: PubMed DOI
Luo D., Wan X., Liu J., Tong T. (2018). Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 27, 1785–1805. doi: 10.1177/0962280216669183 PubMed DOI
Magill R., Anderson D. (2021). Motor learning and control: concepts and applications. 12th Edn. New York: McGraw-Hill.
Mahood Q., Van Eerd D., Irvin E. (2014). Searching for grey literature for systematic reviews: challenges and benefits. Res. Synth. Methods 5, 221–234. doi: 10.1002/JRSM.1106 PubMed DOI
Meira C. M., Fairbrother J. T., Perez C. R. (2015). Contextual interference and introversion/extraversion in motor learning. Percept. Mot. Skills 121, 447–460. doi: 10.2466/23.PMS.121C20X6, PMID: PubMed DOI
Meira C. M., Tani G. (2001). The contextual interference effect in Acquisition of Dart-Throwing Skill Tested on a transfer test with extended trials. Percept. Mot. Skills 92, 910–918. doi: 10.2466/pms.2001.92.3.910, PMID: PubMed DOI
Meira C. M., Tani G. (2003). Contextual interference effects assessed by extended transfer trials in the acquisition of volleyballl serve. J. Hum. Mov. Stud. 45, 449–468.
Methley A. M., Campbell S., Chew-Graham C., McNally R., Cheraghi-Sohi S. (2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 14, 1–10. doi: 10.1186/s12913-014-0579-0, PMID: PubMed DOI PMC
Moher D., Liberati A., Tetzlaff J., Altman D. G., Antes G., Atkins D., et al. . (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269. doi: 10.7326/0003-4819-151-4-200908180-00135 PubMed DOI
Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Espan. Nutr. Hum. Diet. 4, 148–160. doi: 10.1186/2046-4053-4-1, PMID: PubMed DOI PMC
Moretto N. A., Marcori A. J., Okazaki V. H. A. (2018). Contextual interference effects on motor skill acquisition, retention and transfer in sport riffle schooting. Hum. Mov. 19, 99–104. doi: 10.5114/hm.2018.74065 DOI
Morrison A., Polisena J., Husereau D., Moulton K., Clark M., Fiander M., et al. . (2012). The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28, 138–144. doi: 10.1017/S0266462312000086, PMID: PubMed DOI
Page M. J., Moher D. (2017). Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and Meta-analyses (PRISMA) statement and extensions: a scoping review. Syst. Rev. 6:263. doi: 10.1186/s13643-017-0663-8, PMID: PubMed DOI PMC
Parab S., Bose M., Ganesan S. (2018). Influence of random and blocked practice schedules on motor learning in children aged 6–12 years. Crit. Rev. Phys. Rehabil. Med. 30, 239–254. doi: 10.1615/CRITREVPHYSREHABILMED.2018027737 DOI
Pasand F., Fooladiyanzadeh H., Nazemzadegan G. (2016). The effect of gradual increase in contextual interference on acquisition, retention and transfer of volleyball Skillsce on acquisition, retention and transfer of volleyball skills. Int. J. Kinesiol. Sports Sci. 4, 72–77. doi: 10.7575/aiac.ijkss.v.4n.2p.72 DOI
Perez C. R., Meira C. M., Tani G. O. (2005). Does the contextual interference effect last over extended transfer trials? Percept. Mot. Skills 100, 58–60. doi: 10.2466/PMS.100.1.58-60, PMID: PubMed DOI
Porter J. M., Beckerman T. (2016). Practicing with gradual increases in contextual interference enhances visuomotor learning. Kinesiology 48, 244–250. doi: 10.26582/K.48.2.5 DOI
Porter C., Greenwood D., Panchuk D., Pepping G. J. (2020). Learner-adapted practice promotes skill transfer in unskilled adults learning the basketball set shot. Eur. J. Sport Sci. 20, 61–71. doi: 10.1080/17461391.2019.1611931, PMID: PubMed DOI
Porter J. M., Magill R. A. (2010). Systematically increasing contextual interference is beneficial for learning sport skills. J. Sports Sci. 28, 1277–1285. doi: 10.1080/02640414.2010.502946, PMID: PubMed DOI
Porter J. M., Saemi E. (2010). Moderately skilled learners benefit by practicing with systematic increases in contextual interference. Int. J. Coach. Sci. 4, 61–71.
Raviv L., Lupyan G., Green S. C. (2022). How variability shapes learning and generalization. Trends Cogn. Sci. 26, 462–483. doi: 10.1016/J.TICS.2022.03.007 PubMed DOI
Rücker G., Schwarzer G., Carpenter J. R., Schumacher M. (2008). Undue reliance on I2 in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 8, 1–9. doi: 10.1186/1471-2288-8-79/TABLES/3 PubMed DOI PMC
Sattelmayer M., Elsig S., Hilfiker R., Baer G. (2016). A systematic review and meta-analysis of selected motor learning principles in physiotherapy and medical education. BMC Med. Educ. 16:15. doi: 10.1186/s12909-016-0538-z, PMID: PubMed DOI PMC
Schroll J. B., Moustgaard R., Gøtzsche P. C. (2011). Dealing with substantial heterogeneity in Cochrane reviews. Cross-sectional study. BMC Med. Res. Methodol. 11, 1–8. doi: 10.1186/1471-2288-11-22/FIGURES/5 PubMed DOI PMC
Sekiya H., Magill R. A. (2000). The contextual interference effect in learning force and timing parameters of the same generalized program. J. Hum. Mov. Stud. 39, 45–71.
Sekiya H., Magill R. A., Anderson D. I. (1996). The contextual interference effect in parameter modifications of the same generalized motor program. Res. Q. Exerc. Sport 67, 59–68. doi: 10.1080/02701367.1996.10607926, PMID: PubMed DOI
Sekiya H., Magill R. A., Sidaway B., Anderson D. I. (1994). The contextual interference effect for skill variations from the same and different generalized motor programs. Res. Q. Exerc. Sport 65, 330–338. doi: 10.1080/02701367.1994.10607637, PMID: PubMed DOI
Shea C. H., Lai Q., Wright D. L., Immink M., Black C. (2001). Consistent and variable practice conditions: effects on relative and absolute timing. J. Mot. Behav. 33, 139–152. doi: 10.1080/00222890109603146, PMID: PubMed DOI
Shea J. B., Morgan R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Mem. 5, 179–187. doi: 10.1037/0278-7393.5.2.179 DOI
Shea J. B., Titzer R. C. (1993). The influence of reminder trials on contextual interference effects. J. Mot. Behav. 25, 264–274. doi: 10.1080/00222895.1993.9941647, PMID: PubMed DOI
Sherwood D. E., Duffel B. (2010). Concurrent visual feedback, practice organization, and spatial aiming accuracy in rapid movement sequences. Int. J. Exerc. Sci. 3, 78–91, PMID: PubMed PMC
Shewokis P. A. (1997). Is the contextual interference effect generalizable to computer games? Percept. Mot. Skills 84, 3–15. doi: 10.2466/PMS.1997.84.1.3, PMID: PubMed DOI
Shewokis P. A., Shariff F. U., Liu Y., Ayaz H., Castellanos A., Lind D. S. (2017). Acquisition, retention and transfer of simulated laparoscopic tasks using fNIR and a contextual interference paradigm. Am. J. Surg. 213, 336–345. doi: 10.1016/J.AMJSURG.2016.11.043, PMID: PubMed DOI
Shi J., Luo D., Wan X., Liu Y., Liu J., Bian Z., et al. . (2020a). Detecting the skewness of data from the sample size and the five-number summary. ArXiv. doi: 10.48550/arxiv.2010.05749 PubMed DOI
Shi J., Luo D., Weng H., Zeng X.-T., Lin L., Chu H., et al. . (2020b). Optimally estimating the sample standard deviation from the five-number summary. Res. Synth. Methods 11, 641–654. doi: 10.1002/jrsm.1429, PMID: PubMed DOI
Shojania K. G., Sampson M., Ansari M. T., Ji J., Doucette S., Moher D. (2007). How quickly do systematic reviews go out of date? A survival analysis. Ann. Intern. Med. 147, 224–233. doi: 10.7326/0003-4819-147-4-200708210-00179, PMID: PubMed DOI
Smith P. J. K. (2002). Applying contextual interference to snowboarding skills. Percept. Mot. Skills 95, 999–1005. doi: 10.2466/pms.2002.95.3.999, PMID: PubMed DOI
Smith P. J. K., Davies M. (2008). Applying contextual interference to the Pawlata roll. J. Sport Sci. 13, 455–462. doi: 10.1080/02640419508732262, PMID: PubMed DOI
Smith P. J. K., Gregory S. K., Davies M. (2003). Alternating versus blocked practice in learning a cartwheel. Percept. Mot. Skills 96, 1255–1264. doi: 10.2466/pms.2003.96.3c.1255, PMID: PubMed DOI
Smith P. J. K., Rudisill M. E. (1993). The influence of proficiency level, transfer distality, and gender on the contextual interference effect. Res. Q. Exerc. Sport 64, 151–157. doi: 10.1080/02701367.1993.10608792, PMID: PubMed DOI
Ste-Marie D. M., Clark S. E., Findlay L. C., Latimer A. E. (2010). High levels of contextual interference enhance handwriting skill acquisition. J. Mot. Behav. 36, 115–126. doi: 10.3200/JMBR.36.1.115-126, PMID: PubMed DOI
Thomas H. (2003). Quality assessment tool for quantitative studies: effective public health practice project. Hamilton, ON: McMaster University.
Thomas H., Ciliska D., Dobbins M., Micucci S. (2004). A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid.-Based Nurs. 1, 176–184. doi: 10.1111/J.1524-475X.2004.04006.X PubMed DOI
Thomas J. L., Fawver B., Taylor S., Miller M. W., Williams A. M., Lohse K. R. (2021). Using error-estimation to probe the psychological processes underlying contextual interference effects. Hum. Mov. Sci. 79:102854. doi: 10.1016/J.HUMOV.2021.102854, PMID: PubMed DOI
Toth A. J., McNeill E., Hayes K., Moran A. P., Campbell M. (2020). Does mental practice still enhance performance? A 24 year follow-up and meta-analytic replication and extension. Psychol. Sport Exerc. 48:101672. doi: 10.1016/J.PSYCHSPORT.2020.101672 DOI
Travlos A. K. (2010). Specificity and variability of practice, and contextual interference in acquisition and transfer of an underhand volleyball serve. Percept. Mot. Skills 110, 298–312. doi: 10.2466/PMS.110.1.298-312, PMID: PubMed DOI
Vera J. G., Montilla M. M. (2003). Practice schedule and acquisition, retention, and transfer of a throwing task in 6-YR.-old children. Percept. Mot. Skills 96, 1015–1024. doi: 10.2466/PMS.2003.96.3.1015, PMID: PubMed DOI
Wrisberg C. A., Liu Z. (1991). The effect of contextual variety on the practice, retention, and transfer of an applied motor skill. Res. Q. Exerc. Sport 62, 406–412. doi: 10.1080/02701367.1991.10607541, PMID: PubMed DOI
Wulf G., Lee T. D. (1993). Contextual interference in movements of the same class: differential effects on program and parameter learning. J. Mot. Behav. 25, 254–263. doi: 10.1080/00222895.1993.9941646, PMID: PubMed DOI
Wulf G., Shea C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon. Bull. Rev. 9, 185–211. doi: 10.3758/BF03196276 PubMed DOI
Yang G., Lai C. S. W., Cichon J., Ma L., Li W., Gan W. B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178. doi: 10.1126/SCIENCE.1249098, PMID: PubMed DOI PMC