Microstructural characterization of multiple sclerosis lesion phenotypes using multiparametric longitudinal analysis

. 2024 Sep ; 271 (9) : 5944-5957. [epub] 20240713

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39003428

Grantová podpora
NTC03706118 Roche
NU 22-04-001 Czech Ministry of Health
RVO VFN 64165 Charles University Hospital Prague
Project cooperation LF1 Czech Ministry of Education

Odkazy

PubMed 39003428
PubMed Central PMC11377637
DOI 10.1007/s00415-024-12568-x
PII: 10.1007/s00415-024-12568-x
Knihovny.cz E-zdroje

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes. METHODS: We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue. RESULTS AND CONCLUSIONS: Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.

Zobrazit více v PubMed

Granziera C, Wuerfel J, Barkhof F et al (2021) Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 144:1296–1311. 10.1093/brain/awab029 10.1093/brain/awab029 PubMed DOI PMC

Vaneckova M, Piredda GF, Andelova M et al (2022) Periventricular gradient of T1 tissue alterations in multiple sclerosis. Neuroimage Clin 34:1–10. 10.1016/j.nicl.2022.10300910.1016/j.nicl.2022.103009 PubMed DOI PMC

Chen X, Schädelin S, Lu P-J et al (2023) Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients. Neuroimage Clin. 10.1016/j.nicl.2023.103349 10.1016/j.nicl.2023.103349 PubMed DOI PMC

Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245. 10.1097/00019052-200206000-00003 10.1097/00019052-200206000-00003 PubMed DOI

Weber CE, Wittayer M, Kraemer M et al (2021) Quantitative MRI texture analysis in chronic active multiple sclerosis lesions. Magn Reson Imaging 79:97–102. 10.1016/j.mri.2021.03.016 10.1016/j.mri.2021.03.016 PubMed DOI

Harrison DM, Li X, Liu H et al (2016) Lesion heterogeneity on high-field susceptibility MRI Is associated with multiple sclerosis severity. Am J Neuroradiol 37:1447–1453. 10.3174/ajnr.A4726 10.3174/ajnr.A4726 PubMed DOI PMC

Calvi A, Haider L, Prados F et al (2022) In vivo imaging of chronic active lesions in multiple sclerosis. Mult Scler J 28:683–690. 10.1177/135245852095858910.1177/1352458520958589 PubMed DOI PMC

Calvi A, Carrasco FP, Tur C et al (2022) Association of slowly expanding lesions on MRI with disability in people with secondary progressive multiple sclerosis. Neurology 98:E1783–E1793. 10.1212/WNL.0000000000200144 10.1212/WNL.0000000000200144 PubMed DOI

Absinta M, Sati P, Masuzzo F et al (2019) Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 76:1474–1483. 10.1001/jamaneurol.2019.2399 10.1001/jamaneurol.2019.2399 PubMed DOI PMC

Preziosa P, Pagani E, Meani A et al (2022) Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurology(R) Neuroimmunol Neuroinflamm 9:1–11. 10.1212/NXI.000000000000113910.1212/NXI.0000000000001139 PubMed DOI PMC

Elliott C, Wolinsky JS, Hauser SL et al (2019) Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Multiple Sclerosis J 25:1915–1925. 10.1177/135245851881411710.1177/1352458518814117 PubMed DOI PMC

Rahmanzadeh R, Galbusera R, Lu PJ, Bahn E, Weigel M, Barakovic M, Franz J, Nguyen TD, Spincemaille P, Schiavi S, Daducci A, La Rosa F, Absinta M, Sati P, Bach Cuadra M, Radue EW, Leppert D, Kuhle J, Kappos L, Brück W, Reich DS, Stadelmann C, Wang Y, Granziera C (2022) A New Advanced MRI Biomarker for Remyelinated Lesions in Multiple Sclerosis. Ann Neurol 92(3):486–502. 10.1002/ana.26441. PMID: 35713309; PMCID: PMC9527017 PubMed PMC

Shi Z, Pan Y, Yan Z et al (2023) Microstructural alterations in different types of lesions and their perilesional white matter in relapsing-remitting multiple sclerosis based on diffusion kurtosis imaging. Mult Scler Relat Disord 71:104572. 10.1016/j.msard.2023.104572 10.1016/j.msard.2023.104572 PubMed DOI

Wittayer M, Weber CE, Krämer J et al (2023) Exploring (peri-) lesional and structural connectivity tissue damage through T1/T2-weighted ratio in iron rim multiple sclerosis lesions. Magn Reson Imaging 95:12–18. 10.1016/j.mri.2022.10.009 10.1016/j.mri.2022.10.009 PubMed DOI

Calvi A, Clarke MA, Prados F et al (2023) Relationship between paramagnetic rim lesions and slowly expanding lesions in multiple sclerosis. Mult Scler 29:352–362. 10.1177/13524585221141964 10.1177/13524585221141964 PubMed DOI PMC

Elliott C, Rudko DA, Arnold DL et al (2023) Lesion-level correspondence and longitudinal properties of paramagnetic rim and slowly expanding lesions in multiple sclerosis. Multi Sclerosis J. 10.1177/1352458523116226210.1177/13524585231162262 PubMed DOI PMC

Marques JP, Kober T, Krueger G et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281. 10.1016/j.neuroimage.2009.10.002 10.1016/j.neuroimage.2009.10.002 PubMed DOI

Mussard E, Hilbert T, Forman C et al (2020) Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn Reson Med 84:1881–1894. 10.1002/mrm.28244 10.1002/mrm.28244 PubMed DOI

Hilbert T, Sumpf TJ, Weiland E et al (2018) Accelerated T 2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI. J Magn Reson Imaging 48:359–368. 10.1002/jmri.25972 10.1002/jmri.25972 PubMed DOI

Tsang A, Wager C, Corredor-Jerez R et al (2018) Comparison of techniques for measurement of brain volume in multiple sclerosis patients. Neurology (Conference abstract) 90(P3):354

Fartaria MJ, Todea A, Kober T et al (2018) Partial volume-aware assessment of multiple sclerosis lesions. Neuroimage Clin 18:245–253. 10.1016/j.nicl.2018.01.011 10.1016/j.nicl.2018.01.011 PubMed DOI PMC

Fartaria MJ, Bonnier G, Roche A et al (2016) Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging 43:1445–1454. 10.1002/jmri.25095 10.1002/jmri.25095 PubMed DOI

Klein S, Staring M, Murphy K et al (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205. 10.1109/TMI.2009.2035616 10.1109/TMI.2009.2035616 PubMed DOI

Schmitter D, Roche A, Maréchal B et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. Neuroimage Clin 7:7–17. 10.1016/j.nicl.2014.11.001 10.1016/j.nicl.2014.11.001 PubMed DOI PMC

Piredda GF, Hilbert T, Granziera C et al (2020) Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magn Reson Med 83:337–351. 10.1002/mrm.27927 10.1002/mrm.27927 PubMed DOI

Elkin LA, Kay M, Higgins JJ, Wobbrock JO (2021) An aligned rank transform procedure for multifactor contrast tests. In: UIST 2021—Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, pp 754–768. 10.1145/3472749.3474784

Liaw A, Wiener M (2002) The R Journal: classification and regression by randomForest. R Journal 2:18–22

Greenwell BM, Boehmke BC (2020) Variable importance plots—an introduction to the vip package. R Journal 12:343–366. 10.32614/rj-2020-01310.32614/rj-2020-013 DOI

Fox J, Weisberg S (2019) An R companion to applied regression. Sage

Boaventura M, Sastre-Garriga J, Garcia-Vidal A et al (2022) T1/T2-weighted ratio in multiple sclerosis: a longitudinal study with clinical associations. Neuroimage Clin. 10.1016/j.nicl.2022.102967 10.1016/j.nicl.2022.102967 PubMed DOI PMC

Uddin MN, Figley TD, Marrie RA, Figley CR (2018) Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions. NMR Biomed 31:e3868. 10.1002/nbm.386810.1002/nbm.3868 PubMed DOI

Elliott C, Arnold DL, Chen H et al (2020) Patterning chronic active demyelination in slowly expanding/evolving white matter MS lesions. Am J Neuroradiol 41:1–8. 10.3174/ajnr.A6742 10.3174/ajnr.A6742 PubMed DOI PMC

Moog TM, McCreary M, Wilson A et al (2022) Direction and magnitude of displacement differ between slowly expanding and non-expanding multiple sclerosis lesions as compared to small vessel disease. J Neurol 269:4459–4468. 10.1007/s00415-022-11089-9 10.1007/s00415-022-11089-9 PubMed DOI

Dal-Bianco A, Grabner G, Kronnerwetter C et al (2017) Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol 133:25–42. 10.1007/s00401-016-1636-z 10.1007/s00401-016-1636-z PubMed DOI PMC

Frischer JM, Weigand SD, Guo Y et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78:710–721. 10.1002/ana.24497 10.1002/ana.24497 PubMed DOI PMC

Dwyer MG, Bergsland N, Ramasamy DP et al (2018) Atrophied brain lesion volume: a new imaging biomarker in multiple sclerosis. J Neuroimaging 28:490–495. 10.1111/jon.12527 10.1111/jon.12527 PubMed DOI

Zivadinov R, Bergsland N, Dwyer MG (2018) Atrophied brain lesion volume, a magnetic resonance imaging biomarker for monitoring neurodegenerative changes in multiple sclerosis. Quant Imaging Med Surg 8:979–983. 10.21037/qims.2018.11.01 10.21037/qims.2018.11.01 PubMed DOI PMC

Levesque I, Sled JG, Narayanan S et al (2005) The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study. J Magn Reson Imaging 21:103–110. 10.1002/jmri.20231 10.1002/jmri.20231 PubMed DOI

Van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288. 10.1212/WNL.50.5.1282 10.1212/WNL.50.5.1282 PubMed DOI

Fisher E, Chang A, Fox RJ et al (2007) Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann Neurol 62:219–228. 10.1002/ana.21113 10.1002/ana.21113 PubMed DOI

Trapp BD, Vignos M, Dudman J et al (2018) Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol 17:870–884. 10.1016/S1474-4422(18)30245-X 10.1016/S1474-4422(18)30245-X PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...