Mixotrophic growth of a ubiquitous marine diatom
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P20 GM103446
NIGMS NIH HHS - United States
PubMed
39018398
PubMed Central
PMC466952
DOI
10.1126/sciadv.ado2623
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- koloběh uhlíku MeSH
- metabolické sítě a dráhy MeSH
- mořská voda MeSH
- oceány a moře MeSH
- rozsivky * metabolismus genetika růst a vývoj MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- oceány a moře MeSH
Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Department of Pediatrics University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
Zobrazit více v PubMed
Y. Matsuda, P. G. Kroth, “Carbon fixation in diatoms” in
Büchel C., How diatoms harvest light. Science 365, 447–448 (2019). PubMed
Guiry M. D., How many species of algae are there? J. Phycol. 48, 1057–1063 (2012). PubMed
De Tommasi E., Gielis J., Rogato A., Diatom frustule morphogenesis and function: A multidisciplinary survey. Mar. Genomics 35, 1–18 (2017). PubMed
Wang S., Verma S. K., Hakeem Said I., Thomsen L., Ullrich M. S., Kuhnert N., Changes in the fucoxanthin production and protein profiles in PubMed PMC
Cohen N. R., Mixotrophic plankton foraging behaviour linked to carbon export. Nat. Commun. 13, 1302 (2022). PubMed PMC
Ward B. A., Follows M. J., Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl. Acad. Sci. U.S.A. 113, 2958–2963 (2016). PubMed PMC
Malviya S., Scalco E., Audic S., Vincent F., Veluchamy A., Poulain J., Wincker P., Iudicone D., de Vargas C., Bittner L., Zingone A., Bowler C., Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. U. S.A. 113, E1516–E1525 (2016). PubMed PMC
Wang H., Robinson J. L., Kocabas P., Gustafsson J., Anton M., Cholley P.-E., Huang S., Gobom J., Svensson T., Uhlen M., Zetterberg H., Nielsen J., Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc. Natl. Acad. Sci. U.S.A. 118, e2102344118 (2021). PubMed PMC
Yang J. E., Park S. J., Kim W. J., Kim H. J., Kim B. J., Lee H., Shin J., Lee S. Y., One-step fermentative production of aromatic polyesters from glucose by metabolically engineered PubMed PMC
Monk J. M., Lloyd C. J., Brunk E., Mih N., Sastry A., King Z., Takeuchi R., Nomura W., Zhang Z., Mori H., Feist A. M., Palsson B. O., iML1515, a knowledgebase that computes PubMed PMC
Monk J. M., Charusanti P., Aziz R. K., Lerman J. A., Premyodhin N., Orth J. D., Feist A. M., Palsson B. Ø., Genome-scale metabolic reconstructions of multiple PubMed PMC
Kumar M., Ji B., Zengler K., Nielsen J., Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019). PubMed
Kumar M., Ji B., Babaei P., Das P., Lappa D., Ramakrishnan G., Fox T. E., Haque R., Petri W. A., Bäckhed F., Nielsen J., Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab. Eng. 49, 128–142 (2018). PubMed PMC
Zuñiga C., Li T., Guarnieri M. T., Jenkins J. P., Li C.-T., Bingol K., Kim Y.-M., Betenbaugh M. J., Zengler K., Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nat. Commun. 11, 3803 (2020). PubMed PMC
Levering J., Broddrick J., Dupont C. L., Peers G., Beeri K., Mayers J., Gallina A. A., Allen A. E., Palsson B. O., Zengler K., Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLOS ONE 11, e0155038 (2016). PubMed PMC
Lavoie M., Saint-Béat B., Strauss J., Guérin S., Allard A., Hardy S. V., Falciatore A., Lavaud J., Genome-scale metabolic reconstruction and in silico perturbation analysis of the polar diatom PubMed PMC
van Tol H. M., Armbrust E. V., Genome-scale metabolic model of the diatom PubMed PMC
Ahmad A., Tiwari A., Srivastava S., A genome-scale metabolic model of PubMed PMC
Salazar G., Paoli L., Alberti A., Huerta-Cepas J., Ruscheweyh H.-J., Cuenca M., Field C. M., Coelho L. P., Cruaud C., Engelen S., Gregory A. C., Labadie K., Marec C., Pelletier E., Royo-Llonch M., Roux S., Sánchez P., Uehara H., Zayed A. A., Zeller G., Carmichael M., Dimier C., Ferland J., Kandels S., Picheral M., Pisarev S., Poulain J., Acinas S. G., Babin M., Bork P., Bowler C., de Vargas C., Guidi L., Hingamp P., Iudicone D., Karp-Boss L., Karsenti E., Ogata H., Pesant S., Speich S., Sullivan M. B., Wincker P., Sunagawa S., Acinas S. G., Babin M., Bork P., Boss E., Bowler C., Cochrane G., de Vargas C., Follows M., Gorsky G., Grimsley N., Guidi L., Hingamp P., Iudicone D., Jaillon O., Kandels-Lewis S., Karp-Boss L., Karsenti E., Not F., Ogata H., Pesant S., Poulton N., Raes J., Sardet C., Speich S., Stemmann L., Sullivan M. B., Sunagawa S., Wincker P., Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019). PubMed PMC
de Vargas C., Audic S., Henry N., Decelle J., Mahé F., Logares R., Lara E., Berney C., Le Bescot N., Probert I., Carmichael M., Poulain J., Romac S., Colin S., Aury J.-M., Bittner L., Chaffron S., Dunthorn M., Engelen S., Flegontova O., Guidi L., Horák A., Jaillon O., Lima-Mendez G., Lukeš J., Malviya S., Morard R., Mulot M., Scalco E., Siano R., Vincent F., Zingone A., Dimier C., Picheral M., Searson S., Kandels-Lewis S., Acinas S. G., Bork P., Bowler C., Gorsky G., Grimsley N., Hingamp P., Iudicone D., Not F., Ogata H., Pesant S., Raes J., Sieracki M. E., Speich S., Stemmann L., Sunagawa S., Weissenbach J., Wincker P., Karsenti E., Boss E., Follows M., Karp-Boss L., Krzic U., Reynaud E. G., Sardet C., Sullivan M. B., Velayoudon D., Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015). PubMed
Strzepek R. F., Nunn B. L., Bach L. T., Berges J. A., Young E. B., Boyd P. W., The ongoing need for rates: Can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry? J. Plankton Res. 44, 485–495 (2022). PubMed PMC
Zuñiga C., Li C.-T., Yu G., Al-Bassam M. M., Li T., Jiang L., Zaramela L. S., Guarnieri M., Betenbaugh M. J., Zengler K., Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat. Microbiol. 4, 2184–2191 (2019). PubMed
Wang H., Marcišauskas S., Sánchez B. J., Domenzain I., Hermansson D., Agren R., Nielsen J., Kerkhoven E. J., RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on PubMed PMC
Ebrahim A., Lerman J. A., Palsson B. O., Hyduke D. R., COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Syst. Biol. 7, 74 (2013). PubMed PMC
Heirendt L., Arreckx S., Pfau T., Mendoza S. N., Richelle A., Heinken A., Haraldsdóttir H. S., Wachowiak J., Keating S. M., Vlasov V., Magnusdóttir S., Ng C. Y., Preciat G., Žagare A., Chan S. H. J., Aurich M. K., Clancy C. M., Modamio J., Sauls J. T., Noronha A., Bordbar A., Cousins B., El Assal D. C., Valcarcel L. V., Apaolaza I., Ghaderi S., Ahookhosh M., Ben Guebila M., Kostromins A., Sompairac N., Le H. M., Ma D., Sun Y., Wang L., Yurkovich J. T., Oliveira M. A. P., Vuong P. T., El Assal L. P., Kuperstein I., Zinovyev A., Hinton H. S., Bryant W. A., Aragón Artacho F. J., Planes F. J., Stalidzans E., Maass A., Vempala S., Hucka M., Saunders M. A., Maranas C. D., Lewis N. E., Sauter T., Palsson B. Ø., Thiele I., Fleming R. M. T., Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019). PubMed PMC
Chang R. L., Ghamsari L., Manichaikul A., Hom E. F. Y., Balaji S., Fu W., Shen Y., Hao T., Palsson B. Ø., Salehi-Ashtiani K., Papin J. A., Metabolic network reconstruction of PubMed PMC
King Z. A., Lu J., Dräger A., Miller P., Federowicz S., Lerman J. A., Ebrahim A., Palsson B. O., Lewis N. E., BiGG models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016). PubMed PMC
Moretti S., Tran V. D. T., Mehl F., Ibberson M., Pagni M., MetaNetX/MNXref: Unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Res. 49, D570–D574 (2021). PubMed PMC
Elagoz A. M., Ambrosino L., Lauritano C., PubMed PMC
Megchelenbrink W., Huynen M., Marchiori E., optGpSampler: An improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLOS ONE 9, e86587 (2014). PubMed PMC
Sunagawa S., Acinas S. G., Bork P., Bowler C., Acinas S. G., Babin M., Bork P., Boss E., Bowler C., Cochrane G., de Vargas C., Follows M., Gorsky G., Grimsley N., Guidi L., Hingamp P., Iudicone D., Jaillon O., Kandels S., Karp-Boss L., Karsenti E., Lescot M., Not F., Ogata H., Pesant S., Poulton N., Raes J., Sardet C., Sieracki M., Speich S., Stemmann L., Sullivan M. B., Sunagawa S., Wincker P., Eveillard D., Gorsky G., Guidi L., Iudicone D., Karsenti E., Lombard F., Ogata H., Pesant S., Sullivan M. B., Wincker P., de Vargas C., Tara Oceans: Towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020). PubMed
Jensen E. L., Yangüez K., Carrière F., Gontero B., Storage compound accumulation in diatoms as response to elevated CO PubMed PMC
Wu S., Gu W., Jia S., Wang L., Wang L., Liu X., Zhou L., Huang A., Wang G., Proteomic and biochemical responses to different concentrations of CO PubMed PMC
Nakajima K., Tanaka A., Matsuda Y., SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl. Acad. Sci. U.S.A 110, 1767–1772 (2013). PubMed PMC
Yodsuwan N., Sawayama S., Sirisansaneeyakul S., Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom
Yang Z.-K., Ma Y.-H., Zheng J.-W., Yang W.-D., Liu J.-S., Li H.-Y., Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom PubMed PMC
Zhang Y., Wu H., Sun M., Peng Q., Li A., Photosynthetic physiological performance and proteomic profiling of the oleaginous algae PubMed
Hockin N. L., Mock T., Mulholland F., Kopriva S., Malin G., The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158, 299–312 (2012). PubMed PMC
Jian J., Zeng D., Wei W., Lin H., Li P., Liu W., The combination of RNA and protein profiling reveals the response to nitrogen depletion in PubMed PMC
Msanne J., Xu D., Konda A. R., Casas-Mollano J. A., Awada T., Cahoon E. B., Cerutti H., Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae PubMed
Recht L., Zarka A., Boussiba S., Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae PubMed
Dean A. P., Sigee D. C., Estrada B., Pittman J. K., Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour. Technol. 101, 4499–4507 (2010). PubMed
Qari H. A., Oves M., Fatty acid synthesis by PubMed
Chen M., Li J., Dai X., Sun Y., Chen F., Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of
Zhou B., Ma J., Chen F., Zou Y., Wei Y., Zhong H., Pan K., Mechanisms underlying silicon-dependent metal tolerance in the marine diatom PubMed
Cheng J., Feng J., Sun J., Huang Y., Zhou J., Cen K., Enhancing the lipid content of the diatom
d’Ippolito G., Sardo A., Paris D., Vella F. M., Adelfi M. G., Botte P., Gallo C., Fontana A., Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol. Biofuels 8, 28 (2015). PubMed PMC
Armstrong E., Rogerson A., Leftley J. W., The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coast. Shelf Sci. 50, 415–424 (2000).
Villanova V., Spetea C., Mixotrophy in diatoms: Molecular mechanism and industrial potential. Physiol. Plant. 173, 603–611 (2021). PubMed
Bailleul B., Berne N., Murik O., Petroutsos D., Prihoda J., Tanaka A., Villanova V., Bligny R., Flori S., Falconet D., Krieger-Liszkay A., Santabarbara S., Rappaport F., Joliot P., Tirichine L., Falkowski P. G., Cardol P., Bowler C., Finazzi G., Energetic coupling between plastids and mitochondria drives CO PubMed
Stoecker D. K., Hansen P. J., Caron D. A., Mitra A., Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2017). PubMed
Meyer N., Rydzyk A., Pohnert G., Pronounced uptake and metabolism of organic substrates by diatoms revealed by pulse-labeling metabolomics. Front. Mar. Sci. 9, 821167 (2022).
Caron D. A., Mixotrophy stirs up our understanding of marine food webs. Proc. Natl. Acad. Sci. U.S.A. 113, 2806–2808 (2016). PubMed PMC
Amin S. A., Parker M. S., Armbrust E. V., Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012). PubMed PMC
Liu J., Xue C.-X., Sun H., Zheng Y., Meng Z., Zhang X.-H., Carbohydrate catabolic capability of a PubMed
Kallscheuer N., Wiegand S., Kohn T., Boedeker C., Jeske O., Rast P., Müller R.-W., Brümmer F., Heuer A., Jetten M. S. M., Rohde M., Jogler M., Jogler C., Cultivation-independent analysis of the bacterial community associated with the calcareous sponge PubMed PMC
Fukunaga Y., Kurahashi M., Sakiyama Y., Ohuchi M., Yokota A., Harayama S., PubMed
Priest T., Heins A., Harder J., Amann R., Fuchs B. M., Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. ISME J. 16, 1570–1582 (2022). PubMed PMC
Buchan A., LeCleir G. R., Gulvik C. A., González J. M., Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014). PubMed
Thiele I., Palsson B. Ø., A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010). PubMed PMC
M. Kumar, C. Zuniga, J. D. Tibocha-Bonilla, S. R. Smith, J. Coker, A. E. Allen, K. Zengler, “Constraint-based modeling of diatoms metabolism and quantitative biology approaches” in DOI
Stock W., Vanelslander B., Rüdiger F., Sabbe K., Vyverman W., Karsten U., Thermal niche differentiation in the benthic diatom PubMed PMC
Hutchins D. A., Fu F., Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017). PubMed
Pahl S. L., Lewis D. M., Chen F., King K. D., Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom PubMed PMC
Armstrong E., Rogerson A., Leftley J. W., Utilisation of seaweed carbon by three surface-associated heterotrophic protists,
Brzezinski M. A., The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (2004).
Lachance J.-C., Lloyd C. J., Monk J. M., Yang L., Sastry A. V., Seif Y., Palsson B. O., Rodrigue S., Feist A. M., King Z. A., Jacques P.-É., BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLOS Comput. Biol. 15, e1006971 (2019). PubMed PMC
Jallet D., Caballero M. A., Gallina A. A., Youngblood M., Peers G., Photosynthetic physiology and biomass partitioning in the model diatom
Cunha E., Lagoa D., Faria J. P., Liu F., Henry C. S., Dias O., TranSyT, an innovative framework for identifying transport systems. Bioinformatics 39, btad466 (2023). PubMed PMC
Lieven C., Beber M. E., Olivier B. G., Bergmann F. T., Ataman M., Babaei P., Bartell J. A., Blank L. M., Chauhan S., Correia K., Diener C., Dräger A., Ebert B. E., Edirisinghe J. N., Faria J. P., Feist A. M., Fengos G., Fleming R. M. T., García-Jiménez B., Hatzimanikatis V., van Helvoirt W., Henry C. S., Hermjakob H., Herrgård M. J., Kaafarani A., Kim H. U., King Z., Klamt S., Klipp E., Koehorst J. J., König M., Lakshmanan M., Lee D.-Y., Lee S. Y., Lee S., Lewis N. E., Liu F., Ma H., Machado D., Mahadevan R., Maia P., Mardinoglu A., Medlock G. L., Monk J. M., Nielsen J., Nielsen L. K., Nogales J., Nookaew I., Palsson B. O., Papin J. A., Patil K. R., Poolman M., Price N. D., Resendis-Antonio O., Richelle A., Rocha I., Sánchez B. J., Schaap P. J., Sheriff R. S. M., Shoaie S., Sonnenschein N., Teusink B., Vilaça P., Vik J. O., Wodke J. A. H., Xavier J. C., Yuan Q., Zakhartsev M., Zhang C., MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020). PubMed PMC
Orth J. D., Thiele I., Palsson B. Ø., What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010). PubMed PMC
Morel F. M. M., Rueter J. G., Anderson D. M., Guillard R. R. L., AQUIL: A chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 15, 135–141 (1979).
Kim D., Langmead B., Salzberg S. L., HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC
Caballero J., Smit A. F. A., Hood L., Glusman G., Realistic artificial DNA sequences as negative controls for computational genomics. Nucleic Acids Res. 42, e99–e99 (2014). PubMed PMC
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
B. G. Galuzzi, L. Milazzo, C. Damiani, DOI
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., Huttenhower C., Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011). PubMed PMC
Monk J., Nogales J., Palsson B. O., Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32, 447–452 (2014). PubMed
Morris E. P., Kromkamp J. C., Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom
Alcoverro T., Conte E., Mazzella L., Production of mucilage by the adriatic epipelic diatom
Rijstenbil J. W., Effects of UVB radiation and salt stress on growth, pigments and antioxidative defence of the marine diatom
Rijstenbil J. W., UV- and salinity-induced oxidative effects in the marine diatom
Staats N., Stal L. J., Mur L. R., Exopolysaccharide production by the epipelic diatom PubMed
Wang S., Sirbu D., Thomsen L., Kuhnert N., Ullrich M. S., Thomsen C., Comparative lipidomic studies of PubMed
Araújo C. V. M., Diz F. R., Lubián L. M., Blasco J., Moreno-Garrido I., Sensitivity of PubMed
Almeyda M. D., Scodelaro Bilbao P. G., Popovich C. A., Constenla D., Leonardi P. I., Enhancement of polyunsaturated fatty acid production under low-temperature stress in
Van Bergeijk S. A., Van der Zee C., Stal L. J., Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom
Erdogan A., Demirel Z., Dalay M. C., Eroglu A. E., Fucoxanthin content of
Orcutt D. M., Patterson G. W., Effect of light intensity upon lipid composition of PubMed
Affan A., Heo S., Jeon Y., Lee J., Optimal growth conditions and antioxidative activities of PubMed
Brembu T., Mühlroth A., Alipanah L., Bones A. M., The effects of phosphorus limitation on carbon metabolism in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160406 (2017). PubMed PMC
Ruocco N., Nuzzo G., D’Ippolito G., Manzo E., Sardo A., Ianora A., Romano G., Iuliano A., Zupo V., Costantini M., Fontana A., Lipoxygenase pathways in diatoms: Occurrence and correlation with grazer toxicity in four benthic species. Mar. Drugs 18, 66 (2020). PubMed PMC
Ryabushko V. I., Zheleznova S. N., Nekhoroshev M. V., Effect of nitrogen on fucoxanthin accumulation in the diatom
Han T., Song P., Shi R., Qi Z., Li J., Huang H., Optimal nutrient availability could alleviate diatom
Becker A. E., Copplestone D., Cadmium uptake from sediment by
Humphrey G., Subba Rao D., Photosynthetic rate of the marine diatom
Zhang F., Chi J., Influences of nutritional conditions on degradation of dibutyl phthalate in coastal sediments with PubMed
Roncarati F., Rijstenbil J. W., Pistocchi R., Photosynthetic performance, oxidative damage and antioxidants in
Wolfstein K., de Brouwer J., Stal L., Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances. Mar. Ecol. Prog. Ser. 245, 21–31 (2002).
Wolfstein K., Stal L., Production of extracellular polymeric substances (EPS) by benthic diatoms: Effect of irradiance and temperature. Mar. Ecol. Prog. Ser. 236, 13–22 (2002).
Suman K., Kiran T., Devi U. K., Sarma N. S., Culture medium optimization and lipid profiling of
Underwood G. J. C., Boulcott M., Raines C. A., Waldron K., Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production. J. Phycol. 40, 293–304 (2004).
Admiraal W., Laane R., Peletier H., Participation of diatoms in the amino acid cycle of coastal waters; uptake and excretion in cultures. Mar. Ecol. Prog. Ser. 15, 303–306 (1984).
De Brouwer J. F. C., Stal L. J., Daily fluctuations of exopolymers in cultures of the benthic diatoms
Zheleznova S. N., Production characteristics of the diatom
Nilsson C., Sundback K., Sundback K., Amino acid uptake in natural microphytobenthic assemblages studied by microautoradiography. Hydrobiologia 332, 119–129 (1996).
Staats N., De Winder B., Mur L. R., Stal L. J., Isolation and characterization of extracellular polysaccharides from the epipelic diatoms
Urbani R., Magaletti E., Sist P., Cicero A. M., Extracellular carbohydrates released by the marine diatoms PubMed
Wolf Y. I., Koonin E. V., A tight link between orthologs and bidirectional best hits in bacterial and archaeal genomes. Genome Biol. Evol. 4, 1286–1294 (2012). PubMed PMC
Kanehisa M., Sato Y., Kawashima M., KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 31, 47–53 (2022). PubMed PMC
Seaver S. M. D., Liu F., Zhang Q., Jeffryes J., Faria J. P., Edirisinghe J. N., Mundy M., Chia N., Noor E., Beber M. E., Best A. A., DeJongh M., Kimbrel J. A., D’haeseleer P., McCorkle S. R., Bolton J. R., Pearson E., Canon S., Wood-Charlson E. M., Cottingham R. W., Arkin A. P., Henry C. S., The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021). PubMed PMC
Caspi R., Billington R., Keseler I. M., Kothari A., Krummenacker M., Midford P. E., Ong W. K., Paley S., Subhraveti P., Karp P. D., The MetaCyc database of metabolic pathways and enzymes - A 2019 update. Nucleic Acids Res. 48, D445–D453 (2020). PubMed PMC
Bateman A., Martin M.-J., Orchard S., Magrane M., Agivetova R., Ahmad S., Alpi E., Bowler-Barnett E. H., Britto R., Bursteinas B., Bye-A-Jee H., Coetzee R., Cukura A., Da Silva A., Denny P., Dogan T., Ebenezer T., Fan J., Castro L. G., Garmiri P., Georghiou G., Gonzales L., Hatton-Ellis E., Hussein A., Ignatchenko A., Insana G., Ishtiaq R., Jokinen P., Joshi V., Jyothi D., Lock A., Lopez R., Luciani A., Luo J., Lussi Y., MacDougall A., Madeira F., Mahmoudy M., Menchi M., Mishra A., Moulang K., Nightingale A., Oliveira C. S., Pundir S., Qi G., Raj S., Rice D., Lopez M. R., Saidi R., Sampson J., Sawford T., Speretta E., Turner E., Tyagi N., Vasudev P., Volynkin V., Warner K., Watkins X., Zaru R., Zellner H., Bridge A., Poux S., Redaschi N., Aimo L., Argoud-Puy G., Auchincloss A., Axelsen K., Bansal P., Baratin D., Blatter M.-C., Bolleman J., Boutet E., Breuza L., Casals-Casas C., de Castro E., Echioukh K. C., Coudert E., Cuche B., Doche M., Dornevil D., Estreicher A., Famiglietti M. L., Feuermann M., Gasteiger E., Gehant S., Gerritsen V., Gos A., Gruaz-Gumowski N., Hinz U., Hulo C., Hyka-Nouspikel N., Jungo F., Keller G., Kerhornou A., Lara V., Le Mercier P., Lieberherr D., Lombardot T., Martin X., Masson P., Morgat A., Neto T. B., Paesano S., Pedruzzi I., Pilbout S., Pourcel L., Pozzato M., Pruess M., Rivoire C., Sigrist C., Sonesson K., Stutz A., Sundaram S., Tognolli M., Verbregue L., Wu C. H., Arighi C. N., Arminski L., Chen C., Chen Y., Garavelli J. S., Huang H., Laiho K., McGarvey P., Natale D. A., Ross K., Vinayaka C. R., Wang Q., Wang Y., Yeh L.-S., Zhang J., Ruch P., Teodoro D., UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021). PubMed PMC
Chang A., Jeske L., Ulbrich S., Hofmann J., Koblitz J., Schomburg I., Neumann-Schaal M., Jahn D., Schomburg D., BRENDA, the ELIXIR core data resource in 2021: New developments and updates. Nucleic Acids Res. 49, D498–D508 (2021). PubMed PMC
Fleischmann A., IntEnz, the integrated relational enzyme database. Nucleic Acids Res. 32, 434D–4437D (2004). PubMed PMC
Saier M. H., Reddy V. S., Moreno-Hagelsieb G., Hendargo K. J., Zhang Y., Iddamsetty V., Lam K. J. K., Tian N., Russum S., Wang J., Medrano-Soto A., The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021). PubMed PMC
Elbourne L. D. H., Tetu S. G., Hassan K. A., Paulsen I. T., TransportDB 2.0: A database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 45, D320–D324 (2017). PubMed PMC
Petersen T. N., Brunak S., von Heijne G., Nielsen H., SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011). PubMed
Gschloessl B., Guermeur Y., Cock J. M., HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9, 393 (2008). PubMed PMC
Claros M. G., MitoProt, a Macintosh application for studying mitochondrial proteins. Bioinformatics 11, 441–447 (1995). PubMed
Cokol M., Nair R., Rost B., Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000). PubMed PMC
Emanuelsson O., Brunak S., von Heijne G., Nielsen H., Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007). PubMed
Grant B., Madgwick J., Dal P. G., Growth of