A 3D-Printed Do-It-Yourself ELISA Plate Reader as a Biosensor Tested on TNFα Assay
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DZRO-FVZ22-ZHN II
Ministry of Defence of the Czech Republic
PubMed
39056607
PubMed Central
PMC11274727
DOI
10.3390/bios14070331
PII: bios14070331
Knihovny.cz E-zdroje
- Klíčová slova
- ELISA, biosensor, colorimetry, cytokine, enzyme-linked immunosorbent assay, image, immunosensor, inflammation,
- MeSH
- 3D tisk * MeSH
- biosenzitivní techniky * MeSH
- ELISA * MeSH
- kolorimetrie MeSH
- lidé MeSH
- TNF-alfa * analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- TNF-alfa * MeSH
Simple analytical devices suitable for the analysis of various biochemical and immunechemical markers are highly desirable and can provide laboratory diagnoses outside standard hospitals. This study focuses on constructing an easily reproducible do-it-yourself ELISA plate reader biosensor device, assembled from generally available and inexpensive parts. The colorimetric biosensor was based on standard 96-well microplates, 3D-printed parts, and a smartphone camera as a detector was utilized here as a tool to replace the ELISA method, and its function was illustrated in the assay of TNFα as a model immunochemical marker. The assay provided a limit of detection of 19 pg/mL when the B channel of the RGB color model was used for calibration. The assay was well correlated with the ELISA method, and no significant matrix effect was observed for standard biological samples or interference of proteins expected in a sample. The results of this study will inform the development of simple analytical devices easily reproducible by 3D printing and found on generally available electronics.
Zobrazit více v PubMed
Ahirwar R., Bhattacharya A., Kumar S. Unveiling the underpinnings of various non-conventional ELISA variants: A review article. Expert Rev. Mol. Diagn. 2022;22:761–774. doi: 10.1080/14737159.2022.2117615. PubMed DOI
Daurat G. Yes, we should keep ABO agglutination test within bedside transfusion checks. Transfus. Clin. Biol. 2008;15:322–326. doi: 10.1016/j.tracli.2008.09.029. PubMed DOI
Björkman C., Uggla A. Serological diagnosis of Neospora caninum infection. Int. J. Parasit. 1999;29:1497–1507. doi: 10.1016/S0020-7519(99)00115-0. PubMed DOI
Dey M.K., Iftesum M., Devireddy R., Gartia M.R. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. Anal. Methods. 2023;15:4351–4376. doi: 10.1039/D3AY00844D. PubMed DOI
Ince B., Uludag I., Demirbakan B., Özyurt C., Özcan B., Sezgintürk M.K. Lateral flow assays for food analyses: Food contaminants, allergens, toxins, and beyond. TrAC-Trends Anal. Chem. 2023;169:24. doi: 10.1016/j.trac.2023.117418. DOI
Silva G.B.L., Campos F.V., Guimaraes M.C.C., Oliveira J.P. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens. 2023;12:1441. doi: 10.3390/pathogens12121441. PubMed DOI PMC
Cavalier E. Determination of parathyroid hormone: From radioimmunoassay to LCMS/MS. Clin. Chem. Lab. Med. 2023;61:946–953. doi: 10.1515/cclm-2022-0942. PubMed DOI
Liu R., Zhang S.X., Wei C., Xing Z., Zhang S.C., Zhang X.R. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules. Acc. Chem. Res. 2016;49:775–783. doi: 10.1021/acs.accounts.5b00509. PubMed DOI
Guo M., Chen Y., Mo X.H., Wei H., Li Y.Y., Jia Y.J., Hu F.D., Du Y.L. Review-Electrochemical Immunosensors for Depression Markers Detection: Development in Recent Years. J. Electrochem. Soc. 2024;171:11. doi: 10.1149/1945-7111/ad1c79. DOI
Mehta D., Gupta D., Kafle A., Kaur S., Nagaiah T.C. Advances and Challenges in Nanomaterial-Based Electrochemical Immunosensors for Small Cell Lung Cancer Biomarker Neuron-Specific Enolase. ACS Omega. 2023;9:33–51. doi: 10.1021/acsomega.3c06388. PubMed DOI PMC
Evtugyn G., Hianik T. Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors. 2019;7:10. doi: 10.3390/chemosensors7010010. DOI
Bergua J.F., Alvarez-Diduk R., Idili A., Parolo C., Maymo M., Hu L., Merkoci A. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem. 2022;94:1271–1285. doi: 10.1021/acs.analchem.1c04491. PubMed DOI
Volpe C., Vadstein O., Andersen G., Andersen T. Nanocosm: A well plate photobioreactor for environmental and biotechnological studies. Lab Chip. 2021;21:2027–2039. doi: 10.1039/D0LC01250E. PubMed DOI
Bagheri N., Cinti S., Caratelli V., Massoud R., Saraji M., Moscone D., Arduini F. A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosens. Bioelectron. 2019;134:97–102. doi: 10.1016/j.bios.2019.03.037. PubMed DOI
Seddaoui N., Amine A. Smartphone-based competitive immunoassay for quantitative on-site detection of meat adulteration. Talanta. 2021;230:10. doi: 10.1016/j.talanta.2021.122346. PubMed DOI
Wang X., Wang H.Y., Wan X.Y., Li M.J., Tang D.P. Smartphone-based photoelectrochemical immunoassay for carcinoembryonic antigen based on BiOCl/CuBi2O4 heterojunction. Anal. Chim. Acta. 2023;1279:8. doi: 10.1016/j.aca.2023.341826. PubMed DOI
Li H., Ying Y., Cao Z., Liu G.Y., Wang J. Research Progress on Rapid Detection Technology Based on Smartphone and Lateral Flow Immunoassay. Anal. Chim. Acta. 2022;50:1–11. doi: 10.19756/j.issn.0253-3820.201488. DOI
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front. Immunol. 2022;13:6. doi: 10.3389/fimmu.2022.903679. PubMed DOI PMC
Mikail M., Wilson A. Low Serum Tumor Necrosis Factor-α Antagonist Concentrations in Patients With Inflammatory Bowel Disease Who Achieve Healing From Pyoderma Gangrenosum. Inflamm. Bowel Dis. 2021;27:E141–E143. doi: 10.1093/ibd/izab148. PubMed DOI PMC
Cahn R.T., Zinn Z., Kolodney M.S. Tumor necrosis factor inhibitors and methotrexate are associated with decreased COVID-19-related hospitalization: Follow up of “Clinical outcomes of COVID-19 in patients taking tumor necrosis factor inhibitors and methotrexate”. J. Am. Acad. Dermatol. 2023;88:1385–1386. doi: 10.1016/j.jaad.2023.02.002. PubMed DOI PMC
Vercellini P., Debenedetti F., Rossi E., Colombo A., Trespidi L., Crosignani P.G. Tumor necrosis factor in plasma and peritoneal fluid of women with and without endometriosis. Gynecol. Obstet. Investig. 1993;36:39–41. doi: 10.1159/000292591. PubMed DOI
Cascio A., Gervasi F., Giordano S., Palazzolo B., Salsa L. Plasma levels of tumor necrosis factor-alpha and interferon-gamma in Sicilian children with Mediterranean spotted fever. Int. J. Clin. Lab. Res. 1997;27:135–138. doi: 10.1007/BF02912448. PubMed DOI
Keane H.M., Sheron N., Goka J., Hughes R.D., Williams R. Plasma inhibitory activity against tumour necrosis factor in fulminant hepatic failure. Clin. Sci. 1996;90:77–80. doi: 10.1042/cs0900077. PubMed DOI
Ebrahimi M., Norouzi P., Davami F., Bonakdar A., Marzabad M.A., Tabaei O. Direct detection of TNF-α by copper benzene tricarboxylate MOFs/gold nanoparticles modified electrochemical label-free immunosensor using FFT admittance voltammetry. J. Electroanal. Chem. 2022;925:12. doi: 10.1016/j.jelechem.2022.116897. DOI
Bari S.M.I., Reis L.G., Nestorova G.G. Calorimetric sandwich-type immunosensor for quantification of TNF-α. Biosens. Bioelectron. 2019;126:82–87. doi: 10.1016/j.bios.2018.10.028. PubMed DOI
Yola M.L., Atar N. Novel voltammetric tumor necrosis factor-alpha (TNF-alpha) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/Cu-MOFs. Anal. Bioanal. Chem. 2021;413:2481–2492. doi: 10.1007/s00216-021-03203-z. PubMed DOI
Parandakh A., Ymbern O., Jogia W., Renault J., Ng A., Juncker D. 3D-printed capillaric ELISA-on-a-chip with aliquoting. Lab Chip. 2023;23:1547–1560. doi: 10.1039/D2LC00878E. PubMed DOI
Singh H., Shimojima M., Fukushi S., Van A.L., Sugamata M., Yang M. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology. Bio-Med. Mater. Eng. 2015;26:S45–S53. doi: 10.3233/BME-151288. PubMed DOI
Singh H., Shimojima M., Shiratori T., Van An L., Sugamata M., Yang M. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases. Sensors. 2015;15:16503–16515. doi: 10.3390/s150716503. PubMed DOI PMC
Bauer M., Kulinsky L. Fabrication of a Lab-on-Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria-Ab ELISA. Micromachines. 2018;9:27. doi: 10.3390/mi9010027. PubMed DOI PMC
Damas P., Reuter A., Gysen P., Demonty J., Lamy M., Franchimont P. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit. Care Med. 1989;17:975–978. doi: 10.1097/00003246-198910000-00001. PubMed DOI
Ferrajoli A., Keating M.J., Manshouri T., Giles F.J., Dey A., Estrov Z., Koller C.A., Kurzrock R., Thomas D.A., Faderl S., et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood. 2002;100:1215–1219. doi: 10.1182/blood.V100.4.1215.h81602001215_1215_1219. PubMed DOI
Xu D.D., Huang X.W., Guo J.H., Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens. Bioelectron. 2018;110:78–88. doi: 10.1016/j.bios.2018.03.018. PubMed DOI
Omidfar K., Ahmadi A., Syedmoradi L., Khoshfetrat S.M., Larijani B. Point-of-care biosensors in medicine: A brief overview of our achievements in this field based on the conducted research in EMRI (endocrinology and metabolism research Institute of Tehran University of medical sciences) over the past fourteen years. J. Diabetes Metab. Disord. 2020:1–5. doi: 10.1007/s40200-020-00668-0. PubMed DOI PMC
Poschenrieder A., Thaler M., Junker R., Luppa P.B. Recent advances in immunodiagnostics based on biosensor technologies-from central laboratory to the point of care. Anal. Bioanal. Chem. 2019;411:7607–7621. doi: 10.1007/s00216-019-01915-x. PubMed DOI
Kulkarni M.B., Ayachit N.H., Aminabhavi T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors. 2022;12:543. doi: 10.3390/bios12070543. PubMed DOI PMC
Hwang C., Lee W.J., Kim S.D., Park S., Kim J.H. Recent Advances in Biosensor Technologies for Point-of-Care Urinalysis. Biosensors. 2022;12:1020. doi: 10.3390/bios12111020. PubMed DOI PMC
Pohanka M. Current trends in digital camera-based bioassays for point-of-care tests. Clin. Chim. Acta. 2024;552:9. doi: 10.1016/j.cca.2023.117677. PubMed DOI
Syed S., Rahaman A., Mondal A., Shaligram S., Pawar S.P. Diagnosis of infectious diseases: Complexity to convenience. Sens. Diagn. 2024;3:354–380. doi: 10.1039/D3SD00236E. DOI
Taron W., Phooplub K., Sanchimplee S., Piyanamvanich K., Jamnongkan W., Techasen A., Phetcharaburanin J., Klanrit P., Namwat N., Khuntikeo N., et al. Smartphone-based fluorescent ELISA with simple fluorescent enhancement strategy for Opisthorchis viverrini (Ov) antigen detection in urine samples. Sens. Actuator B Chem. 2021;348:14. doi: 10.1016/j.snb.2021.130705. DOI
Wang C., Wu Z., Liu B.C., Zhang P.L., Lu J.H., Li J.F., Zou P., Li T.T., Fu Y.S., Chen R.A., et al. Track-etched membrane microplate and smartphone immunosensing for SARS-CoV-2 neutralizing antibody. Biosens. Bioelectron. 2021;192:10. doi: 10.1016/j.bios.2021.113550. PubMed DOI PMC
Berg B., Cortazar B., Tseng D., Ozkan H., Feng S., Wei Q.S., Chan R.Y.L., Burbano J., Farooqui Q., Lewinski M., et al. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano. 2015;9:7857–7866. doi: 10.1021/acsnano.5b03203. PubMed DOI