A Macrocyclic Hybrid PET/MRI Probe for Quantitative Perfusion Imaging In Vivo
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
Programme EXCELES, ID Project No. LX22NPO5104
H2020 European Research Council
GAUK 1608218
Univerzita Karlova v Praze
456007791 and 390900677
Deutsche Forschungsgemeinschaft
Germany's Excellence Strategy - EXC 2180 - 390900677
Deutsche Forschungsgemeinschaft
Sofja Kovalevskaja Award
Alexander von Humboldt-Stiftung
Innovation Award "HYPERBOLIC"
Deutschen Konsortium für Translationale Krebsforschung
Programme EXCELES, ID Project No. LX22NPO5104
Ministerstvo Školství, Mládeže a Tělovýchovy (The Ministry of Education, Youth and Sports)
Programme EXCELES, ID Project No. LX22NPO5104
NextGenerationEU
GAUK 1608218
Grantová agentura Univerzity Karlovy
456007791, 516238665 and 390900677
Deutsche Forschungsgemeinschaft
- Keywords
- cancer, fluorine 18, gadolinium, hybrid PET/MRI, imaging agents,
- MeSH
- Gadolinium chemistry MeSH
- Contrast Media * chemistry chemical synthesis MeSH
- Magnetic Resonance Imaging * methods MeSH
- Macrocyclic Compounds * chemistry chemical synthesis MeSH
- Mice MeSH
- Perfusion Imaging methods MeSH
- Positron-Emission Tomography * MeSH
- Fluorine Radioisotopes chemistry MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gadolinium MeSH
- Contrast Media * MeSH
- Macrocyclic Compounds * MeSH
- Fluorine Radioisotopes MeSH
Perfusion dynamics play a vital role in delivering essential nutrients and oxygen to tissues while removing metabolic waste products. Imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) use contrast agents to visualize perfusion and clearance patterns; however, each technique has specific limitations. Hybrid PET/MRI combines the quantitative power and sensitivity of PET with the high functional and anatomical detail of MRI and holds great promise for precision in molecular imaging. However, the development of dual PET/MRI probes has been hampered by challenging synthesis and radiolabeling. Here, we present a novel PET/MRI probe, [18F][Gd(FL1)], which exhibits excellent stability comparable to macrocyclic MRI contrast agents used in clinical practice. The unique molecular design of [18F][Gd(FL1)] allows selective and expeditious radiolabeling of the gadolinium chelate in the final synthetic step. Leveraging the strengths of MRI and PET signals, the probe enables quantitative in vivo mapping of perfusion and excretion dynamics through an innovative voxel-based analysis. The diagnostic capabilities of [18F][Gd(FL1)] were demonstrated in a pilot study on healthy mice, successfully detecting early cases of unilateral renal dysfunction, a condition that is typically challenging to diagnose. This study introduces a new approach for PET/MRI and emphasizes a streamlined probe design for practical synthesis and improved diagnostic accuracy.
German Cancer Consortium Im Neuenheimer Feld 280 Heidelberg 69120 Germany
Nuclear Physics Institute of the CAS Řež 130 250 68 Řež Czech Republic
See more in PubMed
M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Röcken, R. E. Nutt, H.-J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, B. J. Pichler, Nat. Med. 2008, 14, 459–465.
H. Jadvar, P. M. Colletti, Eur. J. Radiol. 2014, 83, 84–94.
J. Schwenck, D. Sonanini, J. M. Cotton, H.-G. Rammensee, C. la Fougère, L. Zender, B. J. Pichler, Nat. Rev. Cancer 2023, 23, 474–490.
J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 2019, 119, 957–1057.
D. Parrott, W. S. Fernando, A. F. Martins, Inorganics 2019, 7, 18.
H. Wang, V. C. Jordan, I. A. Ramsay, M. Sojoodi, B. C. Fuchs, K. K. Tanabe, P. Caravan, E. M. Gale, J. Am. Chem. Soc. 2019, 141, 5916–5925.
E. Boros, A. M. Bowen, L. Josephson, N. Vasdev, J. P. Holland, Chem. Sci. 2014, 6, 225–236.
L. Frullano, C. Catana, T. Benner, A. D. Sherry, P. Caravan, Angew. Chem. Int. Ed. 2010, 49, 2382–2384.
J. Notni, P. Hermann, I. Dregely, H.-J. Wester, Chem. Eur. J. 2013, 19, 12602–12606.
R. Uppal, C. Catana, I. Ay, T. Benner, A. G. Sorensen, P. Caravan, Radiology 2011, 258, 812–820.
A. Kumar, S. Zhang, G. Hao, G. Hassan, S. Ramezani, K. Sagiyama, S.-T. Lo, M. Takahashi, A. D. Sherry, O. K. Öz, Z. Kovacs, X. Sun, Bioconjugate Chem. 2015, 26, 549–558.
M. R. Brandt, C. Vanasschen, J. Ermert, H. H. Coenen, B. Neumaier, Dalton Trans. 2019, 48, 3003–3008.
I. Y. Zhou, I. A. Ramsay, I. Ay, P. Pantazopoulos, N. J. Rotile, A. Wong, P. Caravan, E. M. Gale, Invest. Radiol. 2021, 56, 261–270.
Y. Ning, I. Y. Zhou, N. J. Rotile, P. Pantazopoulos, H. Wang, S. C. Barrett, M. Sojoodi, K. K. Tanabe, P. Caravan, J. Am. Chem. Soc. 2022, 144, 16553–16558.
T. K. Chen, D. H. Knicely, M. E. Grams, Jama 2019, 322, 1294–1304.
N. Paragas, A. Qiu, Q. Zhang, B. Samstein, S.-X. Deng, K. M. Schmidt-Ott, M. Viltard, W. Yu, C. S. Forster, G. Gong, Y. Liu, R. Kulkarni, K. Mori, A. Kalandadze, A. J. Ratner, P. Devarajan, D. W. Landry, V. D'Agati, C.-S. Lin, J. Barasch, Nat. Med. 2011, 17, 216–222.
P. Marckmann, L. Skov, K. Rossen, A. Dupont, M. B. Damholt, J. G. Heaf, H. S. Thomsen, J. Am. Soc. Nephrol. 2006, 17, 2359.
T. Kanda, T. Fukusato, M. Matsuda, K. Toyoda, H. Oba, J. Kotoku, T. Haruyama, K. Kitajima, S. Furui, Radiology 2015, 276, 228–232.
R. J. McDonald, J. S. McDonald, D. Dai, D. Schroeder, M. E. Jentoft, D. L. Murray, R. Kadirvel, L. J. Eckel, D. F. Kallmes, Radiology 2017.
P. Robert, S. Fingerhut, C. Factor, V. Vives, J. Letien, M. Sperling, M. Rasschaert, R. Santus, S. Ballet, J.-M. Idée, C. Corot, U. Karst, Radiology 2018, 288, 424–433.
V. M. Runge, J. Magn. Reson. Imaging 2020, 51, 869–870.
A. Korde, R. Mikolajczak, P. Kolenc, P. Bouziotis, H. Westin, M. Lauritzen, M. Koole, M. M. Herth, M. Bardiès, A. F. Martins, A. Paulo, S. K. Lyashchenko, S. Todde, S. Nag, E. Lamprou, A. Abrunhosa, F. Giammarile, C. Decristoforo, EJNMMI Radiopharm. Chem. 2022, 7, 18.
S. Aime, A. S. Batsanov, M. Botta, J. A. K. Howard, M. P. Lowe, D. Parker, New J. Chem. 1999, 23, 669–670.
M. Karramkam, F. Hinnen, F. Vaufrey, F. Dollé, J. Labelled Compd. Radiopharm. 2003, 46, 979–992.
M. Starck, J. D. Fradgley, D. F. De Rosa, A. S. Batsanov, M. Papa, M. J. Taylor, J. E. Lovett, J. C. Lutter, M. J. Allen, D. Parker, Chem. Eur. J. 2021, 27, 17921–17927.
P. Brugarolas, R. Freifelder, S.-H. Cheng, O. DeJesus, Chem. Commun. 2016, 52, 7150–7152.
P. Comba, M. Morgen, H. Wadepohl, Inorg. Chem. 2013, 52, 6481–6501.
A. V. Mossine, A. F. Brooks, K. J. Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org. Lett. 2015, 17, 5780–5783.
F. M. Wagner, J. Ermert, H. H. Coenen, J. Nucl. Med. 2009, 50, 1724–1729.
P. S. Weiss, J. Ermert, J. Castillo Meleán, D. Schäfer, H. H. Coenen, Bioorg. Med. Chem. 2015, 23, 5856–5869.
P.-O. Westlund, Mol. Phys. 1995, 85, 1165–1178.
L. M. De León-Rodríguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, A. D. Sherry, J. Magn. Reson. Imaging 2015, 42, 545–565.
M. C. Alpoim, J. Chem. Soc. Dalton Trans. 1992.
D. H. Powell, O. M. N. Dhubhghaill, D. Pubanz, L. Helm, Y. S. Lebedev, W. Schlaepfer, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 9333–9346.
M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.-J. Weinmann, Invest. Radiol. 2005, 40, 715–724.
Y. Shen, F. L. Goerner, C. Snyder, J. N. Morelli, D. Hao, D. Hu, X. Li, V. M. Runge, Invest. Radiol. 2015, 50, 330–338.
S. K. Morcos, BJR 2007, 80, 73–76.
M. Polasek, P. Caravan, Inorg. Chem. 2013, 52, 4084–4096.
K. Kumar, M. F. Tweedle, Pure Appl. Chem. 1993, 65, 515–520.
M. Pedersen, P. Irrera, W. Dastrù, F. G. Zöllner, K. M. Bennett, S. C. Beeman, G. L. Bretthorst, J. R. Garbow, D. L. Longo, in Preclinical MRI of the Kidney: Methods and Protocols (Eds.: A. Pohlmann, T. Niendorf), Springer US, New York, NY 2021, pp. 205–227.
F. C. Michelotti, G. Bowden, A. Küppers, L. Joosten, J. Maczewsky, V. Nischwitz, G. Drews, A. Maurer, M. Gotthardt, A. M. Schmid, B. J. Pichler, Theranostics 2020, 10, 398–410.
M. Le Fur, N. J. Rotile, C. Correcher, V. Clavijo Jordan, A. W. Ross, C. Catana, P. Caravan, Angew. Chem. Int. Ed. 2020, 59, 1474–1478.
S. Syvänen, X. T. Fang, R. Faresjö, J. Rokka, L. Lannfelt, D. E. Olberg, J. Eriksson, D. Sehlin, ACS Chem. Neurosci. 2020, 11, 4460–4468.
R. A. Werner, X. Chen, C. Lapa, K. Koshino, S. P. Rowe, M. G. Pomper, M. S. Javadi, T. Higuchi, Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1773–1786.
S. Luis-Lima, E. Porrini, Nephron 2016, 136, 287–291.
H. Bagher-Ebadian, S. L. Brown, M. M. Ghassemi, T. N. Nagaraja, O. G. Valadie, P. C. Acharya, G. Cabral, G. Divine, R. A. Knight, I. Y. Lee, J. H. Xu, B. Movsas, I. J. Chetty, J. R. Ewing, Sci. Rep. 2023, 13, 9672.
J. R. Ewing, H. Bagher-Ebadian, NMR Biomed. 2013, 26, 1028–1041.