A Macrocyclic Hybrid PET/MRI Probe for Quantitative Perfusion Imaging In Vivo
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5104
H2020 European Research Council
GAUK 1608218
Univerzita Karlova v Praze
456007791 and 390900677
Deutsche Forschungsgemeinschaft
Germany's Excellence Strategy - EXC 2180 - 390900677
Deutsche Forschungsgemeinschaft
Sofja Kovalevskaja Award
Alexander von Humboldt-Stiftung
Innovation Award "HYPERBOLIC"
Deutschen Konsortium für Translationale Krebsforschung
Programme EXCELES, ID Project No. LX22NPO5104
Ministerstvo Školství, Mládeže a Tělovýchovy (The Ministry of Education, Youth and Sports)
Programme EXCELES, ID Project No. LX22NPO5104
NextGenerationEU
GAUK 1608218
Grantová agentura Univerzity Karlovy
456007791, 516238665 and 390900677
Deutsche Forschungsgemeinschaft
PubMed
39058684
DOI
10.1002/anie.202409520
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, fluorine 18, gadolinium, hybrid PET/MRI, imaging agents,
- MeSH
- gadolinium chemie MeSH
- kontrastní látky * chemie chemická syntéza MeSH
- magnetická rezonanční tomografie * metody MeSH
- makrocyklické sloučeniny * chemie chemická syntéza MeSH
- myši MeSH
- perfuzní zobrazování metody MeSH
- pozitronová emisní tomografie * MeSH
- radioizotopy fluoru chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- kontrastní látky * MeSH
- makrocyklické sloučeniny * MeSH
- radioizotopy fluoru MeSH
Perfusion dynamics play a vital role in delivering essential nutrients and oxygen to tissues while removing metabolic waste products. Imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) use contrast agents to visualize perfusion and clearance patterns; however, each technique has specific limitations. Hybrid PET/MRI combines the quantitative power and sensitivity of PET with the high functional and anatomical detail of MRI and holds great promise for precision in molecular imaging. However, the development of dual PET/MRI probes has been hampered by challenging synthesis and radiolabeling. Here, we present a novel PET/MRI probe, [18F][Gd(FL1)], which exhibits excellent stability comparable to macrocyclic MRI contrast agents used in clinical practice. The unique molecular design of [18F][Gd(FL1)] allows selective and expeditious radiolabeling of the gadolinium chelate in the final synthetic step. Leveraging the strengths of MRI and PET signals, the probe enables quantitative in vivo mapping of perfusion and excretion dynamics through an innovative voxel-based analysis. The diagnostic capabilities of [18F][Gd(FL1)] were demonstrated in a pilot study on healthy mice, successfully detecting early cases of unilateral renal dysfunction, a condition that is typically challenging to diagnose. This study introduces a new approach for PET/MRI and emphasizes a streamlined probe design for practical synthesis and improved diagnostic accuracy.
German Cancer Consortium Im Neuenheimer Feld 280 Heidelberg 69120 Germany
Nuclear Physics Institute of the CAS Řež 130 250 68 Řež Czech Republic
Zobrazit více v PubMed
M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Röcken, R. E. Nutt, H.-J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, B. J. Pichler, Nat. Med. 2008, 14, 459–465.
H. Jadvar, P. M. Colletti, Eur. J. Radiol. 2014, 83, 84–94.
J. Schwenck, D. Sonanini, J. M. Cotton, H.-G. Rammensee, C. la Fougère, L. Zender, B. J. Pichler, Nat. Rev. Cancer 2023, 23, 474–490.
J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 2019, 119, 957–1057.
D. Parrott, W. S. Fernando, A. F. Martins, Inorganics 2019, 7, 18.
H. Wang, V. C. Jordan, I. A. Ramsay, M. Sojoodi, B. C. Fuchs, K. K. Tanabe, P. Caravan, E. M. Gale, J. Am. Chem. Soc. 2019, 141, 5916–5925.
E. Boros, A. M. Bowen, L. Josephson, N. Vasdev, J. P. Holland, Chem. Sci. 2014, 6, 225–236.
L. Frullano, C. Catana, T. Benner, A. D. Sherry, P. Caravan, Angew. Chem. Int. Ed. 2010, 49, 2382–2384.
J. Notni, P. Hermann, I. Dregely, H.-J. Wester, Chem. Eur. J. 2013, 19, 12602–12606.
R. Uppal, C. Catana, I. Ay, T. Benner, A. G. Sorensen, P. Caravan, Radiology 2011, 258, 812–820.
A. Kumar, S. Zhang, G. Hao, G. Hassan, S. Ramezani, K. Sagiyama, S.-T. Lo, M. Takahashi, A. D. Sherry, O. K. Öz, Z. Kovacs, X. Sun, Bioconjugate Chem. 2015, 26, 549–558.
M. R. Brandt, C. Vanasschen, J. Ermert, H. H. Coenen, B. Neumaier, Dalton Trans. 2019, 48, 3003–3008.
I. Y. Zhou, I. A. Ramsay, I. Ay, P. Pantazopoulos, N. J. Rotile, A. Wong, P. Caravan, E. M. Gale, Invest. Radiol. 2021, 56, 261–270.
Y. Ning, I. Y. Zhou, N. J. Rotile, P. Pantazopoulos, H. Wang, S. C. Barrett, M. Sojoodi, K. K. Tanabe, P. Caravan, J. Am. Chem. Soc. 2022, 144, 16553–16558.
T. K. Chen, D. H. Knicely, M. E. Grams, Jama 2019, 322, 1294–1304.
N. Paragas, A. Qiu, Q. Zhang, B. Samstein, S.-X. Deng, K. M. Schmidt-Ott, M. Viltard, W. Yu, C. S. Forster, G. Gong, Y. Liu, R. Kulkarni, K. Mori, A. Kalandadze, A. J. Ratner, P. Devarajan, D. W. Landry, V. D'Agati, C.-S. Lin, J. Barasch, Nat. Med. 2011, 17, 216–222.
P. Marckmann, L. Skov, K. Rossen, A. Dupont, M. B. Damholt, J. G. Heaf, H. S. Thomsen, J. Am. Soc. Nephrol. 2006, 17, 2359.
T. Kanda, T. Fukusato, M. Matsuda, K. Toyoda, H. Oba, J. Kotoku, T. Haruyama, K. Kitajima, S. Furui, Radiology 2015, 276, 228–232.
R. J. McDonald, J. S. McDonald, D. Dai, D. Schroeder, M. E. Jentoft, D. L. Murray, R. Kadirvel, L. J. Eckel, D. F. Kallmes, Radiology 2017.
P. Robert, S. Fingerhut, C. Factor, V. Vives, J. Letien, M. Sperling, M. Rasschaert, R. Santus, S. Ballet, J.-M. Idée, C. Corot, U. Karst, Radiology 2018, 288, 424–433.
V. M. Runge, J. Magn. Reson. Imaging 2020, 51, 869–870.
A. Korde, R. Mikolajczak, P. Kolenc, P. Bouziotis, H. Westin, M. Lauritzen, M. Koole, M. M. Herth, M. Bardiès, A. F. Martins, A. Paulo, S. K. Lyashchenko, S. Todde, S. Nag, E. Lamprou, A. Abrunhosa, F. Giammarile, C. Decristoforo, EJNMMI Radiopharm. Chem. 2022, 7, 18.
S. Aime, A. S. Batsanov, M. Botta, J. A. K. Howard, M. P. Lowe, D. Parker, New J. Chem. 1999, 23, 669–670.
M. Karramkam, F. Hinnen, F. Vaufrey, F. Dollé, J. Labelled Compd. Radiopharm. 2003, 46, 979–992.
M. Starck, J. D. Fradgley, D. F. De Rosa, A. S. Batsanov, M. Papa, M. J. Taylor, J. E. Lovett, J. C. Lutter, M. J. Allen, D. Parker, Chem. Eur. J. 2021, 27, 17921–17927.
P. Brugarolas, R. Freifelder, S.-H. Cheng, O. DeJesus, Chem. Commun. 2016, 52, 7150–7152.
P. Comba, M. Morgen, H. Wadepohl, Inorg. Chem. 2013, 52, 6481–6501.
A. V. Mossine, A. F. Brooks, K. J. Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org. Lett. 2015, 17, 5780–5783.
F. M. Wagner, J. Ermert, H. H. Coenen, J. Nucl. Med. 2009, 50, 1724–1729.
P. S. Weiss, J. Ermert, J. Castillo Meleán, D. Schäfer, H. H. Coenen, Bioorg. Med. Chem. 2015, 23, 5856–5869.
P.-O. Westlund, Mol. Phys. 1995, 85, 1165–1178.
L. M. De León-Rodríguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, A. D. Sherry, J. Magn. Reson. Imaging 2015, 42, 545–565.
M. C. Alpoim, J. Chem. Soc. Dalton Trans. 1992.
D. H. Powell, O. M. N. Dhubhghaill, D. Pubanz, L. Helm, Y. S. Lebedev, W. Schlaepfer, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 9333–9346.
M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.-J. Weinmann, Invest. Radiol. 2005, 40, 715–724.
Y. Shen, F. L. Goerner, C. Snyder, J. N. Morelli, D. Hao, D. Hu, X. Li, V. M. Runge, Invest. Radiol. 2015, 50, 330–338.
S. K. Morcos, BJR 2007, 80, 73–76.
M. Polasek, P. Caravan, Inorg. Chem. 2013, 52, 4084–4096.
K. Kumar, M. F. Tweedle, Pure Appl. Chem. 1993, 65, 515–520.
M. Pedersen, P. Irrera, W. Dastrù, F. G. Zöllner, K. M. Bennett, S. C. Beeman, G. L. Bretthorst, J. R. Garbow, D. L. Longo, in Preclinical MRI of the Kidney: Methods and Protocols (Eds.: A. Pohlmann, T. Niendorf), Springer US, New York, NY 2021, pp. 205–227.
F. C. Michelotti, G. Bowden, A. Küppers, L. Joosten, J. Maczewsky, V. Nischwitz, G. Drews, A. Maurer, M. Gotthardt, A. M. Schmid, B. J. Pichler, Theranostics 2020, 10, 398–410.
M. Le Fur, N. J. Rotile, C. Correcher, V. Clavijo Jordan, A. W. Ross, C. Catana, P. Caravan, Angew. Chem. Int. Ed. 2020, 59, 1474–1478.
S. Syvänen, X. T. Fang, R. Faresjö, J. Rokka, L. Lannfelt, D. E. Olberg, J. Eriksson, D. Sehlin, ACS Chem. Neurosci. 2020, 11, 4460–4468.
R. A. Werner, X. Chen, C. Lapa, K. Koshino, S. P. Rowe, M. G. Pomper, M. S. Javadi, T. Higuchi, Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1773–1786.
S. Luis-Lima, E. Porrini, Nephron 2016, 136, 287–291.
H. Bagher-Ebadian, S. L. Brown, M. M. Ghassemi, T. N. Nagaraja, O. G. Valadie, P. C. Acharya, G. Cabral, G. Divine, R. A. Knight, I. Y. Lee, J. H. Xu, B. Movsas, I. J. Chetty, J. R. Ewing, Sci. Rep. 2023, 13, 9672.
J. R. Ewing, H. Bagher-Ebadian, NMR Biomed. 2013, 26, 1028–1041.