Additive Manufacturing-Enabled Advanced Design and Process Strategies for Multi-Functional Lattice Structures

. 2024 Jul 09 ; 17 (14) : . [epub] 20240709

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39063693

Grantová podpora
108PO12 Ministry of Education (MOE), Taiwan

The properties of each lattice structure are a function of four basic lattice factors, namely the morphology of the unit cell, its tessellation, relative density, and the material properties. The recent advancements in additive manufacturing (AM) have facilitated the easy manipulation of these factors to obtain desired functionalities. This review attempts to expound on several such strategies to manipulate these lattice factors. Several design-based grading strategies, such as functional grading, with respect to size and density manipulation, multi-morphology, and spatial arrangement strategies, have been discussed and their link to the natural occurrences are highlighted. Furthermore, special emphasis is given to the recently designed tessellation strategies to deliver multi-functional lattice responses. Each tessellation on its own acts as a novel material, thereby tuning the required properties. The subsequent section explores various material processing techniques with respect to multi-material AM to achieve multi-functional properties. The sequential combination of multiple materials generates novel properties that a single material cannot achieve. The last section explores the scope for combining the design and process strategies to obtain unique lattice structures capable of catering to advanced requirements. In addition, the future role of artificial intelligence and machine learning in developing function-specific lattice properties is highlighted.

Zobrazit více v PubMed

Gardan J. Smart Materials in Additive Manufacturing: State of the Art and Trends. Virtual Phys. Prototyp. 2019;14:1–18. doi: 10.1080/17452759.2018.1518016. DOI

Kumar A.P., Dirgantara T., Vamsi P., Editors K. Advances in Lightweight Materials and Structures. Springer; New York, NY, USA: 2020.

Obadimu S.O., Kourousis K.I. Compressive Behaviour of Additively Manufactured Lattice Structures: A Review. Aerospace. 2021;8:207. doi: 10.3390/aerospace8080207. DOI

Sajjad U., Rehman T.U., Ali M., Park C.W., Yan W.M. Manufacturing and Potential Applications of Lattice Structures in Thermal Systems: A Comprehensive Review of Recent Advances. Int. J. Heat Mass Transf. 2022;198:123352. doi: 10.1016/j.ijheatmasstransfer.2022.123352. DOI

Kaur I., Singh P. Critical Evaluation of Additively Manufactured Metal Lattices for Viability in Advanced Heat Exchangers. Int. J. Heat Mass Transf. 2021;168:120858. doi: 10.1016/j.ijheatmasstransfer.2020.120858. DOI

Narkhede S., Sur A., Darvekar S. Applications, Manufacturing and Thermal Characteristics of Micro-Lattice Structures: Current State of the Art. Eng. J. 2019;23:419–431. doi: 10.4186/ej.2019.23.6.419. DOI

Fleck N.A., Deshpande V.S., Ashby M.F. Micro-Architectured Materials: Past, Present and Future. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010;466:2495–2516. doi: 10.1098/rspa.2010.0215. DOI

Ashby M.F. The Properties of Foams and Lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006;364:15–30. doi: 10.1098/rsta.2005.1678. PubMed DOI

Evans A.G., Hutchinson J.W., Fleck N.A., Ashby M.F., Wadley H.N.G. The Topological Design of Multifunctional Cellular Metals. Prog. Mater. Sci. 2001;46:309–327. doi: 10.1016/S0079-6425(00)00016-5. DOI

Amin Yavari S., Ahmadi S.M., Wauthle R., Pouran B., Schrooten J., Weinans H., Zadpoor A.A. Relationship between Unit Cell Type and Porosity and the Fatigue Behavior of Selective Laser Melted Meta-Biomaterials. J. Mech. Behav. Biomed. Mater. 2015;43:91–100. doi: 10.1016/j.jmbbm.2014.12.015. PubMed DOI

Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI

Bhat C., Kumar A., Jeng J.-Y. Effect of Atomic Tessellations on Structural and Functional Properties of Additive Manufactured Lattice Structures. Addit. Manuf. 2021;47:102326. doi: 10.1016/j.addma.2021.102326. DOI

Prajapati M.J., Kumar A., Lin S.-C., Jeng J.-Y. Multi-Material Additive Manufacturing with Lightweight Closed-Cell Foam-Filled Lattice Structures for Enhanced Mechanical and Functional Properties. Addit. Manuf. 2022;54:102766. doi: 10.1016/j.addma.2022.102766. DOI

Lei H., Li C., Zhang X., Wang P., Zhou H., Zhao Z., Fang D. Deformation Behavior of Heterogeneous Multi-Morphology Lattice Core Hybrid Structures. Addit. Manuf. 2021;37:101674. doi: 10.1016/j.addma.2020.101674. DOI

Zhu L.Y., Li L., Shi J.P., Li Z.A., Yang J.Q. Mechanical Characterization of 3D Printed Multi-Morphology Porous Ti6AL4V Scaffolds Based on Triply Periodic Minimal Surface Architectures. Am. J. Transl. Res. 2018;10:3443–3454. PubMed PMC

Yang N., Quan Z., Zhang D., Tian Y. Multi-Morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering. CAD Comput. Aided Des. 2014;56:11–21. doi: 10.1016/j.cad.2014.06.006. DOI

Liu Z., Meyers M.A., Zhang Z., Ritchie R.O. Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications. Prog. Mater. Sci. 2017;88:467–498. doi: 10.1016/j.pmatsci.2017.04.013. DOI

Panesar A., Abdi M., Hickman D., Ashcroft I. Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing. Addit. Manuf. 2018;19:81–94. doi: 10.1016/j.addma.2017.11.008. DOI

Al-Ketan O., Lee D.W., Rowshan R., Abu Al-Rub R.K. Functionally Graded and Multi-Morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2020;102:103520. doi: 10.1016/j.jmbbm.2019.103520. PubMed DOI

Plocher J., Panesar A. Effect of Density and Unit Cell Size Grading on the Stiffness and Energy Absorption of Short Fibre-Reinforced Functionally Graded Lattice Structures. Addit. Manuf. 2020;33:101171. doi: 10.1016/j.addma.2020.101171. DOI

Xiao L., Song W. Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments. Int. J. Impact Eng. 2018;111:255–272. doi: 10.1016/j.ijimpeng.2017.09.018. DOI

Bruet B.J.F., Song J., Boyce M.C., Ortiz C. Materials Design Principles of Ancient Fisharmour. Nat. Mater. 2008;7:748–756. doi: 10.1038/nmat2231. PubMed DOI

Lin Y.S., Wei C.T., Olevsky E.A., Meyers M.A. Mechanical Properties and the Laminate Structure of Arapaima Gigas Scales. J. Mech. Behav. Biomed. Mater. 2011;4:1145–1156. doi: 10.1016/j.jmbbm.2011.03.024. PubMed DOI

Sun C.Y., Chen P.Y. Structural Design and Mechanical Behavior of Alligator (Alligator mississippiensis) Osteoderms. Acta Biomater. 2013;9:9049–9064. doi: 10.1016/j.actbio.2013.07.016. PubMed DOI

Kang D., Park S., Son Y., Yeon S., Kim S.H., Kim I. Multi-Lattice Inner Structures for High-Strength and Light-Weight in Metal Selective Laser Melting Process. Mater. Des. 2019;175:107786. doi: 10.1016/j.matdes.2019.107786. DOI

Yoo D.J., Kim K.H. An Advanced Multi-Morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function. Int. J. Precis. Eng. Manuf. 2015;16:2021–2032. doi: 10.1007/s12541-015-0263-2. DOI

Wegst U.G.K., Bai H., Saiz E., Tomsia A.P., Ritchie R.O. Bioinspired Structural Materials. Nat. Mater. 2015;14:23–36. doi: 10.1038/nmat4089. PubMed DOI

Mirzaali M.J., Caracciolo A., Pahlavani H., Janbaz S., Vergani L., Zadpoor A.A. Multi-Material 3D Printed Mechanical Metamaterials: Rational Design of Elastic Properties through Spatial Distribution of Hard and Soft Phases. Appl. Phys. Lett. 2018;113:241903. doi: 10.1063/1.5064864. DOI

Mirzaali M.J., Hedayati R., Vena P., Vergani L., Strano M., Zadpoor A.A. Rational Design of Soft Mechanical Metamaterials: Independent Tailoring of Elastic Properties with Randomness. Appl. Phys. Lett. 2017;111:051903. doi: 10.1063/1.4989441. DOI

Pham M.S., Liu C., Todd I., Lertthanasarn J. Damage-Tolerant Architected Materials Inspired by Crystal Microstructure. Nature. 2019;565:305–311. doi: 10.1038/s41586-018-0850-3. PubMed DOI

Nazir A., Jeng J.Y. A High-Speed Additive Manufacturing Approach for Achieving High Printing Speed and Accuracy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020;234:2741–2749. doi: 10.1177/0954406219861664. DOI

Nazir A., Abate K.M., Kumar A., Jeng J.Y. A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI

Maskery I., Aremu A.O., Parry L., Wildman R.D., Tuck C.J., Ashcroft I.A. Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading. Mater. Des. 2018;155:220–232. doi: 10.1016/j.matdes.2018.05.058. DOI

Maskery I., Hussey A., Panesar A., Aremu A., Tuck C., Ashcroft I., Hague R. An Investigation into Reinforced and Functionally Graded Lattice Structures. J. Cell. Plast. 2017;53:151–165. doi: 10.1177/0021955X16639035. DOI

Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P. Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM. Mater. Des. 2018;144:32–44. doi: 10.1016/j.matdes.2018.01.059. DOI

Zhou H., Zhao M., Ma Z., Zhang D.Z., Fu G. Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation. Int. J. Mech. Sci. 2020;175:105480. doi: 10.1016/j.ijmecsci.2020.105480. DOI

Bai L., Gong C., Chen X., Sun Y., Xin L., Pu H., Peng Y., Luo J. Mechanical Properties and Energy Absorption Capabilities of Functionally Graded Lattice Structures: Experiments and Simulations. Int. J. Mech. Sci. 2020;182:105735. doi: 10.1016/j.ijmecsci.2020.105735. DOI

Zhao M., Zhang D.Z., Liu F., Li Z., Ma Z., Ren Z. Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures with Minimal Surfaces. Int. J. Mech. Sci. 2020;167:105262. doi: 10.1016/j.ijmecsci.2019.105262. DOI

Choy S.Y., Sun C.N., Leong K.F., Wei J. Compressive Properties of Functionally Graded Lattice Structures Manufactured by Selective Laser Melting. Mater. Des. 2017;131:112–120. doi: 10.1016/j.matdes.2017.06.006. DOI

Brothers A.H., Dunand D.C. Mechanical Properties of a Density-Graded Replicated Aluminum Foam. Mater. Sci. Eng. A. 2008;489:439–443. doi: 10.1016/j.msea.2007.11.076. DOI

Bhat C., Kumar A., Lin S.-C., Jeng J.Y. Design, Fabrication, and Properties Evaluation of Novel Nested Lattice Structures. Addit. Manuf. 2022;68:103510. doi: 10.2139/ssrn.4273779. DOI

Ajdari A., Canavan P., Nayeb-Hashemi H., Warner G. Mechanical Properties of Functionally Graded 2-D Cellular Structures: A Finite Element Simulation. Mater. Sci. Eng. A. 2009;499:434–439. doi: 10.1016/j.msea.2008.08.040. DOI

Zeng H.B., Pattofatto S., Zhao H., Girard Y., Fascio V. Impact Behaviour of Hollow Sphere Agglomerates with Density Gradient. Int. J. Mech. Sci. 2010;52:680–688. doi: 10.1016/j.ijmecsci.2009.11.012. DOI

Jin X., Wang Z., Ning J., Xiao G., Liu E., Shu X. Dynamic Response of Sandwich Structures with Graded Auxetic Honeycomb Cores under Blast Loading. Compos. Part B Eng. 2016;106:206–217. doi: 10.1016/j.compositesb.2016.09.037. DOI

Li S., Lu G., Wang Z., Zhao L., Wu G. Finite Element Simulation of Metallic Cylindrical Sandwich Shells with Graded Aluminum Tubular Cores Subjected to Internal Blast Loading. Int. J. Mech. Sci. 2015;96–97:1–12. doi: 10.1016/j.ijmecsci.2015.03.011. DOI

Zheng J., Qin Q., Wang T.J. Impact Plastic Crushing and Design of Density-Graded Cellular Materials. Mech. Mater. 2016;94:66–78. doi: 10.1016/j.mechmat.2015.11.014. DOI

Peng C., Tran P. Bioinspired Functionally Graded Gyroid Sandwich Panel Subjected to Impulsive Loadings. Compos. Part B Eng. 2020;188:107773. doi: 10.1016/j.compositesb.2020.107773. DOI

Odeling M., Imulation S., Esting T., Mstv V.A., Ymposium M.I.N.I., Earborn A.U.D., Ichigan M., Pompetzki M. Investigation of the Durability Transfer Concept for Vehicle Prognostic Applications; Proceedings of the 2010 Ndia Ground Vehicle Systems Engineering and Technology Symposium; Dearborn, MI, USA. 17–19 August 2010; pp. 1–15.

Xu Y., Zhang H., Gan Y., Šavija B. Cementitious Composites Reinforced with 3D Printed Functionally Graded Polymeric Lattice Structures: Experiments and Modelling. Addit. Manuf. 2021;39:101887. doi: 10.1016/j.addma.2021.101887. DOI

Shi X., Liao W., Liu T., Zhang C., Li D., Jiang W., Wang C., Ren F. Design Optimization of Multimorphology Surface-Based Lattice Structures with Density Gradients. Int. J. Adv. Manuf. Technol. 2021;117:2013–2028. doi: 10.1007/s00170-021-07175-3. DOI

Alberdi R., Dingreville R., Robbins J., Walsh T., White B.C., Jared B., Boyce B.L. Multi-Morphology Lattices Lead to Improved Plastic Energy Absorption. Mater. Des. 2020;194:108883. doi: 10.1016/j.matdes.2020.108883. DOI

Lin C.Y., Kang J.H. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. Materials. 2021;14:4224. doi: 10.3390/ma14154224. PubMed DOI PMC

Al-Ketan O., Abu Al-Rub R.K. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater. 2019;21:1900524. doi: 10.1002/adem.201900524. DOI

Rastegarzadeh S., Wang J., Huang J. Multi-Scale Topology Optimization with Neural Network-Assisted Optimizer; Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC-CIE 2022; St. Louis, MO, USA. 14–17 August 2022; pp. 1–14.

Bhat C., Kumar A., Jeng J.-Y. Functional Tessellation and Lattice Structure of the Same-TWI805305B. 2023.

Bhat C., Kumar A., Lin S.-C., Jeng J.Y. A Novel Bioinspired Architectured Materials with Interlocking Designs Based on Tessellation. Addit. Manuf. 2022;58:103052. doi: 10.1016/j.addma.2022.103052. DOI

Bhat C., Kumar A., Lin S., Jeng J. Design of Tessellation Based Load Transfer Mechanisms in Additively Manufactured Lattice Structures to Obtain Hybrid Responses. Addit. Manuf. 2023;76:103774. doi: 10.1016/j.addma.2023.103774. DOI

Bhat C., Kumar A., Lin S., Jeng J. Adaptive Mechanical Properties and Stretchability of Novel Chainmail Fabrics Based on Overlapping Tessellation Strategies. Addit. Manuf. 2023;76:103777. doi: 10.1016/j.addma.2023.103777. DOI

Bhate D., Penick C., Ferry L., Lee C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs. 2019;3:19. doi: 10.3390/designs3010019. DOI

Hepburn H.R., Pirk C.W.W., Duangphakdee O. Honeybee Nests. Springer; Berlin/Heidelberg, Germany: 2014.

Pearce P. Structure in Nature Is a Strategy for Design. Volume 1377. MIT Press; Cambridge, MA, USA: 1990. pp. 68–70.

Ambekar R.S., Kushwaha B., Sharma P., Bosia F., Fraldi M., Pugno N.M., Tiwary C.S. Topologically Engineered 3D Printed Architectures with Superior Mechanical Strength. Mater. Today. 2021;48:72–94. doi: 10.1016/j.mattod.2021.03.014. DOI

Panda B., Leite M., Biswal B.B., Niu X., Garg A. Experimental and Numerical Modelling of Mechanical Properties of 3D Printed Honeycomb Structures. Meas. J. Int. Meas. Confed. 2018;116:495–506. doi: 10.1016/j.measurement.2017.11.037. DOI

Hales T.C. The Honeycomb Conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI

Seidel R., Roschger A., Li L., Bizzarro J.J., Zhang Q., Yin J., Yang T., Weaver J.C., Fratzl P., Roschger P., et al. Mechanical Properties of Stingray Tesserae: High-Resolution Correlative Analysis of Mineral Density and Indentation Moduli in Tessellated Cartilage. Acta Biomater. 2019;96:421–435. doi: 10.1016/j.actbio.2019.06.038. PubMed DOI

Seidel R., Lyons K., Blumer M., Zaslansky P., Fratzl P., Weaver J.C., Dean M.N. Ultrastructural and Developmental Features of the Tessellated Endoskeleton of Elasmobranchs (Sharks and Rays) J. Anat. 2016;229:681–702. doi: 10.1111/joa.12508. PubMed DOI PMC

Seidel R., Blumer M., Pechriggl E.J., Lyons K., Hall B.K., Fratzl P., Weaver J.C., Dean M.N. Calcified Cartilage or Bone? Collagens in the Tessellated Endoskeletons of Cartilaginous Fish (Sharks and Rays) J. Struct. Biol. 2017;200:54–71. doi: 10.1016/j.jsb.2017.09.005. PubMed DOI

Meyers M.A., Chen P.Y., Lopez M.I., Seki Y., Lin A.Y.M. Biological Materials: A Materials Science Approach. J. Mech. Behav. Biomed. Mater. 2011;4:626–657. doi: 10.1016/j.jmbbm.2010.08.005. PubMed DOI

Lin A., Meyers M.A. Growth and Structure in Abalone Shell. Mater. Sci. Eng. A. 2005;390:27–41. doi: 10.1016/j.msea.2004.06.072. DOI

Afanasieva M.S. Radiolarian Skeletons: Formation and Morphology of Skeletal Shells. Paleontol. J. 2006;40:476–489. doi: 10.1134/S0031030106050029. DOI

Albrecht C. In: Biologically-Inspired Systems. Gorb S.N., editor. Volume 6. Springer; Berlin/Heidelberg, Germany: 2015.

Babaee S., Shim J., Weaver J.C., Chen E.R., Patel N., Bertoldi K. 3D Soft Metamaterials with Negative Poisson’s Ratio. Adv. Mater. 2013;25:5044–5049. doi: 10.1002/adma.201301986. PubMed DOI

Yuan S., Chua C.K., Zhou K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019;4:1800419. doi: 10.1002/admt.201800419. DOI

Yuan S., Shen F., Bai J., Chua C.K., Wei J., Zhou K. 3D Soft Auxetic Lattice Structures Fabricated by Selective Laser Sintering: TPU Powder Evaluation and Process Optimization. Mater. Des. 2017;120:317–327. doi: 10.1016/j.matdes.2017.01.098. DOI

Chen I.H., Kiang J.H., Correa V., Lopez M.I., Chen P.Y., McKittrick J., Meyers M.A. Armadillo Armor: Mechanical Testing and Micro-Structural Evaluation. J. Mech. Behav. Biomed. Mater. 2011;4:713–722. doi: 10.1016/j.jmbbm.2010.12.013. PubMed DOI

Lee S., Novitskaya E.E., Reynante B., Vasquez J., Urbaniak R., Takahashi T., Woolley E., Tombolato L., Chen P.Y., McKittrick J. Impact Testing of Structural Biological Materials. Mater. Sci. Eng. C. 2011;31:730–739. doi: 10.1016/j.msec.2010.10.017. DOI

Libonati F. Advanced Engineering Materials and Modeling. Scrivener Publishing LLC.; Beverly, MA, USA: 2016. Bio-Inspired Composites: Using Nature to Tackle Composite Limitations; pp. 165–190.

Al-Ketan O., Soliman A., AlQubaisi A.M., Abu Al-Rub R.K. Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures. Adv. Eng. Mater. 2018;20:1700549. doi: 10.1002/adem.201700549. DOI

Kickelbick G. Hybrid Materials: Synthesis, Characterization, and Applications. Wiley-VCH; Hoboken, NJ, USA: 2007. Introduction to Hybrid Materials; pp. 1–48.

Li T.T., Chuang Y.C., Huang C.H., Lou C.W., Lin J.H. Applying Vermiculite and Perlite Fillers to Sound-Absorbing/Thermal-Insulating Resilient PU Foam Composites. Fibers Polym. 2015;16:691–698. doi: 10.1007/s12221-015-0691-8. DOI

Kireitseu M., Hui D., Tomlinson G. Advanced Shock-Resistant and Vibration Damping of Nanoparticle-Reinforced Composite Material. Compos. Part B Eng. 2008;39:128–138. doi: 10.1016/j.compositesb.2007.03.004. DOI

Mallinson J.H. Corrosion-Resistant Plastic Composites in Chemical Plant Design. CRC Press; Boca Raton, FL, USA: 2020.

Christ S., Schnabel M., Vorndran E., Groll J., Gbureck U. Fiber Reinforcement during 3D Printing. Mater. Lett. 2015;139:165–168. doi: 10.1016/j.matlet.2014.10.065. DOI

Chen J., Fang H., Liu W., Zhu L., Zhuang Y., Wang J., Han J. Energy Absorption of Foam-Filled Multi-Cell Composite Panels under Quasi-Static Compression. Compos. Part B Eng. 2018;153:295–305. doi: 10.1016/j.compositesb.2018.08.122. DOI

Singh S., Ramakrishna S., Berto F. 3D Printing of Polymer Composites: A Short Review. Mater. Des. Process. Commun. 2020;2:e97. doi: 10.1002/mdp2.97. DOI

Quan Z., Wu A., Keefe M., Qin X., Yu J., Suhr J., Byun J.H., Kim B.S., Chou T.W. Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges. Mater. Today. 2015;18:503–512. doi: 10.1016/j.mattod.2015.05.001. DOI

Mouritz A.P. Introduction to Aerospace Materials. Woodhead Publishing; Cambridge, UK: 2012.

Blok L.G., Longana M.L., Yu H., Woods B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018;22:176–186. doi: 10.1016/j.addma.2018.04.039. DOI

Guo N., Leu M.C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013;8:215–243. doi: 10.1007/s11465-013-0248-8. DOI

Zhong W., Li F., Zhang Z., Song L., Li Z. Short Fiber Reinforced Composites for Fused Deposition Modeling. Mater. Sci. Eng. A. 2001;301:125–130. doi: 10.1016/S0921-5093(00)01810-4. DOI

Yang D., Wu K., Wan L., Sheng Y. A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. J. Manuf. Mater. Process. 2017;1:10. doi: 10.3390/jmmp1010010. DOI

Ferreira R.T.L., Amatte I.C., Dutra T.A., Bürger D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Compos. Part B Eng. 2017;124:88–100. doi: 10.1016/j.compositesb.2017.05.013. DOI

Lewicki J.P., Rodriguez J.N., Zhu C., Worsley M.A., Wu A.S., Kanarska Y., Horn J.D., Duoss E.B., Ortega J.M., Elmer W., et al. 3D-Printing of Meso-Structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties. Sci. Rep. 2017;7:43401. doi: 10.1038/srep43401. PubMed DOI PMC

Tekinalp H.L., Kunc V., Velez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Blue C.A., Ozcan S. Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing. Compos. Sci. Technol. 2014;105:144–150. doi: 10.1016/j.compscitech.2014.10.009. DOI

Van Der Klift F., Koga Y., Todoroki A., Ueda M., Hirano Y., Matsuzaki R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016;06:18–27. doi: 10.4236/ojcm.2016.61003. DOI

Matsuzaki R., Ueda M., Namiki M., Jeong T.K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y. Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation. Sci. Rep. 2016;6:23058. doi: 10.1038/srep23058. PubMed DOI PMC

Chung H., Das S. Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering. Mater. Sci. Eng. A. 2006;437:226–234. doi: 10.1016/j.msea.2006.07.112. DOI

Nikzad M., Masood S.H., Sbarski I. Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling. Mater. Des. 2011;32:3448–3456. doi: 10.1016/j.matdes.2011.01.056. DOI

Boparai K., Singh R., Singh H. Comparison of Tribological Behaviour for Nylon6-Al-Al2O3 and ABS Parts Fabricated by Fused Deposition Modelling: This Paper Reports a Low Cost Composite Material That Is More Wear-Resistant than Conventional ABS. Virtual Phys. Prototyp. 2015;10:59–66. doi: 10.1080/17452759.2015.1037402. DOI

Isakov D.V., Lei Q., Castles F., Stevens C.J., Grovenor C.R.M., Grant P.S. 3D Printed Anisotropic Dielectric Composite with Meta-Material Features. Mater. Des. 2016;93:423–430. doi: 10.1016/j.matdes.2015.12.176. DOI

Shemelya C.M., Rivera A., Perez A.T., Rocha C., Liang M., Yu X., Kief C., Alexander D., Stegeman J., Xin H., et al. Mechanical, Electromagnetic, and X-Ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 2015;44:2598–2607. doi: 10.1007/s11664-015-3687-7. DOI

Kalsoom U., Peristyy A., Nesterenko P.N., Paull B. A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices. RSC Adv. 2016;6:38140–38147. doi: 10.1039/C6RA05261D. DOI

Castles F., Isakov D., Lui A., Lei Q., Dancer C.E.J., Wang Y., Janurudin J.M., Speller S.C., Grovenor C.R.M., Grant P.S. Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites. Sci. Rep. 2016;6:22714. doi: 10.1038/srep22714. PubMed DOI PMC

Torrado Perez A.R., Roberson D.A., Wicker R.B. Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials. J. Fail. Anal. Prev. 2014;14:343–353. doi: 10.1007/s11668-014-9803-9. DOI

Kokkinis D., Schaffner M., Studart A.R. Multimaterial Magnetically Assisted 3D Printing of Composite Materials. Nat. Commun. 2015;6:8643. doi: 10.1038/ncomms9643. PubMed DOI PMC

Martin J.J., Fiore B.E., Erb R.M. Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing. Nat. Commun. 2015;6:8641. doi: 10.1038/ncomms9641. PubMed DOI PMC

Yan X., Gu J., Zheng G., Guo J., Galaska A.M., Yu J., Khan M.A., Sun L., Young D.P., Zhang Q., et al. Lowly Loaded Carbon Nanotubes Induced High Electrical Conductivity and Giant Magnetoresistance in Ethylene/1-Octene Copolymers. Polymer. 2016;103:315–327. doi: 10.1016/j.polymer.2016.09.056. DOI

Gu J., Xie C., Li H., Dang J., Geng W., Zhang Q. Thermal Percolation Behavior of Graphene Nanoplatelets/Polyphenylene Sulfide Thermal Conductivity Composites. Polym. Compos. 2014;35:1087–1092. doi: 10.1002/pc.22756. DOI

Gu J., Li N., Tian L., Lv Z., Zhang Q. High Thermal Conductivity Graphite Nanoplatelet/UHMWPE Nanocomposites. RSC Adv. 2015;5:36334–36339. doi: 10.1039/C5RA03284A. DOI

Gu J., Liang C., Dang J., Dong W., Zhang Q. Ideal Dielectric Thermally Conductive Bismaleimide Nanocomposites Filled with Polyhedral Oligomeric Silsesquioxane Functionalized Nanosized Boron Nitride. RSC Adv. 2016;6:35809–35814. doi: 10.1039/C6RA04513H. DOI

Zhan H., Cheng F., Chen Y., Wong K.W., Mei J., Hui D., Lau W.M., Liu Y. Transfer Printing for Preparing Nanostructured PDMS Film as Flexible SERS Active Substrate. Compos. Part B Eng. 2016;84:222–227. doi: 10.1016/j.compositesb.2015.08.080. DOI

Shofner M.L., Lozano K., Rodríguez-Macías F.J., Barrera E.V. Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling. J. Appl. Polym. Sci. 2003;89:3081–3090. doi: 10.1002/app.12496. DOI

Sandoval J.H., Wicker R.B. Functionalizing Stereolithography Resins: Effects of Dispersed Multi-Walled Carbon Nanotubes on Physical Properties. Rapid Prototyp. J. 2006;12:292–303. doi: 10.1108/13552540610707059. DOI

Lin D., Jin S., Zhang F., Wang C., Wang Y., Zhou C., Cheng G.J. 3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures. Nanotechnology. 2015;26:434003. doi: 10.1088/0957-4484/26/43/434003. PubMed DOI

Zhang Y., Li H., Yang X., Zhang T., Zhu K., Si W., Liu Z., Sun H. Additive Manufacturing of Carbon Nanotube-Photopolymer Composite Radar Absorbing Materials. Polym. Compos. 2018;39:E671–E676. doi: 10.1002/pc.24117. DOI

Rymansaib Z., Iravani P., Emslie E., Medvidović-Kosanović M., Sak-Bosnar M., Verdejo R., Marken F. All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor. Electroanalysis. 2016;28:1517–1523. doi: 10.1002/elan.201600017. DOI

Athreya S., Kalaitzidou K., Das S. Processing and Properties of Carbon Blackfilled Electrically Conductive Nylon-12 Nanocomposites Produced by Selective Laser Sintering; Proceedings of the 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009; Austin, TX, USA. 3–5 August 2009; pp. 538–546.

Wei X., Li D., Jiang W., Gu Z., Wang X., Zhang Z., Sun Z. 3D Printable Graphene Composite. Sci. Rep. 2015;5:11181. doi: 10.1038/srep11181. PubMed DOI PMC

Duan Y., Zhou Y., Tang Y., Li D. Nano-TiO2-Modified Photosensitive Resin for RP. Rapid Prototyp. J. 2011;17:247–252. doi: 10.1108/13552541111138360. DOI

Weng Z., Wang J., Senthil T., Wu L. Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing. Mater. Des. 2016;102:276–283. doi: 10.1016/j.matdes.2016.04.045. DOI

He M., Zhao Y., Wang B., Xi Q., Zhou J., Liang Z. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity. Small. 2015;11:5889–5894. doi: 10.1002/smll.201502153. PubMed DOI

Zheng H., Zhang J., Lu S., Wang G., Xu Z. Effect of Core-Shell Composite Particles on the Sintering Behavior and Properties of Nano-Al2O3/Polystyrene Composite Prepared by SLS. Mater. Lett. 2006;60:1219–1223. doi: 10.1016/j.matlet.2005.11.003. DOI

Kim H.C., Hahn H.T., Yang Y.S. Synthesis of PA12/Functionalized GNP Nanocomposite Powders for the Selective Laser Sintering Process. J. Compos. Mater. 2013;47:501–509. doi: 10.1177/0021998312441812. DOI

Fantino E., Chiappone A., Calignano F., Fontana M., Pirri F., Roppolo I. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures. Materials. 2016;9:589. doi: 10.3390/ma9070589. PubMed DOI PMC

Chung H., Das S. Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering. Mater. Sci. Eng. A. 2008;487:251–257. doi: 10.1016/j.msea.2007.10.082. DOI

Rupp H., Binder W.H. 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications. Adv. Mater. Technol. 2020;5:2000509. doi: 10.1002/admt.202000509. DOI

Okwuosa T.C., Soares C., Gollwitzer V., Habashy R., Timmins P., Alhnan M.A. On Demand Manufacturing of Patient-Specific Liquid Capsules via Co-Ordinated 3D Printing and Liquid Dispensing. Eur. J. Pharm. Sci. 2018;118:134–143. doi: 10.1016/j.ejps.2018.03.010. PubMed DOI

Chapkin W.A., Simone D.L., Frank G.J., Baur J.W. Mechanical Behavior and Energy Dissipation of Infilled, Composite Ti-6Al-4V Trusses. Mater. Des. 2021;203:109602. doi: 10.1016/j.matdes.2021.109602. DOI

Soe S., Adams R., Hossain M., Theobald P. Investigating the Dynamic Compression Response of Elastomeric, Additively Manufactured Fluid-Filled Structures via Experimental and Finite Element Analyses. Addit. Manuf. 2021;39:101885. doi: 10.1016/j.addma.2021.101885. DOI

Kao Y.T., Amin A.R., Payne N., Wang J., Tai B.L. Low-Velocity Impact Response of 3D-Printed Lattice Structure with Foam Reinforcement. Compos. Struct. 2018;192:93–100. doi: 10.1016/j.compstruct.2018.02.042. DOI

Prajapati M.J., Bhat C., Kumar A., Verma S., Lin S.-C., Jeng J.-Y. Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates. Materials. 2022;15:7954. doi: 10.3390/ma15227954. PubMed DOI PMC

Prajapati M.J., Kumar A., Lin S.C., Jeng J.Y. Closed-Cell Metamaterial Composites 3D Printed with Hybrid FFF Process for Tunable Mechanical and Functional Properties. Thin-Walled Struct. 2023;192:111168. doi: 10.1016/j.tws.2023.111168. DOI

Prajapati M.J., Kumar A., Lin S., Jeng J. Reducing Mechanical Anisotropy in Material Extrusion Process Using Bioinspired Architectured Lattice Structures. Addit. Manuf. 2023;66:103480. doi: 10.1016/j.addma.2023.103480. DOI

Diegel O., Nordin A., Motte D. Additive Manufacturing Technologies. Springer; New York, NY, USA: 2019.

Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I., Bernard A., Schulz J., Graf P., Ahuja B., et al. Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints. CIRP Ann. Manuf. Technol. 2016;65:737–760. doi: 10.1016/j.cirp.2016.05.004. DOI

Gibson I., Rosen D.W., Stucker B. Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer; New York, NY, USA: 2010. pp. 1–459. DOI

Ji Z., Li D., Liao W., Min Xie Y. AI-Aided Design of Multiscale Lattice Metastructures for Controllable Anisotropy. Mater. Des. 2022;223:111254. doi: 10.1016/j.matdes.2022.111254. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...