Additive Manufacturing-Enabled Advanced Design and Process Strategies for Multi-Functional Lattice Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
108PO12
Ministry of Education (MOE), Taiwan
PubMed
39063693
PubMed Central
PMC11277650
DOI
10.3390/ma17143398
PII: ma17143398
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, design strategies, lattice factors, lattice structures, multi-functional properties, process strategies,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The properties of each lattice structure are a function of four basic lattice factors, namely the morphology of the unit cell, its tessellation, relative density, and the material properties. The recent advancements in additive manufacturing (AM) have facilitated the easy manipulation of these factors to obtain desired functionalities. This review attempts to expound on several such strategies to manipulate these lattice factors. Several design-based grading strategies, such as functional grading, with respect to size and density manipulation, multi-morphology, and spatial arrangement strategies, have been discussed and their link to the natural occurrences are highlighted. Furthermore, special emphasis is given to the recently designed tessellation strategies to deliver multi-functional lattice responses. Each tessellation on its own acts as a novel material, thereby tuning the required properties. The subsequent section explores various material processing techniques with respect to multi-material AM to achieve multi-functional properties. The sequential combination of multiple materials generates novel properties that a single material cannot achieve. The last section explores the scope for combining the design and process strategies to obtain unique lattice structures capable of catering to advanced requirements. In addition, the future role of artificial intelligence and machine learning in developing function-specific lattice properties is highlighted.
Department of Design Indian Institute of Technology Guwahati Guwahati 781039 Assam India
The Extreme Light Infrastructure 252 41 Prague Czech Republic
Zobrazit více v PubMed
Gardan J. Smart Materials in Additive Manufacturing: State of the Art and Trends. Virtual Phys. Prototyp. 2019;14:1–18. doi: 10.1080/17452759.2018.1518016. DOI
Kumar A.P., Dirgantara T., Vamsi P., Editors K. Advances in Lightweight Materials and Structures. Springer; New York, NY, USA: 2020.
Obadimu S.O., Kourousis K.I. Compressive Behaviour of Additively Manufactured Lattice Structures: A Review. Aerospace. 2021;8:207. doi: 10.3390/aerospace8080207. DOI
Sajjad U., Rehman T.U., Ali M., Park C.W., Yan W.M. Manufacturing and Potential Applications of Lattice Structures in Thermal Systems: A Comprehensive Review of Recent Advances. Int. J. Heat Mass Transf. 2022;198:123352. doi: 10.1016/j.ijheatmasstransfer.2022.123352. DOI
Kaur I., Singh P. Critical Evaluation of Additively Manufactured Metal Lattices for Viability in Advanced Heat Exchangers. Int. J. Heat Mass Transf. 2021;168:120858. doi: 10.1016/j.ijheatmasstransfer.2020.120858. DOI
Narkhede S., Sur A., Darvekar S. Applications, Manufacturing and Thermal Characteristics of Micro-Lattice Structures: Current State of the Art. Eng. J. 2019;23:419–431. doi: 10.4186/ej.2019.23.6.419. DOI
Fleck N.A., Deshpande V.S., Ashby M.F. Micro-Architectured Materials: Past, Present and Future. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010;466:2495–2516. doi: 10.1098/rspa.2010.0215. DOI
Ashby M.F. The Properties of Foams and Lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006;364:15–30. doi: 10.1098/rsta.2005.1678. PubMed DOI
Evans A.G., Hutchinson J.W., Fleck N.A., Ashby M.F., Wadley H.N.G. The Topological Design of Multifunctional Cellular Metals. Prog. Mater. Sci. 2001;46:309–327. doi: 10.1016/S0079-6425(00)00016-5. DOI
Amin Yavari S., Ahmadi S.M., Wauthle R., Pouran B., Schrooten J., Weinans H., Zadpoor A.A. Relationship between Unit Cell Type and Porosity and the Fatigue Behavior of Selective Laser Melted Meta-Biomaterials. J. Mech. Behav. Biomed. Mater. 2015;43:91–100. doi: 10.1016/j.jmbbm.2014.12.015. PubMed DOI
Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI
Bhat C., Kumar A., Jeng J.-Y. Effect of Atomic Tessellations on Structural and Functional Properties of Additive Manufactured Lattice Structures. Addit. Manuf. 2021;47:102326. doi: 10.1016/j.addma.2021.102326. DOI
Prajapati M.J., Kumar A., Lin S.-C., Jeng J.-Y. Multi-Material Additive Manufacturing with Lightweight Closed-Cell Foam-Filled Lattice Structures for Enhanced Mechanical and Functional Properties. Addit. Manuf. 2022;54:102766. doi: 10.1016/j.addma.2022.102766. DOI
Lei H., Li C., Zhang X., Wang P., Zhou H., Zhao Z., Fang D. Deformation Behavior of Heterogeneous Multi-Morphology Lattice Core Hybrid Structures. Addit. Manuf. 2021;37:101674. doi: 10.1016/j.addma.2020.101674. DOI
Zhu L.Y., Li L., Shi J.P., Li Z.A., Yang J.Q. Mechanical Characterization of 3D Printed Multi-Morphology Porous Ti6AL4V Scaffolds Based on Triply Periodic Minimal Surface Architectures. Am. J. Transl. Res. 2018;10:3443–3454. PubMed PMC
Yang N., Quan Z., Zhang D., Tian Y. Multi-Morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering. CAD Comput. Aided Des. 2014;56:11–21. doi: 10.1016/j.cad.2014.06.006. DOI
Liu Z., Meyers M.A., Zhang Z., Ritchie R.O. Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications. Prog. Mater. Sci. 2017;88:467–498. doi: 10.1016/j.pmatsci.2017.04.013. DOI
Panesar A., Abdi M., Hickman D., Ashcroft I. Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing. Addit. Manuf. 2018;19:81–94. doi: 10.1016/j.addma.2017.11.008. DOI
Al-Ketan O., Lee D.W., Rowshan R., Abu Al-Rub R.K. Functionally Graded and Multi-Morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2020;102:103520. doi: 10.1016/j.jmbbm.2019.103520. PubMed DOI
Plocher J., Panesar A. Effect of Density and Unit Cell Size Grading on the Stiffness and Energy Absorption of Short Fibre-Reinforced Functionally Graded Lattice Structures. Addit. Manuf. 2020;33:101171. doi: 10.1016/j.addma.2020.101171. DOI
Xiao L., Song W. Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments. Int. J. Impact Eng. 2018;111:255–272. doi: 10.1016/j.ijimpeng.2017.09.018. DOI
Bruet B.J.F., Song J., Boyce M.C., Ortiz C. Materials Design Principles of Ancient Fisharmour. Nat. Mater. 2008;7:748–756. doi: 10.1038/nmat2231. PubMed DOI
Lin Y.S., Wei C.T., Olevsky E.A., Meyers M.A. Mechanical Properties and the Laminate Structure of Arapaima Gigas Scales. J. Mech. Behav. Biomed. Mater. 2011;4:1145–1156. doi: 10.1016/j.jmbbm.2011.03.024. PubMed DOI
Sun C.Y., Chen P.Y. Structural Design and Mechanical Behavior of Alligator (Alligator mississippiensis) Osteoderms. Acta Biomater. 2013;9:9049–9064. doi: 10.1016/j.actbio.2013.07.016. PubMed DOI
Kang D., Park S., Son Y., Yeon S., Kim S.H., Kim I. Multi-Lattice Inner Structures for High-Strength and Light-Weight in Metal Selective Laser Melting Process. Mater. Des. 2019;175:107786. doi: 10.1016/j.matdes.2019.107786. DOI
Yoo D.J., Kim K.H. An Advanced Multi-Morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function. Int. J. Precis. Eng. Manuf. 2015;16:2021–2032. doi: 10.1007/s12541-015-0263-2. DOI
Wegst U.G.K., Bai H., Saiz E., Tomsia A.P., Ritchie R.O. Bioinspired Structural Materials. Nat. Mater. 2015;14:23–36. doi: 10.1038/nmat4089. PubMed DOI
Mirzaali M.J., Caracciolo A., Pahlavani H., Janbaz S., Vergani L., Zadpoor A.A. Multi-Material 3D Printed Mechanical Metamaterials: Rational Design of Elastic Properties through Spatial Distribution of Hard and Soft Phases. Appl. Phys. Lett. 2018;113:241903. doi: 10.1063/1.5064864. DOI
Mirzaali M.J., Hedayati R., Vena P., Vergani L., Strano M., Zadpoor A.A. Rational Design of Soft Mechanical Metamaterials: Independent Tailoring of Elastic Properties with Randomness. Appl. Phys. Lett. 2017;111:051903. doi: 10.1063/1.4989441. DOI
Pham M.S., Liu C., Todd I., Lertthanasarn J. Damage-Tolerant Architected Materials Inspired by Crystal Microstructure. Nature. 2019;565:305–311. doi: 10.1038/s41586-018-0850-3. PubMed DOI
Nazir A., Jeng J.Y. A High-Speed Additive Manufacturing Approach for Achieving High Printing Speed and Accuracy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020;234:2741–2749. doi: 10.1177/0954406219861664. DOI
Nazir A., Abate K.M., Kumar A., Jeng J.Y. A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI
Maskery I., Aremu A.O., Parry L., Wildman R.D., Tuck C.J., Ashcroft I.A. Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading. Mater. Des. 2018;155:220–232. doi: 10.1016/j.matdes.2018.05.058. DOI
Maskery I., Hussey A., Panesar A., Aremu A., Tuck C., Ashcroft I., Hague R. An Investigation into Reinforced and Functionally Graded Lattice Structures. J. Cell. Plast. 2017;53:151–165. doi: 10.1177/0021955X16639035. DOI
Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P. Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM. Mater. Des. 2018;144:32–44. doi: 10.1016/j.matdes.2018.01.059. DOI
Zhou H., Zhao M., Ma Z., Zhang D.Z., Fu G. Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation. Int. J. Mech. Sci. 2020;175:105480. doi: 10.1016/j.ijmecsci.2020.105480. DOI
Bai L., Gong C., Chen X., Sun Y., Xin L., Pu H., Peng Y., Luo J. Mechanical Properties and Energy Absorption Capabilities of Functionally Graded Lattice Structures: Experiments and Simulations. Int. J. Mech. Sci. 2020;182:105735. doi: 10.1016/j.ijmecsci.2020.105735. DOI
Zhao M., Zhang D.Z., Liu F., Li Z., Ma Z., Ren Z. Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures with Minimal Surfaces. Int. J. Mech. Sci. 2020;167:105262. doi: 10.1016/j.ijmecsci.2019.105262. DOI
Choy S.Y., Sun C.N., Leong K.F., Wei J. Compressive Properties of Functionally Graded Lattice Structures Manufactured by Selective Laser Melting. Mater. Des. 2017;131:112–120. doi: 10.1016/j.matdes.2017.06.006. DOI
Brothers A.H., Dunand D.C. Mechanical Properties of a Density-Graded Replicated Aluminum Foam. Mater. Sci. Eng. A. 2008;489:439–443. doi: 10.1016/j.msea.2007.11.076. DOI
Bhat C., Kumar A., Lin S.-C., Jeng J.Y. Design, Fabrication, and Properties Evaluation of Novel Nested Lattice Structures. Addit. Manuf. 2022;68:103510. doi: 10.2139/ssrn.4273779. DOI
Ajdari A., Canavan P., Nayeb-Hashemi H., Warner G. Mechanical Properties of Functionally Graded 2-D Cellular Structures: A Finite Element Simulation. Mater. Sci. Eng. A. 2009;499:434–439. doi: 10.1016/j.msea.2008.08.040. DOI
Zeng H.B., Pattofatto S., Zhao H., Girard Y., Fascio V. Impact Behaviour of Hollow Sphere Agglomerates with Density Gradient. Int. J. Mech. Sci. 2010;52:680–688. doi: 10.1016/j.ijmecsci.2009.11.012. DOI
Jin X., Wang Z., Ning J., Xiao G., Liu E., Shu X. Dynamic Response of Sandwich Structures with Graded Auxetic Honeycomb Cores under Blast Loading. Compos. Part B Eng. 2016;106:206–217. doi: 10.1016/j.compositesb.2016.09.037. DOI
Li S., Lu G., Wang Z., Zhao L., Wu G. Finite Element Simulation of Metallic Cylindrical Sandwich Shells with Graded Aluminum Tubular Cores Subjected to Internal Blast Loading. Int. J. Mech. Sci. 2015;96–97:1–12. doi: 10.1016/j.ijmecsci.2015.03.011. DOI
Zheng J., Qin Q., Wang T.J. Impact Plastic Crushing and Design of Density-Graded Cellular Materials. Mech. Mater. 2016;94:66–78. doi: 10.1016/j.mechmat.2015.11.014. DOI
Peng C., Tran P. Bioinspired Functionally Graded Gyroid Sandwich Panel Subjected to Impulsive Loadings. Compos. Part B Eng. 2020;188:107773. doi: 10.1016/j.compositesb.2020.107773. DOI
Odeling M., Imulation S., Esting T., Mstv V.A., Ymposium M.I.N.I., Earborn A.U.D., Ichigan M., Pompetzki M. Investigation of the Durability Transfer Concept for Vehicle Prognostic Applications; Proceedings of the 2010 Ndia Ground Vehicle Systems Engineering and Technology Symposium; Dearborn, MI, USA. 17–19 August 2010; pp. 1–15.
Xu Y., Zhang H., Gan Y., Šavija B. Cementitious Composites Reinforced with 3D Printed Functionally Graded Polymeric Lattice Structures: Experiments and Modelling. Addit. Manuf. 2021;39:101887. doi: 10.1016/j.addma.2021.101887. DOI
Shi X., Liao W., Liu T., Zhang C., Li D., Jiang W., Wang C., Ren F. Design Optimization of Multimorphology Surface-Based Lattice Structures with Density Gradients. Int. J. Adv. Manuf. Technol. 2021;117:2013–2028. doi: 10.1007/s00170-021-07175-3. DOI
Alberdi R., Dingreville R., Robbins J., Walsh T., White B.C., Jared B., Boyce B.L. Multi-Morphology Lattices Lead to Improved Plastic Energy Absorption. Mater. Des. 2020;194:108883. doi: 10.1016/j.matdes.2020.108883. DOI
Lin C.Y., Kang J.H. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. Materials. 2021;14:4224. doi: 10.3390/ma14154224. PubMed DOI PMC
Al-Ketan O., Abu Al-Rub R.K. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater. 2019;21:1900524. doi: 10.1002/adem.201900524. DOI
Rastegarzadeh S., Wang J., Huang J. Multi-Scale Topology Optimization with Neural Network-Assisted Optimizer; Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC-CIE 2022; St. Louis, MO, USA. 14–17 August 2022; pp. 1–14.
Bhat C., Kumar A., Jeng J.-Y. Functional Tessellation and Lattice Structure of the Same-TWI805305B. 2023.
Bhat C., Kumar A., Lin S.-C., Jeng J.Y. A Novel Bioinspired Architectured Materials with Interlocking Designs Based on Tessellation. Addit. Manuf. 2022;58:103052. doi: 10.1016/j.addma.2022.103052. DOI
Bhat C., Kumar A., Lin S., Jeng J. Design of Tessellation Based Load Transfer Mechanisms in Additively Manufactured Lattice Structures to Obtain Hybrid Responses. Addit. Manuf. 2023;76:103774. doi: 10.1016/j.addma.2023.103774. DOI
Bhat C., Kumar A., Lin S., Jeng J. Adaptive Mechanical Properties and Stretchability of Novel Chainmail Fabrics Based on Overlapping Tessellation Strategies. Addit. Manuf. 2023;76:103777. doi: 10.1016/j.addma.2023.103777. DOI
Bhate D., Penick C., Ferry L., Lee C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs. 2019;3:19. doi: 10.3390/designs3010019. DOI
Hepburn H.R., Pirk C.W.W., Duangphakdee O. Honeybee Nests. Springer; Berlin/Heidelberg, Germany: 2014.
Pearce P. Structure in Nature Is a Strategy for Design. Volume 1377. MIT Press; Cambridge, MA, USA: 1990. pp. 68–70.
Ambekar R.S., Kushwaha B., Sharma P., Bosia F., Fraldi M., Pugno N.M., Tiwary C.S. Topologically Engineered 3D Printed Architectures with Superior Mechanical Strength. Mater. Today. 2021;48:72–94. doi: 10.1016/j.mattod.2021.03.014. DOI
Panda B., Leite M., Biswal B.B., Niu X., Garg A. Experimental and Numerical Modelling of Mechanical Properties of 3D Printed Honeycomb Structures. Meas. J. Int. Meas. Confed. 2018;116:495–506. doi: 10.1016/j.measurement.2017.11.037. DOI
Hales T.C. The Honeycomb Conjecture. Discret. Comput. Geom. 2001;25:1–22. doi: 10.1007/s004540010071. DOI
Seidel R., Roschger A., Li L., Bizzarro J.J., Zhang Q., Yin J., Yang T., Weaver J.C., Fratzl P., Roschger P., et al. Mechanical Properties of Stingray Tesserae: High-Resolution Correlative Analysis of Mineral Density and Indentation Moduli in Tessellated Cartilage. Acta Biomater. 2019;96:421–435. doi: 10.1016/j.actbio.2019.06.038. PubMed DOI
Seidel R., Lyons K., Blumer M., Zaslansky P., Fratzl P., Weaver J.C., Dean M.N. Ultrastructural and Developmental Features of the Tessellated Endoskeleton of Elasmobranchs (Sharks and Rays) J. Anat. 2016;229:681–702. doi: 10.1111/joa.12508. PubMed DOI PMC
Seidel R., Blumer M., Pechriggl E.J., Lyons K., Hall B.K., Fratzl P., Weaver J.C., Dean M.N. Calcified Cartilage or Bone? Collagens in the Tessellated Endoskeletons of Cartilaginous Fish (Sharks and Rays) J. Struct. Biol. 2017;200:54–71. doi: 10.1016/j.jsb.2017.09.005. PubMed DOI
Meyers M.A., Chen P.Y., Lopez M.I., Seki Y., Lin A.Y.M. Biological Materials: A Materials Science Approach. J. Mech. Behav. Biomed. Mater. 2011;4:626–657. doi: 10.1016/j.jmbbm.2010.08.005. PubMed DOI
Lin A., Meyers M.A. Growth and Structure in Abalone Shell. Mater. Sci. Eng. A. 2005;390:27–41. doi: 10.1016/j.msea.2004.06.072. DOI
Afanasieva M.S. Radiolarian Skeletons: Formation and Morphology of Skeletal Shells. Paleontol. J. 2006;40:476–489. doi: 10.1134/S0031030106050029. DOI
Albrecht C. In: Biologically-Inspired Systems. Gorb S.N., editor. Volume 6. Springer; Berlin/Heidelberg, Germany: 2015.
Babaee S., Shim J., Weaver J.C., Chen E.R., Patel N., Bertoldi K. 3D Soft Metamaterials with Negative Poisson’s Ratio. Adv. Mater. 2013;25:5044–5049. doi: 10.1002/adma.201301986. PubMed DOI
Yuan S., Chua C.K., Zhou K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019;4:1800419. doi: 10.1002/admt.201800419. DOI
Yuan S., Shen F., Bai J., Chua C.K., Wei J., Zhou K. 3D Soft Auxetic Lattice Structures Fabricated by Selective Laser Sintering: TPU Powder Evaluation and Process Optimization. Mater. Des. 2017;120:317–327. doi: 10.1016/j.matdes.2017.01.098. DOI
Chen I.H., Kiang J.H., Correa V., Lopez M.I., Chen P.Y., McKittrick J., Meyers M.A. Armadillo Armor: Mechanical Testing and Micro-Structural Evaluation. J. Mech. Behav. Biomed. Mater. 2011;4:713–722. doi: 10.1016/j.jmbbm.2010.12.013. PubMed DOI
Lee S., Novitskaya E.E., Reynante B., Vasquez J., Urbaniak R., Takahashi T., Woolley E., Tombolato L., Chen P.Y., McKittrick J. Impact Testing of Structural Biological Materials. Mater. Sci. Eng. C. 2011;31:730–739. doi: 10.1016/j.msec.2010.10.017. DOI
Libonati F. Advanced Engineering Materials and Modeling. Scrivener Publishing LLC.; Beverly, MA, USA: 2016. Bio-Inspired Composites: Using Nature to Tackle Composite Limitations; pp. 165–190.
Al-Ketan O., Soliman A., AlQubaisi A.M., Abu Al-Rub R.K. Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures. Adv. Eng. Mater. 2018;20:1700549. doi: 10.1002/adem.201700549. DOI
Kickelbick G. Hybrid Materials: Synthesis, Characterization, and Applications. Wiley-VCH; Hoboken, NJ, USA: 2007. Introduction to Hybrid Materials; pp. 1–48.
Li T.T., Chuang Y.C., Huang C.H., Lou C.W., Lin J.H. Applying Vermiculite and Perlite Fillers to Sound-Absorbing/Thermal-Insulating Resilient PU Foam Composites. Fibers Polym. 2015;16:691–698. doi: 10.1007/s12221-015-0691-8. DOI
Kireitseu M., Hui D., Tomlinson G. Advanced Shock-Resistant and Vibration Damping of Nanoparticle-Reinforced Composite Material. Compos. Part B Eng. 2008;39:128–138. doi: 10.1016/j.compositesb.2007.03.004. DOI
Mallinson J.H. Corrosion-Resistant Plastic Composites in Chemical Plant Design. CRC Press; Boca Raton, FL, USA: 2020.
Christ S., Schnabel M., Vorndran E., Groll J., Gbureck U. Fiber Reinforcement during 3D Printing. Mater. Lett. 2015;139:165–168. doi: 10.1016/j.matlet.2014.10.065. DOI
Chen J., Fang H., Liu W., Zhu L., Zhuang Y., Wang J., Han J. Energy Absorption of Foam-Filled Multi-Cell Composite Panels under Quasi-Static Compression. Compos. Part B Eng. 2018;153:295–305. doi: 10.1016/j.compositesb.2018.08.122. DOI
Singh S., Ramakrishna S., Berto F. 3D Printing of Polymer Composites: A Short Review. Mater. Des. Process. Commun. 2020;2:e97. doi: 10.1002/mdp2.97. DOI
Quan Z., Wu A., Keefe M., Qin X., Yu J., Suhr J., Byun J.H., Kim B.S., Chou T.W. Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges. Mater. Today. 2015;18:503–512. doi: 10.1016/j.mattod.2015.05.001. DOI
Mouritz A.P. Introduction to Aerospace Materials. Woodhead Publishing; Cambridge, UK: 2012.
Blok L.G., Longana M.L., Yu H., Woods B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018;22:176–186. doi: 10.1016/j.addma.2018.04.039. DOI
Guo N., Leu M.C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013;8:215–243. doi: 10.1007/s11465-013-0248-8. DOI
Zhong W., Li F., Zhang Z., Song L., Li Z. Short Fiber Reinforced Composites for Fused Deposition Modeling. Mater. Sci. Eng. A. 2001;301:125–130. doi: 10.1016/S0921-5093(00)01810-4. DOI
Yang D., Wu K., Wan L., Sheng Y. A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. J. Manuf. Mater. Process. 2017;1:10. doi: 10.3390/jmmp1010010. DOI
Ferreira R.T.L., Amatte I.C., Dutra T.A., Bürger D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Compos. Part B Eng. 2017;124:88–100. doi: 10.1016/j.compositesb.2017.05.013. DOI
Lewicki J.P., Rodriguez J.N., Zhu C., Worsley M.A., Wu A.S., Kanarska Y., Horn J.D., Duoss E.B., Ortega J.M., Elmer W., et al. 3D-Printing of Meso-Structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties. Sci. Rep. 2017;7:43401. doi: 10.1038/srep43401. PubMed DOI PMC
Tekinalp H.L., Kunc V., Velez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Blue C.A., Ozcan S. Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing. Compos. Sci. Technol. 2014;105:144–150. doi: 10.1016/j.compscitech.2014.10.009. DOI
Van Der Klift F., Koga Y., Todoroki A., Ueda M., Hirano Y., Matsuzaki R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016;06:18–27. doi: 10.4236/ojcm.2016.61003. DOI
Matsuzaki R., Ueda M., Namiki M., Jeong T.K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y. Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation. Sci. Rep. 2016;6:23058. doi: 10.1038/srep23058. PubMed DOI PMC
Chung H., Das S. Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering. Mater. Sci. Eng. A. 2006;437:226–234. doi: 10.1016/j.msea.2006.07.112. DOI
Nikzad M., Masood S.H., Sbarski I. Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling. Mater. Des. 2011;32:3448–3456. doi: 10.1016/j.matdes.2011.01.056. DOI
Boparai K., Singh R., Singh H. Comparison of Tribological Behaviour for Nylon6-Al-Al2O3 and ABS Parts Fabricated by Fused Deposition Modelling: This Paper Reports a Low Cost Composite Material That Is More Wear-Resistant than Conventional ABS. Virtual Phys. Prototyp. 2015;10:59–66. doi: 10.1080/17452759.2015.1037402. DOI
Isakov D.V., Lei Q., Castles F., Stevens C.J., Grovenor C.R.M., Grant P.S. 3D Printed Anisotropic Dielectric Composite with Meta-Material Features. Mater. Des. 2016;93:423–430. doi: 10.1016/j.matdes.2015.12.176. DOI
Shemelya C.M., Rivera A., Perez A.T., Rocha C., Liang M., Yu X., Kief C., Alexander D., Stegeman J., Xin H., et al. Mechanical, Electromagnetic, and X-Ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 2015;44:2598–2607. doi: 10.1007/s11664-015-3687-7. DOI
Kalsoom U., Peristyy A., Nesterenko P.N., Paull B. A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices. RSC Adv. 2016;6:38140–38147. doi: 10.1039/C6RA05261D. DOI
Castles F., Isakov D., Lui A., Lei Q., Dancer C.E.J., Wang Y., Janurudin J.M., Speller S.C., Grovenor C.R.M., Grant P.S. Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites. Sci. Rep. 2016;6:22714. doi: 10.1038/srep22714. PubMed DOI PMC
Torrado Perez A.R., Roberson D.A., Wicker R.B. Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials. J. Fail. Anal. Prev. 2014;14:343–353. doi: 10.1007/s11668-014-9803-9. DOI
Kokkinis D., Schaffner M., Studart A.R. Multimaterial Magnetically Assisted 3D Printing of Composite Materials. Nat. Commun. 2015;6:8643. doi: 10.1038/ncomms9643. PubMed DOI PMC
Martin J.J., Fiore B.E., Erb R.M. Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing. Nat. Commun. 2015;6:8641. doi: 10.1038/ncomms9641. PubMed DOI PMC
Yan X., Gu J., Zheng G., Guo J., Galaska A.M., Yu J., Khan M.A., Sun L., Young D.P., Zhang Q., et al. Lowly Loaded Carbon Nanotubes Induced High Electrical Conductivity and Giant Magnetoresistance in Ethylene/1-Octene Copolymers. Polymer. 2016;103:315–327. doi: 10.1016/j.polymer.2016.09.056. DOI
Gu J., Xie C., Li H., Dang J., Geng W., Zhang Q. Thermal Percolation Behavior of Graphene Nanoplatelets/Polyphenylene Sulfide Thermal Conductivity Composites. Polym. Compos. 2014;35:1087–1092. doi: 10.1002/pc.22756. DOI
Gu J., Li N., Tian L., Lv Z., Zhang Q. High Thermal Conductivity Graphite Nanoplatelet/UHMWPE Nanocomposites. RSC Adv. 2015;5:36334–36339. doi: 10.1039/C5RA03284A. DOI
Gu J., Liang C., Dang J., Dong W., Zhang Q. Ideal Dielectric Thermally Conductive Bismaleimide Nanocomposites Filled with Polyhedral Oligomeric Silsesquioxane Functionalized Nanosized Boron Nitride. RSC Adv. 2016;6:35809–35814. doi: 10.1039/C6RA04513H. DOI
Zhan H., Cheng F., Chen Y., Wong K.W., Mei J., Hui D., Lau W.M., Liu Y. Transfer Printing for Preparing Nanostructured PDMS Film as Flexible SERS Active Substrate. Compos. Part B Eng. 2016;84:222–227. doi: 10.1016/j.compositesb.2015.08.080. DOI
Shofner M.L., Lozano K., Rodríguez-Macías F.J., Barrera E.V. Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling. J. Appl. Polym. Sci. 2003;89:3081–3090. doi: 10.1002/app.12496. DOI
Sandoval J.H., Wicker R.B. Functionalizing Stereolithography Resins: Effects of Dispersed Multi-Walled Carbon Nanotubes on Physical Properties. Rapid Prototyp. J. 2006;12:292–303. doi: 10.1108/13552540610707059. DOI
Lin D., Jin S., Zhang F., Wang C., Wang Y., Zhou C., Cheng G.J. 3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures. Nanotechnology. 2015;26:434003. doi: 10.1088/0957-4484/26/43/434003. PubMed DOI
Zhang Y., Li H., Yang X., Zhang T., Zhu K., Si W., Liu Z., Sun H. Additive Manufacturing of Carbon Nanotube-Photopolymer Composite Radar Absorbing Materials. Polym. Compos. 2018;39:E671–E676. doi: 10.1002/pc.24117. DOI
Rymansaib Z., Iravani P., Emslie E., Medvidović-Kosanović M., Sak-Bosnar M., Verdejo R., Marken F. All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor. Electroanalysis. 2016;28:1517–1523. doi: 10.1002/elan.201600017. DOI
Athreya S., Kalaitzidou K., Das S. Processing and Properties of Carbon Blackfilled Electrically Conductive Nylon-12 Nanocomposites Produced by Selective Laser Sintering; Proceedings of the 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009; Austin, TX, USA. 3–5 August 2009; pp. 538–546.
Wei X., Li D., Jiang W., Gu Z., Wang X., Zhang Z., Sun Z. 3D Printable Graphene Composite. Sci. Rep. 2015;5:11181. doi: 10.1038/srep11181. PubMed DOI PMC
Duan Y., Zhou Y., Tang Y., Li D. Nano-TiO2-Modified Photosensitive Resin for RP. Rapid Prototyp. J. 2011;17:247–252. doi: 10.1108/13552541111138360. DOI
Weng Z., Wang J., Senthil T., Wu L. Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing. Mater. Des. 2016;102:276–283. doi: 10.1016/j.matdes.2016.04.045. DOI
He M., Zhao Y., Wang B., Xi Q., Zhou J., Liang Z. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity. Small. 2015;11:5889–5894. doi: 10.1002/smll.201502153. PubMed DOI
Zheng H., Zhang J., Lu S., Wang G., Xu Z. Effect of Core-Shell Composite Particles on the Sintering Behavior and Properties of Nano-Al2O3/Polystyrene Composite Prepared by SLS. Mater. Lett. 2006;60:1219–1223. doi: 10.1016/j.matlet.2005.11.003. DOI
Kim H.C., Hahn H.T., Yang Y.S. Synthesis of PA12/Functionalized GNP Nanocomposite Powders for the Selective Laser Sintering Process. J. Compos. Mater. 2013;47:501–509. doi: 10.1177/0021998312441812. DOI
Fantino E., Chiappone A., Calignano F., Fontana M., Pirri F., Roppolo I. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures. Materials. 2016;9:589. doi: 10.3390/ma9070589. PubMed DOI PMC
Chung H., Das S. Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering. Mater. Sci. Eng. A. 2008;487:251–257. doi: 10.1016/j.msea.2007.10.082. DOI
Rupp H., Binder W.H. 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications. Adv. Mater. Technol. 2020;5:2000509. doi: 10.1002/admt.202000509. DOI
Okwuosa T.C., Soares C., Gollwitzer V., Habashy R., Timmins P., Alhnan M.A. On Demand Manufacturing of Patient-Specific Liquid Capsules via Co-Ordinated 3D Printing and Liquid Dispensing. Eur. J. Pharm. Sci. 2018;118:134–143. doi: 10.1016/j.ejps.2018.03.010. PubMed DOI
Chapkin W.A., Simone D.L., Frank G.J., Baur J.W. Mechanical Behavior and Energy Dissipation of Infilled, Composite Ti-6Al-4V Trusses. Mater. Des. 2021;203:109602. doi: 10.1016/j.matdes.2021.109602. DOI
Soe S., Adams R., Hossain M., Theobald P. Investigating the Dynamic Compression Response of Elastomeric, Additively Manufactured Fluid-Filled Structures via Experimental and Finite Element Analyses. Addit. Manuf. 2021;39:101885. doi: 10.1016/j.addma.2021.101885. DOI
Kao Y.T., Amin A.R., Payne N., Wang J., Tai B.L. Low-Velocity Impact Response of 3D-Printed Lattice Structure with Foam Reinforcement. Compos. Struct. 2018;192:93–100. doi: 10.1016/j.compstruct.2018.02.042. DOI
Prajapati M.J., Bhat C., Kumar A., Verma S., Lin S.-C., Jeng J.-Y. Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates. Materials. 2022;15:7954. doi: 10.3390/ma15227954. PubMed DOI PMC
Prajapati M.J., Kumar A., Lin S.C., Jeng J.Y. Closed-Cell Metamaterial Composites 3D Printed with Hybrid FFF Process for Tunable Mechanical and Functional Properties. Thin-Walled Struct. 2023;192:111168. doi: 10.1016/j.tws.2023.111168. DOI
Prajapati M.J., Kumar A., Lin S., Jeng J. Reducing Mechanical Anisotropy in Material Extrusion Process Using Bioinspired Architectured Lattice Structures. Addit. Manuf. 2023;66:103480. doi: 10.1016/j.addma.2023.103480. DOI
Diegel O., Nordin A., Motte D. Additive Manufacturing Technologies. Springer; New York, NY, USA: 2019.
Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I., Bernard A., Schulz J., Graf P., Ahuja B., et al. Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints. CIRP Ann. Manuf. Technol. 2016;65:737–760. doi: 10.1016/j.cirp.2016.05.004. DOI
Gibson I., Rosen D.W., Stucker B. Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer; New York, NY, USA: 2010. pp. 1–459. DOI
Ji Z., Li D., Liao W., Min Xie Y. AI-Aided Design of Multiscale Lattice Metastructures for Controllable Anisotropy. Mater. Des. 2022;223:111254. doi: 10.1016/j.matdes.2022.111254. DOI