multi-functional properties
Dotaz
Zobrazit nápovědu
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
- Publikační typ
- časopisecké články MeSH
Monovalent-cation homeostasis, crucial for all living cells, is ensured by the activity of various types of ion transport systems located either in the plasma membrane or in the membranes of organelles. A key prerequisite for the functioning of ion-transporting proteins is their proper trafficking to the target membrane. The cornichon family of COPII cargo receptors is highly conserved in eukaryotic cells. By simultaneously binding their cargoes and a COPII-coat subunit, cornichons promote the incorporation of cargo proteins into the COPII vesicles and, consequently, the efficient trafficking of cargoes via the secretory pathway. In this review, we summarize current knowledge about cornichon proteins (CNIH/Erv14), with an emphasis on yeast and mammalian cornichons and their role in monovalent-cation homeostasis. Saccharomyces cerevisiae cornichon Erv14 serves as a cargo receptor of a large portion of plasma-membrane proteins, including several monovalent-cation transporters. By promoting the proper targeting of at least three housekeeping ion transport systems, Na+, K+/H+ antiporter Nha1, K+ importer Trk1 and K+ channel Tok1, Erv14 appears to play a complex role in the maintenance of alkali-metal-cation homeostasis. Despite their connection to serious human diseases, the repertoire of identified cargoes of mammalian cornichons is much more limited. The majority of current information is about the structure and functioning of CNIH2 and CNIH3 as auxiliary subunits of AMPAR multi-protein complexes. Based on their unique properties and easy genetic manipulation, we propose yeast cells to be a useful tool for uncovering a broader spectrum of human cornichons ́ cargoes.
- MeSH
- COP-vezikuly metabolismus MeSH
- homeostáza fyziologie MeSH
- iontový transport fyziologie MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- proteiny přenášející kationty metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus genetika MeSH
- Saccharomyces cerevisiae * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Satisfaction with the birth experience has been established to be critical for the wellbeing of the mother. The Birth Satisfaction Scale-Revised (BSS-R) is a brief and psychometrically robust multi-dimensional self-report tool designed to assess birth experience. The current investigation sought to translate and validate a Czech Republic version of the BSS-R (CZ-BSS-R). METHODS: Following translation psychometric assessment of the CZ-BSS-R was undertaken using a cross-sectional design. A between-subjects design was incorporated in order to evaluate known-groups validity evaluation of the translated measure. Four hundred and sixty-five Czech-speaking women within the Czech Republic took part in the study. Confirmatory factor analysis was undertaken and divergent and convergent validity and internal consistency characteristics also evaluated. RESULTS: The CZ-BSS-R was observed to have excellent psychometric properties and conceptually and measurement faithful to the original English-language measure. Consistent with previous investigations using the BSS-R significant differences were found in scores as a function of delivery type. CONCLUSIONS: The CZ-BSS-R is a valid, robust and reliable measure of birth experience and suitable for use with Czech-speaking women in the Czech Republic. The study highlighted that instrument and emergency Caesarean section were associated with a lower level of birth satisfaction compared to vaginal delivery.
- MeSH
- císařský řez * MeSH
- lidé MeSH
- osobní uspokojení MeSH
- porod * MeSH
- průřezové studie MeSH
- průzkumy a dotazníky MeSH
- reprodukovatelnost výsledků MeSH
- spokojenost pacientů MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Actin is a multi-functional protein that is involved in numerous cellular processes including cytoskeleton regulation, cell migration, and cellular integrity. In these processes, actin's role in respect to its structure, complex mechanical, and protein-binding properties has been studied primarily in the cytoplasmic and cellular membrane compartments. However, its role in somatic cell nuclei has recently become evident where it participates in transcription, chromatin remodeling, and DNA damage repair. What remains enigmatic is the involvement of nuclear actin in physiological processes that lead to the generation of germ cells, in general, and primary spermatocytes, in particular. Here, we will discuss the possible role and nuclear localization of actin during meiotic prophase I and its interaction with chromatin remodeling complexes, the latter being essential for the control of pairing of homologous chromosomes, cross-over formation, and recombination. It is our hope that this perspective article will extend the scope of actin's nuclear function in germ cells undergoing meiotic division.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biocompatibility is one of the key issues for implants, especially in the case of stainless steel with medium to low biocompatibility, which may lead to a lack of osseointegration and consequently to implant failure or rejection. To precisely control preferential cell growth sites and, consequently, the biocompatibility of prosthetic devices, two types of surfaces were analyzed, containing periodic nanogrooves laser induced periodic surface structure (LIPSS) and square-shaped micropillars. For the fast and efficient production of these surfaces, the unique combination of high energy ultrashort pulsed laser system with multi-beam and beamshaping technology was applied, resulting in increased productivity by 526% for micropillars and 14 570% for LIPSS compared to single beam methods.In vitroanalysis revealed that micro and nanostructured surfaces provide a better environment for cell attachment and proliferation compared to untreated ones, showing an increase of up to 496% in the number of cells compared to the reference. Moreover, the combination of LIPSS and micropillars resulted in a precise cell orientation along the periodic microgroove pattern. The combination of these results demonstrates the possibility of mass production of functionalized implants with control over cell organization and growth. Thus, reducing the risk of implant failure due to low biocompatibility.
Continuous tablet manufacturing is a competitive option to replace the traditional batch manufacturing approach. The aim of this study was to evaluate technology transfer from batch-based direct compression of a commercial tablet formulation to continuous direct compression without changes to the composition of the formulation. Some powder studies were conducted with the raw materials and multi-tip punches were utilized in the tableting studies. To lower the high level of tablet weight variability that was evident during preliminary tests, a process parameter optimization was performed using an experimental design with different rpm values of force feeder and mixer impeller. By selecting the most appropriate settings of these parameters for the studied product, the weights of the tablets could be controlled adequately to meet the specification criteria. The functionality of the best-performing parameter settings was investigated with a three-hour-long tableting run. The tablets were evaluated with the same quality criteria as the commercial batch-produced tablets, and they passed all the tests performed in this study. Despite the challenging material properties according to the flowability tests, production of tablets with the desired quality was achieved using the original composition with continuous direct compression.
- MeSH
- bisoprolol * MeSH
- farmaceutická technologie * MeSH
- prášky, zásypy, pudry MeSH
- příprava léků MeSH
- tablety MeSH
- tlak MeSH
- Publikační typ
- časopisecké články MeSH
Schizophrenia is a serious mental disorder without a fully understood pathomechanism, but which involves dysregulation of neurotransmitters and their receptors. The best option for the management of schizophrenia comprises so-called multi-target ligands, similar to the third generation of neuroleptics. Dopamine type 2 receptors (D2Rs) are the main target in the treatment of schizophrenia, in particular for mitigation of the positive symptoms. Due to the high expression of 5-hydroxytryptamine type 3 receptors (5-HT3Rs) in human brain areas responsible for emotional behavior, motivation, and cognitive function, 5-HT3Rs represent a potential target for modulating the cognitive and negative symptoms of schizophrenia. Here we present the design, synthesis, and both in vitro and in vivo biological evaluation of 1,4-disubstituted aromatic piperazines. Screening of in vitro properties revealed the two most promising drug candidates (21 and 24) which were found to be potent D2Rs and moderate 5-HT3R antagonists, and which were forwarded to in vivo studies in Wistar rats. Considering toxicity, administration of the maximal feasible dose of 21 (2 mg/kg) did not produce any side effects. By contrast, the higher solubility of 24 led to revelation of mild and temporary side effects at the dose of 20 mg/kg. Importantly, both 21 and 24 showed facile crossing of the blood-brain barrier, even exerting higher levels in the brain in comparison to plasma. In a behavioral study using the acute amphetamine model of psychosis, we showed that compound 24 ameliorated both positive and negative effects of amphetamine including hyperlocomotion, social impairments, and disruption of prepulse inhibition. The effect of the highest dose (10 mg/kg) was comparable to the effect of the reference dose of aripiprazole (1 mg/kg).
Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.
- MeSH
- buňky Hep G2 MeSH
- buňky PC12 MeSH
- COVID-19 diagnóza MeSH
- CRISPR-Cas systémy MeSH
- dusík chemie MeSH
- guide RNA, Kinetoplastida MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- jednovláknová DNA MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- limita detekce MeSH
- nanokompozity MeSH
- nanostruktury MeSH
- porézní koordinační polymery chemie MeSH
- poréznost MeSH
- porfyriny chemie MeSH
- povrchové vlastnosti MeSH
- RNA virová metabolismus MeSH
- SARS-CoV-2 MeSH
- senzitivita a specificita MeSH
- testování na COVID-19 MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 μM), confirming the design rationale.
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- Alzheimerova nemoc farmakoterapie patologie MeSH
- Anacardium chemie metabolismus MeSH
- buněčné linie MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cytokiny metabolismus MeSH
- katalytická doména MeSH
- lidé MeSH
- ligandy * MeSH
- lipopolysacharidy farmakologie MeSH
- mikroglie cytologie účinky léků metabolismus MeSH
- neuroprotektivní látky chemie metabolismus farmakologie terapeutické užití MeSH
- ořechy chemie metabolismus MeSH
- racionální návrh léčiv MeSH
- rostlinné extrakty chemie MeSH
- simulace molekulární dynamiky MeSH
- takrin chemie metabolismus MeSH
- vazebná místa MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Drug compounds including memantine moieties are an important group of biologically active agents for different pathologies, including the Alzheimer's disease. In the present study, a series of memantine derivatives incorporating amino acid residues have been synthesized and their neuroprotective in vitro evaluation in respect of the Alzheimer's disease, involving the effects on the resistance to Aβ toxicity, excitotoxicity, oxidative stress, hypoxia, and neuroinflammation has been studied. The cytotoxicities of the compounds were detected by CPE assay. TC50 and IC50 were determined using Reed and Muench method. Solubility and distribution were measured using a shake-flask method. Permeability of the compounds was studied using Franz diffusion cell and Permeapad™ barrier. These compounds displayed apparent multi-neuroprotective effects against copper-triggered Aβ toxicity, glutamate-induced excitotoxicity, and oxidative and hypoxic injuries. They also showed the ability to inhibit the inflammatory cytokine release from the activated microglia and potential anti-neuroinflammatory effects. Especially, two most promising compounds H-4-F-Phe-memantine and H-Tyr-memantine demonstrated the equivalent functional bioactivities in comparison with the positive control memantine hydrochloride. Higher solubility in muriatic buffer than in phosphate buffer was detected. The distribution coefficients showed the optimal lipophilicity for compounds. The presented results propose new class of memantine derivatives as potential drug compounds. Based on the experimental results, the correlations have been obtained between the biological, physicochemical parameters and structural descriptors. The correlation equations have been proposed to predict the properties of new memantine derivatives knowing only the structural formula.
- MeSH
- Alzheimerova nemoc farmakoterapie genetika patologie MeSH
- amyloidní beta-protein účinky léků toxicita MeSH
- buňky MDCK MeSH
- chřipka lidská farmakoterapie virologie MeSH
- kyselina glutamová metabolismus MeSH
- lidé MeSH
- memantin analogy a deriváty chemie farmakologie MeSH
- neuroprotektivní látky chemie farmakologie MeSH
- Orthomyxoviridae účinky léků patogenita MeSH
- oxidační stres účinky léků MeSH
- psi MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH