Effect of multifunctional cationic polymer coatings on mitigation of broad microbial pathogens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
unrestricted grant
C-POLAR Technologies
PubMed
39101823
PubMed Central
PMC11370243
DOI
10.1128/spectrum.04097-23
Knihovny.cz E-zdroje
- Klíčová slova
- Gram-negative, Gram-positive, SARS-CoV-2, cationic polymer,
- MeSH
- aerosoly MeSH
- Bacteria účinky léků růst a vývoj MeSH
- Coronavirus bovis účinky léků MeSH
- COVID-19 * prevence a kontrola MeSH
- fomity mikrobiologie virologie MeSH
- gramnegativní bakterie účinky léků MeSH
- kationty * chemie farmakologie MeSH
- lidé MeSH
- polymery * farmakologie chemie MeSH
- SARS-CoV-2 * účinky léků MeSH
- skot MeSH
- textilie mikrobiologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- kationty * MeSH
- polymery * MeSH
UNLABELLED: Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE: Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.
C POLAR Technologies Inc Las Vegas Nevada USA
C POLAR Technologies Inc West Vancouver British Columbia Canada
Department of Chemistry The Chinese University of Hong Kong Hong Kong China
Department of Emergency Medicine University of British Columbia Vancouver British Columbia Canada
Department of Genetics and Microbiology Charles University Faculty of Sciences Prague Czechia
Department of Mechanical Engineering Hong Kong Polytechnic University Hong Kong China
Department of Mechanical Engineering University of Minnesota Minneapolis Minnesota USA
Department of Mechanical Engineering University of Texas Dallas Richardson Texas USA
Department of Medicine Harvard Medical School Boston Massachusetts USA
Department of Veterinary Population Medicine University of Minnesota Saint Paul Minnesota USA
Division of Infectious Diseases Massachusetts General Hospital Boston Massachusetts USA
Faculty of Medicine University of British Columbia Vancouver British Columbia Canada
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia
Interior Health Authority Kelowna British Columbia Canada
Rural Coordination Center of British Columbia Vancouver British Columbia Canada
School of Engineering University of British Columbia Kelowna British Columbia Canada
School of Nursing University of British Columbia Kelowna British Columbia Canada
School of Science and Technology Hong Kong Metropolitan University Hong Kong China
Zobrazit více v PubMed
Adenaiye OO, Lai J, de Mesquita PJB, Hong F, Youssefi S, German J, Tai S-H, Albert B, Schanz M, Weston S, Hang J, Fung C, Chung HK, Coleman KK, Sapoval N, Treangen T, Berry IM, Mullins K, Frieman M, Ma T, Milton DK, for the University of Maryland StopCOVID Research Group . 2021. Infectious SARS-CoV-2 in exhaled aerosols and efficacy of masks during early mild infection. Clin Infect Dis. doi:10.1101/2021.08.13.21261989 PubMed DOI PMC
Distasio AJ, Trump DH. 1990. The investigation of a tuberculosis outbreak in the closed environment of a U.S. Navy ship. Military Med 155:347–351. doi:10.1093/milmed/155.8.347 PubMed DOI
Kovesi T, Gilbert NL, Stocco C, Fugler D, Dales RE, Guay M, Miller JD. 2007. Indoor air quality and the risk of lower respiratory tract infections in young Canadian inuit children. Can Med Ass J 177:155–160. doi:10.1503/cmaj.061574 PubMed DOI PMC
Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. 2013. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog 9:e1003205. doi:10.1371/journal.ppat.1003205 PubMed DOI PMC
Morawska L, Milton DK. 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin Infect Dis 71:2311–2313. doi:10.1093/cid/ciaa939 PubMed DOI PMC
Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu C-Y. 2022. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. J Aerosol Sci 165:106038. doi:10.1016/j.jaerosci.2022.106038 PubMed DOI PMC
Gutiérrez D, Delgado S, Vázquez-Sánchez D, Martínez B, Cabo ML, Rodríguez A, Herrera JJ, García P. 2012. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol 78:8547–8554. doi:10.1128/AEM.02045-12 PubMed DOI PMC
Nannu Shankar S, Witanachchi CT, Morea AF, Lednicky JA, Loeb JC, Alam MdM, Fan ZH, Eiguren-Fernandez A, Wu C-Y. 2022. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J Aerosol Sci 159:105870. doi:10.1016/j.jaerosci.2021.105870 PubMed DOI PMC
Ye Y, Ellenberg RM, Graham KE, Wigginton KR. 2016. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ Sci Technol 50:5077–5085. doi:10.1021/acs.est.6b00876 PubMed DOI
Zhou L, Yao M, Zhang X, Hu B, Li X, Chen H, Zhang L, Liu Y, Du M, Sun B, Jiang Y, Zhou K, Hong J, Yu N, Ding Z, Xu Y, Hu M, Morawska L, Grinshpun SA, Biswas P, Flagan RC, Zhu B, Liu W, Zhang Y. 2021. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J Aerosol Sci 152:105693. doi:10.1016/j.jaerosci.2020.105693 PubMed DOI PMC
Cloutier M, Mantovani D, Rosei F. 2015. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33:637–652. doi:10.1016/j.tibtech.2015.09.002 PubMed DOI
Balagna C, Francese R, Perero S, Lembo D, Ferraris M. 2021. Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surf Coat Technol 409:126873. doi:10.1016/j.surfcoat.2021.126873 PubMed DOI PMC
Dahanayake MH, Athukorala SS, Jayasundera ACA. 2022. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 12:16369–16385. doi:10.1039/d2ra01567f PubMed DOI PMC
Ghosh S, Jolly L, Haldar J. 2021. Polymeric paint coated common-touch surfaces that can kill bacteria, fungi and influenza virus. MRS Commun 11:610–618. doi:10.1557/s43579-021-00083-3 PubMed DOI PMC
Haldar J, An D, Alvarez de Cienfuegos L, Chen J, Klibanov AM. 2006. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci U S A 103:17667–17671. doi:10.1073/pnas.0608803103 PubMed DOI PMC
Pamukçu A, Erdoğan N, Şen Karaman D. 2022. Polyethylenimine‐grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res 110:2506–2520. doi:10.1002/jbm.b.35108 PubMed DOI PMC
Rogak SN, Rysanek A, Lee JM, Dhulipala SV, Zimmerman N, Wright M, Weimer M. 2022. The effect of air purifiers and curtains on aerosol dispersion and removal in multi‐patient hospital rooms. Indoor Air 32:e13110. doi:10.1111/ina.13110 PubMed DOI PMC
Kandeel M, Al-Taher A, Park BK, Kwon H-J, Al-Nazawi M. 2020. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the middle east respiratory syndrome coronavirus. J Med Virol 92:1665–1670. doi:10.1002/jmv.25928 PubMed DOI PMC
Mecke A, Majoros IJ, Patri AK, Baker JR, Holl MMB, Orr BG. 2005. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354. doi:10.1021/la050629l PubMed DOI
Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. 2021. Poly‐l‐lysine glycoconjugates inhibit DC‐SIGN‐mediated attachment of pandemic viruses. ChemMedChem 16:2345–2353. doi:10.1002/cmdc.202100348 PubMed DOI
Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. 2006. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans . Biomaterials 27:3995–4002. doi:10.1016/j.biomaterials.2006.03.003 PubMed DOI
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu Y-L, Loh XJ. 2021. Toward the prevention of coronavirus infection: what role can polymers play? Mater Today Adv 10:100140. doi:10.1016/j.mtadv.2021.100140 PubMed DOI PMC
Haldar J, Chen J, Tumpey TM, Gubareva LV, Klibanov AM. 2008. Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett 30:475–479. doi:10.1007/s10529-007-9565-5 PubMed DOI
Liu H, Kim Y, Mello K, Lovaasen J, Shah A, Rice N, Yim JH, Pappas D, Klibanov AM. 2014. Aerosol-assisted plasma deposition of hydrophobic polycations makes surfaces highly antimicrobial. Appl Biochem Biotechnol 172:1254–1264. doi:10.1007/s12010-013-0593-4 PubMed DOI
Yoshida H, Kuwana A, Shibata H, Izutsu K-I, Goda Y. 2017. Comparison of aerodynamic particle size distribution between a next generation impactor and a cascade impactor at a range of flow rates. AAPS PharmSciTech 18:646–653. doi:10.1208/s12249-016-0544-9 PubMed DOI
Qiao Y, Yang M, Marabella IA, McGee DAJ, Olson BA, Torremorell M, Hogan CJ. 2021. Wind tunnel-based testing of a Photoelectrochemical oxidative filter-based air purification unit in Coronavirus and influenza aerosol removal and inactivation. Indoor Air 31:2058–2069. doi:10.1111/ina.12847 PubMed DOI PMC
F2101-19. 2019. Standard test method for evaluating the bacterial filtration efficiency (BFE) of medical face mask materials, using a biological aerosol of Staphylococcus aureus. American Society for Testing and Materials.
Standard guide for accelerated aging of sterile barrier systems and medical devices. 2021. F1980-21.
ISO Geneva . 2013. Textiles—determination of antibacterial activity of textile products. Vol. 20743. ISO
Qiao Y, Yang M, Marabella IA, McGee DAJ, Aboubakr H, Goyal S, Hogan CJ Jr, Olson BA, Torremorell M. 2021. Greater than 3-log reduction in viable coronavirus aerosol concentration in ducted ultraviolet-C (UV–C) systems. Environ Sci Technol 55:4174–4182. doi:10.1021/acs.est.0c05763 PubMed DOI
McNeill VF, Corsi R, Huffman JA, King C, Klein R, Lamore M, Maeng DY, Miller SL, Lee Ng N, Olsiewski P, Godri Pollitt KJ, Segalman R, Sessions A, Squires T, Westgate S. 2022. Room-level ventilation in schools and universities. Atmos Environ X 13:100152. doi:10.1016/j.aeaoa.2022.100152 PubMed DOI PMC
Szabadi J, Meyer J, Lehmann M, Dittler A. 2022. Simultaneous temporal, spatial and size-resolved measurements of aerosol particles in closed indoor environments applying mobile filters in various use-cases. J Aerosol Sci 160:105906. doi:10.1016/j.jaerosci.2021.105906 DOI
Burgmann S, Janoske U. 2021. Transmission and reduction of aerosols in classrooms using air purifier systems. Physics of Fluids 33:033321. doi:10.1063/5.0044046 PubMed DOI PMC
Curtius J, Granzin M, Schrod J. 2021. Testing mobile air purifiers in a school classroom: reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci Tech. doi:10.1101/2020.10.02.20205633 DOI
Tobisch A, Springsklee L, Schäfer L-F, Sussmann N, Lehmann MJ, Weis F, Zöllner R, Niessner J. 2021. Reducing indoor particle exposure using mobile air purifiers—experimental and numerical analysis. AIP Adv 11:125114. doi:10.1063/5.0064805 PubMed DOI PMC
Fedorov V, Kholina E, Khruschev S, Kovalenko I, Rubin A, Strakhovskaya M. 2022. Electrostatic map of the SARS-CoV-2 virion specifies binding sites of the antiviral cationic photosensitizer. Int J Mol Sci 23:7304. doi:10.3390/ijms23137304 PubMed DOI PMC
Banu A, Anand M, Nagi N. 2012. White coats as a vehicle for bacterial dissemination. J Clin Diagn Res 6:1381–1384. doi:10.7860/JCDR/2012/4286.2364 PubMed DOI PMC
Burden M, Keniston A, Frank MG, Brown CA, Zoucha J, Cervantes L, Weed D, Boyle K, Price C, Albert RK. 2013. Bacterial contamination of healthcare workers’ uniforms: a randomized controlled trial of antimicrobial scrubs. J Hosp Med 8:380–385. doi:10.1002/jhm.2051 PubMed DOI PMC
Munoz-Price LS, Arheart KL, Mills JP, Cleary T, Depascale D, Jimenez A, Fajardo-Aquino Y, Coro G, Birnbach DJ, Lubarsky DA. 2012. Associations between bacterial contamination of health care workers’ hands and contamination of white coats and scrubs. Am J Infect Control 40:e245–e248. doi:10.1016/j.ajic.2012.03.032 PubMed DOI
Geiss HK, Heeg P. 1992. Hand-washing agents and nosocomial infections. N Engl J Med 327:1390–1391. doi:10.1056/NEJM199211053271914 PubMed DOI
Rutala WA, Weber DJ. 2016. Disinfection and sterilization in health care facilities an overview and current issues. Infect Dis Clin North Am 30:609–637. doi:10.1016/j.idc.2016.04.002 PubMed DOI PMC
Nordstrom JM, Reynolds KA, Gerba CP. 2012. Comparison of bacteria on new, disposable, laundered, and unlaundered hospital scrubs. Am J Infect Control 40:539–543. doi:10.1016/j.ajic.2011.07.015 PubMed DOI
Bearman GML, Rosato A, Elam K, Sanogo K, Stevens MP, Sessler CN, Wenzel RP. 2012. A crossover trial of antimicrobial scrubs to reduce methicillin-resistant Staphylococcus aureus burden on healthcare worker apparel. Infect Control Hosp Epidemiol 33:268–275. doi:10.1086/664045 PubMed DOI
Boutin MA, Thom KA, Zhan M, Johnson JK. 2014. A randomized crossover trial to decrease bacterial contamination on hospital scrubs. Infect Control Hosp Epidemiol 35:1411–1413. doi:10.1086/678426 PubMed DOI PMC
Vollmer W, Blanot D, de Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167. doi:10.1111/j.1574-6976.2007.00094.x PubMed DOI
Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. doi:10.1101/cshperspect.a000414 PubMed DOI PMC
Crilley LR, Angelucci A, Malile B, Young CJ, VandenBoer TC, Chen J. 2021. Non-woven materials for cloth-based face mask inserts: relationship between material properties and sub-micron aerosol filtration. Environ Sci: Nano. doi:10.26434/chemrxiv.13696705 DOI
King M-F, Noakes CJ, Sleigh PA, Camargo-Valero MA. 2013. Bioaerosol deposition in single and two-bed hospital rooms: a numerical and experimental study. Build Environ 59:436–447. doi:10.1016/j.buildenv.2012.09.011 DOI
Gao Y, Tian E, Zhang Y, Mo J. 2022. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: principles, fabrication, and material properties. Appl Mater Today 26:101369. doi:10.1016/j.apmt.2022.101369 DOI