Effect of multifunctional cationic polymer coatings on mitigation of broad microbial pathogens

. 2024 Sep 03 ; 12 (9) : e0409723. [epub] 20240805

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39101823

Grantová podpora
unrestricted grant C-POLAR Technologies

UNLABELLED: Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE: Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.

C POLAR Technologies Inc Las Vegas Nevada USA

C POLAR Technologies Inc West Vancouver British Columbia Canada

Department of Chemistry The Chinese University of Hong Kong Hong Kong China

Department of Emergency Medicine University of British Columbia Vancouver British Columbia Canada

Department of Genetics and Microbiology Charles University Faculty of Sciences Prague Czechia

Department of Mechanical Engineering Hong Kong Polytechnic University Hong Kong China

Department of Mechanical Engineering University of Minnesota Minneapolis Minnesota USA

Department of Mechanical Engineering University of Texas Dallas Richardson Texas USA

Department of Medicine Harvard Medical School Boston Massachusetts USA

Department of Veterinary Population Medicine University of Minnesota Saint Paul Minnesota USA

Division of Infectious Diseases Massachusetts General Hospital Boston Massachusetts USA

Faculty of Medicine University of British Columbia Vancouver British Columbia Canada

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia

Interior Health Authority Kelowna British Columbia Canada

Rural Coordination Center of British Columbia Vancouver British Columbia Canada

School of Engineering University of British Columbia Kelowna British Columbia Canada

School of Health and Exercise Sciences University of British Columbia Kelowna British Columbia Canada

School of Nursing University of British Columbia Kelowna British Columbia Canada

School of Science and Technology Hong Kong Metropolitan University Hong Kong China

St Paul's Hospital Vancouver British Columbia Canada

Zobrazit více v PubMed

Adenaiye OO, Lai J, de Mesquita PJB, Hong F, Youssefi S, German J, Tai S-H, Albert B, Schanz M, Weston S, Hang J, Fung C, Chung HK, Coleman KK, Sapoval N, Treangen T, Berry IM, Mullins K, Frieman M, Ma T, Milton DK, for the University of Maryland StopCOVID Research Group . 2021. Infectious SARS-CoV-2 in exhaled aerosols and efficacy of masks during early mild infection. Clin Infect Dis. doi:10.1101/2021.08.13.21261989 PubMed DOI PMC

Distasio AJ, Trump DH. 1990. The investigation of a tuberculosis outbreak in the closed environment of a U.S. Navy ship. Military Med 155:347–351. doi:10.1093/milmed/155.8.347 PubMed DOI

Kovesi T, Gilbert NL, Stocco C, Fugler D, Dales RE, Guay M, Miller JD. 2007. Indoor air quality and the risk of lower respiratory tract infections in young Canadian inuit children. Can Med Ass J 177:155–160. doi:10.1503/cmaj.061574 PubMed DOI PMC

Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. 2013. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog 9:e1003205. doi:10.1371/journal.ppat.1003205 PubMed DOI PMC

Morawska L, Milton DK. 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin Infect Dis 71:2311–2313. doi:10.1093/cid/ciaa939 PubMed DOI PMC

Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu C-Y. 2022. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. J Aerosol Sci 165:106038. doi:10.1016/j.jaerosci.2022.106038 PubMed DOI PMC

Gutiérrez D, Delgado S, Vázquez-Sánchez D, Martínez B, Cabo ML, Rodríguez A, Herrera JJ, García P. 2012. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol 78:8547–8554. doi:10.1128/AEM.02045-12 PubMed DOI PMC

Nannu Shankar S, Witanachchi CT, Morea AF, Lednicky JA, Loeb JC, Alam MdM, Fan ZH, Eiguren-Fernandez A, Wu C-Y. 2022. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J Aerosol Sci 159:105870. doi:10.1016/j.jaerosci.2021.105870 PubMed DOI PMC

Ye Y, Ellenberg RM, Graham KE, Wigginton KR. 2016. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ Sci Technol 50:5077–5085. doi:10.1021/acs.est.6b00876 PubMed DOI

Zhou L, Yao M, Zhang X, Hu B, Li X, Chen H, Zhang L, Liu Y, Du M, Sun B, Jiang Y, Zhou K, Hong J, Yu N, Ding Z, Xu Y, Hu M, Morawska L, Grinshpun SA, Biswas P, Flagan RC, Zhu B, Liu W, Zhang Y. 2021. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J Aerosol Sci 152:105693. doi:10.1016/j.jaerosci.2020.105693 PubMed DOI PMC

Cloutier M, Mantovani D, Rosei F. 2015. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33:637–652. doi:10.1016/j.tibtech.2015.09.002 PubMed DOI

Balagna C, Francese R, Perero S, Lembo D, Ferraris M. 2021. Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters. Surf Coat Technol 409:126873. doi:10.1016/j.surfcoat.2021.126873 PubMed DOI PMC

Dahanayake MH, Athukorala SS, Jayasundera ACA. 2022. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 12:16369–16385. doi:10.1039/d2ra01567f PubMed DOI PMC

Ghosh S, Jolly L, Haldar J. 2021. Polymeric paint coated common-touch surfaces that can kill bacteria, fungi and influenza virus. MRS Commun 11:610–618. doi:10.1557/s43579-021-00083-3 PubMed DOI PMC

Haldar J, An D, Alvarez de Cienfuegos L, Chen J, Klibanov AM. 2006. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci U S A 103:17667–17671. doi:10.1073/pnas.0608803103 PubMed DOI PMC

Pamukçu A, Erdoğan N, Şen Karaman D. 2022. Polyethylenimine‐grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res 110:2506–2520. doi:10.1002/jbm.b.35108 PubMed DOI PMC

Rogak SN, Rysanek A, Lee JM, Dhulipala SV, Zimmerman N, Wright M, Weimer M. 2022. The effect of air purifiers and curtains on aerosol dispersion and removal in multi‐patient hospital rooms. Indoor Air 32:e13110. doi:10.1111/ina.13110 PubMed DOI PMC

Kandeel M, Al-Taher A, Park BK, Kwon H-J, Al-Nazawi M. 2020. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the middle east respiratory syndrome coronavirus. J Med Virol 92:1665–1670. doi:10.1002/jmv.25928 PubMed DOI PMC

Mecke A, Majoros IJ, Patri AK, Baker JR, Holl MMB, Orr BG. 2005. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354. doi:10.1021/la050629l PubMed DOI

Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. 2021. Poly‐l‐lysine glycoconjugates inhibit DC‐SIGN‐mediated attachment of pandemic viruses. ChemMedChem 16:2345–2353. doi:10.1002/cmdc.202100348 PubMed DOI

Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. 2006. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans . Biomaterials 27:3995–4002. doi:10.1016/j.biomaterials.2006.03.003 PubMed DOI

Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu Y-L, Loh XJ. 2021. Toward the prevention of coronavirus infection: what role can polymers play? Mater Today Adv 10:100140. doi:10.1016/j.mtadv.2021.100140 PubMed DOI PMC

Haldar J, Chen J, Tumpey TM, Gubareva LV, Klibanov AM. 2008. Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett 30:475–479. doi:10.1007/s10529-007-9565-5 PubMed DOI

Liu H, Kim Y, Mello K, Lovaasen J, Shah A, Rice N, Yim JH, Pappas D, Klibanov AM. 2014. Aerosol-assisted plasma deposition of hydrophobic polycations makes surfaces highly antimicrobial. Appl Biochem Biotechnol 172:1254–1264. doi:10.1007/s12010-013-0593-4 PubMed DOI

Yoshida H, Kuwana A, Shibata H, Izutsu K-I, Goda Y. 2017. Comparison of aerodynamic particle size distribution between a next generation impactor and a cascade impactor at a range of flow rates. AAPS PharmSciTech 18:646–653. doi:10.1208/s12249-016-0544-9 PubMed DOI

Qiao Y, Yang M, Marabella IA, McGee DAJ, Olson BA, Torremorell M, Hogan CJ. 2021. Wind tunnel-based testing of a Photoelectrochemical oxidative filter-based air purification unit in Coronavirus and influenza aerosol removal and inactivation. Indoor Air 31:2058–2069. doi:10.1111/ina.12847 PubMed DOI PMC

F2101-19. 2019. Standard test method for evaluating the bacterial filtration efficiency (BFE) of medical face mask materials, using a biological aerosol of Staphylococcus aureus. American Society for Testing and Materials.

Standard guide for accelerated aging of sterile barrier systems and medical devices. 2021. F1980-21.

ISO Geneva . 2013. Textiles—determination of antibacterial activity of textile products. Vol. 20743. ISO

Qiao Y, Yang M, Marabella IA, McGee DAJ, Aboubakr H, Goyal S, Hogan CJ Jr, Olson BA, Torremorell M. 2021. Greater than 3-log reduction in viable coronavirus aerosol concentration in ducted ultraviolet-C (UV–C) systems. Environ Sci Technol 55:4174–4182. doi:10.1021/acs.est.0c05763 PubMed DOI

McNeill VF, Corsi R, Huffman JA, King C, Klein R, Lamore M, Maeng DY, Miller SL, Lee Ng N, Olsiewski P, Godri Pollitt KJ, Segalman R, Sessions A, Squires T, Westgate S. 2022. Room-level ventilation in schools and universities. Atmos Environ X 13:100152. doi:10.1016/j.aeaoa.2022.100152 PubMed DOI PMC

Szabadi J, Meyer J, Lehmann M, Dittler A. 2022. Simultaneous temporal, spatial and size-resolved measurements of aerosol particles in closed indoor environments applying mobile filters in various use-cases. J Aerosol Sci 160:105906. doi:10.1016/j.jaerosci.2021.105906 DOI

Burgmann S, Janoske U. 2021. Transmission and reduction of aerosols in classrooms using air purifier systems. Physics of Fluids 33:033321. doi:10.1063/5.0044046 PubMed DOI PMC

Curtius J, Granzin M, Schrod J. 2021. Testing mobile air purifiers in a school classroom: reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci Tech. doi:10.1101/2020.10.02.20205633 DOI

Tobisch A, Springsklee L, Schäfer L-F, Sussmann N, Lehmann MJ, Weis F, Zöllner R, Niessner J. 2021. Reducing indoor particle exposure using mobile air purifiers—experimental and numerical analysis. AIP Adv 11:125114. doi:10.1063/5.0064805 PubMed DOI PMC

Fedorov V, Kholina E, Khruschev S, Kovalenko I, Rubin A, Strakhovskaya M. 2022. Electrostatic map of the SARS-CoV-2 virion specifies binding sites of the antiviral cationic photosensitizer. Int J Mol Sci 23:7304. doi:10.3390/ijms23137304 PubMed DOI PMC

Banu A, Anand M, Nagi N. 2012. White coats as a vehicle for bacterial dissemination. J Clin Diagn Res 6:1381–1384. doi:10.7860/JCDR/2012/4286.2364 PubMed DOI PMC

Burden M, Keniston A, Frank MG, Brown CA, Zoucha J, Cervantes L, Weed D, Boyle K, Price C, Albert RK. 2013. Bacterial contamination of healthcare workers’ uniforms: a randomized controlled trial of antimicrobial scrubs. J Hosp Med 8:380–385. doi:10.1002/jhm.2051 PubMed DOI PMC

Munoz-Price LS, Arheart KL, Mills JP, Cleary T, Depascale D, Jimenez A, Fajardo-Aquino Y, Coro G, Birnbach DJ, Lubarsky DA. 2012. Associations between bacterial contamination of health care workers’ hands and contamination of white coats and scrubs. Am J Infect Control 40:e245–e248. doi:10.1016/j.ajic.2012.03.032 PubMed DOI

Geiss HK, Heeg P. 1992. Hand-washing agents and nosocomial infections. N Engl J Med 327:1390–1391. doi:10.1056/NEJM199211053271914 PubMed DOI

Rutala WA, Weber DJ. 2016. Disinfection and sterilization in health care facilities an overview and current issues. Infect Dis Clin North Am 30:609–637. doi:10.1016/j.idc.2016.04.002 PubMed DOI PMC

Nordstrom JM, Reynolds KA, Gerba CP. 2012. Comparison of bacteria on new, disposable, laundered, and unlaundered hospital scrubs. Am J Infect Control 40:539–543. doi:10.1016/j.ajic.2011.07.015 PubMed DOI

Bearman GML, Rosato A, Elam K, Sanogo K, Stevens MP, Sessler CN, Wenzel RP. 2012. A crossover trial of antimicrobial scrubs to reduce methicillin-resistant Staphylococcus aureus burden on healthcare worker apparel. Infect Control Hosp Epidemiol 33:268–275. doi:10.1086/664045 PubMed DOI

Boutin MA, Thom KA, Zhan M, Johnson JK. 2014. A randomized crossover trial to decrease bacterial contamination on hospital scrubs. Infect Control Hosp Epidemiol 35:1411–1413. doi:10.1086/678426 PubMed DOI PMC

Vollmer W, Blanot D, de Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167. doi:10.1111/j.1574-6976.2007.00094.x PubMed DOI

Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. doi:10.1101/cshperspect.a000414 PubMed DOI PMC

Crilley LR, Angelucci A, Malile B, Young CJ, VandenBoer TC, Chen J. 2021. Non-woven materials for cloth-based face mask inserts: relationship between material properties and sub-micron aerosol filtration. Environ Sci: Nano. doi:10.26434/chemrxiv.13696705 DOI

King M-F, Noakes CJ, Sleigh PA, Camargo-Valero MA. 2013. Bioaerosol deposition in single and two-bed hospital rooms: a numerical and experimental study. Build Environ 59:436–447. doi:10.1016/j.buildenv.2012.09.011 DOI

Gao Y, Tian E, Zhang Y, Mo J. 2022. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: principles, fabrication, and material properties. Appl Mater Today 26:101369. doi:10.1016/j.apmt.2022.101369 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...