Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39103097
PubMed Central
PMC11422181
DOI
10.1016/j.chemosphere.2024.142988
PII: S0045-6535(24)01882-4
Knihovny.cz E-zdroje
- Klíčová slova
- Aquatic organism, Glutathione, Mass spectrometry, Metallothionein, Oxidative stress,
- MeSH
- antioxidancia * metabolismus MeSH
- biologické markery * metabolismus MeSH
- chemické látky znečišťující vodu * toxicita analýza MeSH
- glutathion metabolismus MeSH
- kovové nanočástice * toxicita chemie MeSH
- lidé MeSH
- metalothionein metabolismus MeSH
- monitorování životního prostředí metody MeSH
- oxidační stres * účinky léků MeSH
- peptidy toxicita MeSH
- vodní organismy účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia * MeSH
- biologické markery * MeSH
- chemické látky znečišťující vodu * MeSH
- glutathion MeSH
- metalothionein MeSH
- peptidy MeSH
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Zobrazit více v PubMed
Abdelazim A.M., Saadeldin I.M., Swelum A.A.A., Afifi M.M., Alkaladi A. Oxidative stress in the muscles of the fish nile Tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxid. Med. Cell. Longev. 2018;2018 PubMed PMC
Abdulagatov I.M., Maksumova A.M., Magomedov M.Z., Tsakhaeva R.O., Khidirova S.M., Salikhov A.M. Antibacterial food packaging nanomaterial based on atomic layer deposition for long-term food storage. Journal of Food Science and Technology-Mysore. 2024;61:596–606. PubMed PMC
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. PubMed
Afrooz A., Sivalapalan S.T., Murphy C.J., Hussain S.M., Schlager J.J., Saleh N.B. Spheres vs. rods: the shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere. 2013;91:93–98. PubMed
Ahn J.-M., Eom H.-J., Yang X., Meyer J.N., Choi J. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere. 2014;108:343–352. PubMed
Ajith M.P., Aswathi M., Priyadarshini E., Rajamani P. Recent innovations of nanotechnology in water treatment: a comprehensive review. Bioresour. Technol. 2021;342 PubMed
Akaighe N., MacCuspie R.I., Navarro D.A., Aga D.S., Banerjee S., Sohn M., Sharma V.K. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011;45:3895–3901. PubMed
Akhil K., Sudheer Khan S. Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J. Photochem. Photobiol. B Biol. 2017;167:136–149. PubMed
Aksakal F.I., Ciltas A. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio) Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2019;223:78–87. PubMed
Akter M., Sikder M.T., Rahman M.M., Ullah A., Hossain K.F.B., Banik S., Hosokawa T., Saito T., Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 2018;9:1–16. PubMed PMC
Alinovi R., Goldoni M., Pinelli S., Campanini M., Aliatis I., Bersani D., Lottici P.P., Iavicoli S., Petyx M., Mozzoni P., Mutti A. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol. Vitro. 2015;29:426–437. PubMed
Andrews G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000;59:95–104. PubMed
Angelstorf J.S., Ahlf W., von der Kammer F., Heise S. Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. Environ. Toxicol. Chem. 2014;33:2288–2296. PubMed
Arini A., Pierron F., Mornet S., Baudrimont M. Bioaccumulation dynamics and gene regulation in a freshwater bivalve after aqueous and dietary exposures to gold nanoparticles and ionic gold. Environ. Sci. Pollut. Control Ser. 2020;27:3637–3650. PubMed
Armenteros M., Heinonen M., Ollilainen V., Toldrá F., Estévez M. Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) Meat Sci. 2009;83:104–112. PubMed
Arnér E.S., Zhong L., Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol. 1999:226–239. Elsevier. PubMed
Arratia F., Olivares-Ferretti P., García-Rodríguez A., Marcos R., Carmona E.R. Comparative toxic effects of copper-based nanoparticles and their microparticles in Daphnia magna by using natural freshwater media. N. Z. J. Mar. Freshw. Res. 2019;53:460–469.
Arvidsson R., Molander S., Sandén B.A. Particle flow analysis exploring potential use phase emissions of titanium dioxide nanoparticles from sunscreen, paint, and cement. J. Ind. Ecol. 2012;16:343–351.
Ates M., Demir V., Adiguzel R., Arslan Z. Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (Carassius auratus) J. Nanomater. 2013;2013:6. PubMed PMC
Athar M., Iqbal M. Ferric nitrilotriacetate promotes N-diethylnitrosamine-induced renal tumorigenesis in the rat: implications for the involvement of oxidative stress. Carcinogenesis. 1998;19:1133–1139. PubMed
Auclair J., Peyrot C., Wilkinson K.J., Gagne F. The influence of silver nanoparticle form on the toxicity in freshwater mussels. Applied Sciences-Basel. 2022;12
Auffan M., Bertin D., Chaurand P., Pailles C., Dominici C., Rose J., Bottero J.Y., Thiery A. Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Res. 2013;47:3921–3930. PubMed
Auffan M., Santaella C., Brousset L., Tella M., Morel E., Ortet P., Barakat M., Chaneac C., Issartel J., Angeletti B., Levard C., Hazemann J.L., Wiesner M., Rose J., Thiery A., Bottero J.Y. The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. Environ. Sci.: Nano. 2020;7:3167–3177.
Aziz S., Abdullah S. Evaluation of toxicity induced by engineered CuO nanoparticles in freshwater fish, Labeo rohita</i>. Turk. J. Fish. Aquat. Sci. 2023;23
Baalousha M. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009;407:2093–2101. PubMed
Babaei M., Tayemeh M.B., Jo M.S., Yu I.J., Johari S.A. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. Sci. Total Environ. 2022;842 PubMed
Bacchetta R., Santo N., Marelli M., Nosengo G., Tremolada P. Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Environ. Res. 2017;152:128–140. PubMed
Balfourier A., Luciani N., Wang G., Lelong G., Ersen O., Khelfa A., Alloyeau D., Gazeau F., Carn F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2020;117:103–113. PubMed PMC
Banumathi B., Vaseeharan B., Suganya P., Citarasu T., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Benelli G. Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J. Cluster Sci. 2017;28:2027–2040.
Bao S.P., Huang J.L., Liu X.W., Tang W., Fang T. Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles. Sci. Total Environ. 2018;644:736–746. PubMed
Barot N., Patel S.B., Kaur H. Nitro resin supported copper nanoparticles: an effective heterogeneous catalyst for C-N cross coupling and oxidative C-C homocoupling. J. Mol. Catal. Chem. 2016;423:77–84.
Barreto A., Carvalho A., Campos A., Osorio H., Pinto E., Almeida A., Trindade T., Soares A., Hylland K., Loureiro S., Oliveira M. Effects of gold nanoparticles in gilthead seabream-A proteomic approach. Aquat. Toxicol. 2020;221 PubMed
Barreto A., Luis L.G., Pinto E., Almeida A., Paiga P., Santos L., Delerue-Matos C., Trindade T., Soares A., Hylland K., Loureiro S., Oliveira M. Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - single and combined exposures with gemfibrozil. Chemosphere. 2019;215:248–260. PubMed
Batley G.E., Kirby J.K., McLaughlin M.J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Accounts Chem. Res. 2013;46:854–862. PubMed
Baumann C., Beil A., Jurt S., Niederwanger M., Palacios O., Capdevila M., Atrian S., Dallinger R., Zerbe O. Structural adaptation of a protein to increased metal stress: NMR structure of a marine snail metallothionein with an additional domain. Angew. Chem.-Int. Edit. 2017;56:4617–4622. PubMed
Baun A., Sayre P., Steinhauser K.G., Rose J. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact. 2017;8:1–10.
Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–287. PubMed
Begum R., Farooqi Z.H., Naseem K., Ali F., Batool M., Xiao J.L., Irfan A. Applications of UV/vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: a review. Crit. Rev. Anal. Chem. 2018;48:503–516. PubMed
Ben-Sasson M., Lu X.L., Nejati S., Jaramillo H., Elimelech M. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination. 2016;388:1–8.
Benavides M., Fernandez-Lodeiro J., Coelho P., Lodeiro C., Diniz M.S. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environ. Sci. Pollut. Control Ser. 2016;23:24578–24591. PubMed
Bernard E., Brulle F., Dumez S., Lemiere S., Platel A., Nesslany F., Cuny D., Deram A., Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. Ecotoxicol. Environ. Saf. 2015;114:273–303. PubMed
Bertrand L., Monferran M.V., Mouneyrac C., Bonansea R.I., Asis R., Ame M.V. Sensitive biomarker responses of the shrimp Palaemonetes argentinus exposed to chlorpyrifos at environmental concentrations: roles of alpha-tocopherol and metallothioneins. Aquat. Toxicol. 2016;179:72–81. PubMed
Beutler E., Kelly B.M. The effect of sodium nitrite on red cell GSH. Experientia. 1963;19:96–97. PubMed
Beutler E. A manual of biochemical methods. Red cell. Metab. 1984:77–78.
Bhardwaj C., Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat. Prod. Rep. 2014;31:756–767. PubMed
Blaser S.A., Scheringer M., MacLeod M., Hungerbühler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008;390:396–409. PubMed
Blinova I., Ivask A., Heinlaan M., Mortimer M., Kahru A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010;158:41–47. PubMed
Bobori D., Dimitriadi A., Karasiali S., Tsoumaki-Tsouroufli P., Mastora M., Kastrinaki G., Feidantsis K., Printzi A., Koumoundouros G., Kaloyianni M. Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure. Environ. Int. 2020;138 PubMed
Bokare A.D., Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard Mater. 2014;275:121–135. PubMed
Borovinskaya O., Gschwind S., Hattendorf B., Tanner M., Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal. Chem. 2014;86:8142–8148. PubMed
Botha T.L., Boodhia K., Wepener V. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure. Aquat. Toxicol. 2016;170:104–111. PubMed
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Brun N.R., Lenz M., Wehrli B., Fent K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci. Total Environ. 2014;476:657–666. PubMed
Buege J.A., Aust S.D. In: Methods in Enzymology. Fleischer S., Packer L., editors. Academic Press; 1978. [30] Microsomal lipid peroxidation; pp. 302–310. PubMed
Buonocore G., Perrone S., Tataranno M.L. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin. Fetal Neonatal Med. 2010;15:186–190. PubMed
Cáceres-Vélez P.R., Fascineli M.L., Sousa M.H., Grisolia C.K., Yate L., de Souza P.E.N., Estrela-Lopis I., Moya S., Azevedo R.B. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating. J. Hazard Mater. 2018;353:173–181. PubMed
Calatayud S., Garcia-Risco M., Pedrini-Martha V., Eernisse D.J., Dallinger R., Palacios Ò., Capdevila M., Albalat R. Modularity in protein evolution: modular organization and de novo domain evolution in mollusk metallothioneins. Mol. Biol. Evol. 2021;38:424–436. PubMed PMC
Canesi L., Fabbri R., Gallo G., Vallotto D., Marcomini A., Pojana G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2) Aquat. Toxicol. 2010;100:168–177. PubMed
Canli E.G., Dogan A., Canli M. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus) Environ. Toxicol. Pharmacol. 2018;62:181–187. PubMed
Cao W., Jin M., Yang K., Chen B., Xiong M., Li X., Cao G. Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J. Nanobiotechnol. 2021;19:325. PubMed PMC
Carlberg I., Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975;250:5475–5480. PubMed
Carrazco-Quevedo A., Römer I., Salamanca M.J., Poynter A., Lynch I., Valsami-Jones E. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster) Ecotoxicol. Environ. Saf. 2019;179:127–134. PubMed
Cavaletto M., Ghezzi A., Burlando B., Evangelisti V., Ceratto N., Viarengo A. Effect of hydrogen peroxide on antioxidant enzymes and metallothionein level in the digestive gland of Mytilus galloprovincialis. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2002;131:447–455. PubMed
Cernescu M., Stark T., Kalden E., Kurz C., Leuner K., Deller T., Göbel M., Eckert G.P., Brutschy B. Laser-induced liquid bead ion desorption mass spectrometry: an approach to precisely monitor the oligomerization of the β-amyloid peptide. Anal. Chem. 2012;84:5276–5284. PubMed
Chae Y.J., Pham C.H., Lee J., Bae E., Yi J., Gu M.B. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) Aquat. Toxicol. 2009;94:320–327. PubMed
Chappell M.A., George A.J., Dontsova K.M., Porter B.E., Price C.L., Zhou P.H., Morikawa E., Kennedy A.J., Steevens J.A. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environ. Pollut. 2009;157:1081–1087. PubMed
Chen J., Lei L., Mo W., Dong H., Li J., Bai C., Huang K., Truong L., Tanguay R.L., Dong Q., Huang C. Developmental titanium dioxide nanoparticle exposure induces oxidative stress and neurobehavioral changes in zebrafish. Aquat. Toxicol. 2021;240 PubMed
Chen X.J., Zhu Y., Yang K., Zhu L.Z., Lin D.H. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. Environ. Pollut. 2019;247:421–430. PubMed
Chen Z.Y., Yang Y.C., Wang B.J., Cheng F.Y., Lee Y.L., Lee Y.H., Wang Y.J. Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae. Ecotoxicol. Environ. Saf. 2022;243 PubMed
Cheng C.H., Guo Z.X., Luo S.W., Wang A.L. Effects of high temperature on biochemical parameters, oxidative stress, DNA damage and apoptosis of pufferfish (Takifugu obscurus) Ecotoxicol. Environ. Saf. 2018;150:190–198. PubMed
Christensen M., Rasmussen J.T., Simonsen A.C. Roughness analysis of single nanoparticles applied to atomic force microscopy images of hydrated casein micelles. Food Hydrocolloids. 2015;45:168–174.
Chu R.X., Wang Y., Kong J.L., Pan T., Yang Y.N., He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J. Mater. Chem. B. 2024;12:4759–4784. PubMed
Chupani L., Niksirat H., Velisek J., Stara A., Hradilova S., Kolarik J., Panacek A., Zuskova E. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol. Environ. Saf. 2018;147:110–116. PubMed
Claiborne A. Handbook Methods for Oxygen Radical Research. CRC press; 1985. Catalase activity; pp. 283–284.
Clement L., Hurel C., Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere. 2013;90:1083–1090. PubMed
Clemente Z., Castro V.L., Feitosa L.O., Lima R., Jonsson C.M., Maia A.H.N., Fraceto L.F. Biomarker evaluation in fish after prolonged exposure to nano-TiO2: influence of illumination conditions and crystal phase. J. Nanosci. Nanotechnol. 2015;15:5424–5433. PubMed
Crapo J.D., McCord J.M., Fridovich I. In: Methods in Enzymology. Fleischer S., Packer L., editors. Academic Press; 1978. [41] Preparation and assay of superioxide dismutases; pp. 382–393. PubMed
Croteau M.N., Misra S.K., Luoma S.N., Valsami-Jones E. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. Environ. Sci. Technol. 2014;48:10929–10937. PubMed
Crouch R.K., Gandy S.E., Kimsey G., Galbraith R.A., Galbraith G.M., Buse M.G. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes. 1981;30:235–241. PubMed
Cui R., Chae Y., An Y.J. Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata</i>. Chemosphere. 2017;185:205–212. PubMed
Dallinger R., Zerbe O., Baumann C., Egger B., Capdevila M., Palacios O., Albalat R., Calatayud S., Ladurner P., Schlick-Steiner B.C., Steiner F.M., Pedrini-Martha V., Lackner R., Lindner H., Dvorak M., Niederwanger M., Schnegg R., Atrian S. Metallomics reveals a persisting impact of cadmium on the evolution of metal-selective snail metallothioneins. Metallomics. 2020;12:702–720. PubMed
Damiens G., Mouneyrac C., Quiniou F., His E., Gnassia-Barelli M., Romeo M. Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environ. Pollut. 2006;140:492–499. PubMed
de Groot L.E.S., Sabogal Piñeros Y.S., Bal S.M., van de Pol M.A., Hamann J., Sterk P.J., Kulik W., Lutter R. Do eosinophils contribute to oxidative stress in mild asthma? Clin. Exp. Allergy. 2019;49:929–931. PubMed PMC
Degueldre C., Favarger P.Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf. A Physicochem. Eng. Asp. 2003;217:137–142.
Dellali M., Khallouli A., Harrath A.H., Falodah F., Alwasel S., Beyrem H., Gyedu-Ababio T., Rohal-Lupher M., Boufahja F. Effects of Au/TiO(2) metallic nanoparticles on Unio ravoisieri: assessment through an oxidative stress and toxicity biomarkers. Environ. Sci. Pollut. Res. Int. 2021;28:18176–18185. PubMed
Delmond K.A., Vicari T., Guiloski I.C., Dagostim A.C., Voigt C.L., de Assis H.C.S., Ramsdorf W.A., Cestari M.M. Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII) Environ. Toxicol. Pharmacol. 2019;67:42–52. PubMed
Demokritou P., Gass S., Pyrgiotakis G., Cohen J.M., Goldsmith W., McKinney W., Frazer D., Ma J., Schwegler-Berry D., Brain J., Castranova V. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO₂ inhalation exposures. Nanotoxicology. 2013;7:1338–1350. PubMed PMC
Deng X.Y., Luan Q.X., Chen W.T., Wang Y.L., Wu M.H., Zhang H.J., Jiao Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009;20 PubMed
Deniaud A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics. 2021;13 PubMed
Devasena T., Iffath B., Renjith Kumar R., Muninathan N., Baskaran K., Srinivasan T., John S.T. Insights on the dynamics and toxicity of nanoparticles in environmental matrices. Bioinorgan. Chem. Appl. 2022;2022 PubMed PMC
Devi G.P., Ahmed K.B.A., Varsha M., Shrijha B.S., Lal K.K.S., Anbazhagan V., Thiagarajan R. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat. Toxicol. 2015;158:149–156. PubMed
Diegoli S., Manciulea A.L., Begum S., Jones I.P., Lead J.R., Preece J.A. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008;402:51–61. PubMed
Ding L., Yao C.J., Yin X.F., Li C.C., Huang Y.A., Wu M., Wang B., Guo X.Y., Wang Y.L., Wu M.H. Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small. 2018;14 PubMed
Djurisic A.B., Leung Y.H., Ng A.M.C., Xu X.Y., Lee P.K.H., Degger N., Wu R.S.S. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small. 2015;11:26–44. PubMed
Dong B., Liu G., Zhou J., Wang J., Jin R. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature. J. Hazard Mater. 2020;383 PubMed
dos Prazeres J.N., Ferreira C.V., Aoyama H. Acid phosphatase activities during the germination of Glycine max seeds. Plant Physiol. Biochem. 2004;42:15–20. PubMed
Drotar A., Phelps P., Fall R. Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci. 1985;42:35–40.
Du J., Tang J.H., Xu S.D., Ge J.Y., Dong Y.W., Li H.X., Jin M.Q. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul. Toxicol. Pharmacol. 2018;98:231–239. PubMed
Dubois M., Gilles K., Hamilton J.K., Rebers P.A., Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168:167. PubMed
Dwivedi A.D., Dubey S.P., Sillanpää M., Kwon Y.-N., Lee C., Varma R.S. Fate of engineered nanoparticles: implications in the environment. Coord. Chem. Rev. 2015;287:64–78.
El-Bindary A.A., El-Marsafy S.M., El-Maddah A.A. Enhancement of the photocatalytic activity of ZnO nanoparticles by silver doping for the degradation of AY99 contaminants. J. Mol. Struct. 2019;1191:76–84.
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88. PubMed
Eroglu A., Dogan Z., Kanak E.G., Atli G., Canli M. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environ. Sci. Pollut. Control Ser. 2015;22:3229–3237. PubMed
Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem. 2003;312:224–227. PubMed
Fan W., Liu L., Peng R., Wang W.X. High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach. Sci. Total Environ. 2016;569–570:1224–1231. PubMed
Fan W., Wang X., Cui M., Zhang D., Zhang Y., Yu T., Guo L. Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna. Environ. Sci. Technol. 2012;46:10255–10262. PubMed
Farkas J., Christian P., Gallego-Urrea J.A., Roos N., Hassellov M., Tollefsen K.E., Thomas K.V. Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat. Toxicol. 2011;101:117–125. PubMed
Ferdous Z., Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020;21 PubMed PMC
Fkiri A., Sellami B., Selmi A., Khazri A., Saidani W., Imen B., Sheehan D., Hamouda B., Smiri L.S. Gold Octahedra nanoparticles (Au_(0.03) and Au_(0.045)): synthesis and impact on marine clams Ruditapes decussatus. Aquat. Toxicol. 2018;202:97–104. PubMed
Fletcher G.G., Rossetto F.E., Turnbull J.D., Nieboer E. Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ. Health Perspect. 1994;102(Suppl. 3):69–79. PubMed PMC
Ganem B., Li Y.T., Henion J.D. Detection of noncovalent receptor-ligand complexes by mass spectrometry. J. Am. Chem. Soc. 1991;113:6294–6296.
Gao J., Powers K., Wang Y., Zhou H., Roberts S.M., Moudgil B.M., Koopman B., Barber D.S. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere. 2012;89:96–101. PubMed
Gao Y.F., Wu W.R., Qiao K.X., Feng J.F., Zhu L., Zhu X.S. Bioavailability and toxicity of silver nanoparticles: determination based on toxicokinetic-toxicodynamic processes. Water Res. 2021;204 PubMed
Gatoo M.A., Naseem S., Arfat M.Y., Dar A.M., Qasim K., Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Int. 2014;2014:8. PubMed PMC
Gatta P.P., Pirini M., Testi S., Vignola G., Monetti P.G. The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquacult. Nutr. 2000;6:47–52.
George S., Lin S.J., Jo Z.X., Thomas C.R., Li L.J., Mecklenburg M., Meng H., Wang X., Zhang H.Y., Xia T., Hohman J.N., Lin S., Zink J.I., Weiss P.S., Nel A.E. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 2012;6:3745–3759. PubMed PMC
Ghobashy M.M., Abd Elkodous M., Shabaka S.H., Younis S.A., Alshangiti D.M., Madani M., Al-Gahtany S.A., Elkhatib W.F., Noreddin A.M., Nady N., El-Sayyad G.S. An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnol. Rev. 2021;10:954–977.
Ginzburg A.L., Truong L., Tanguay R.L., Hutchison J.E. Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano. 2018;12:5312–5322. PubMed
Girardello F., Leite C.C., Branco C.S., Roesch-Ely M., Fernandes A.N., Salvador M., Henriques J.A.P. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO2 nanoparticles. Aquat. Toxicol. 2016;176:190–196. PubMed
Gnatyshyna L., Falfushynska H., Horyn O., Khoma V., Martinyuk V., Mishchuk O., Mishchuk N., Stoliar O. Biochemical responses of freshwater mussel Unio tumidus to titanium oxide nanoparticles, Bisphenol A, and their combination. Ecotoxicology. 2019;28:923–937. PubMed
Gobi N., Vaseeharan B., Rekha R., Vijayakumar S., Faggio C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2018;162:147–159. PubMed
Gondikas A.P., von der Kammer F., Reed R.B., Wagner S., Ranville J.F., Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the Old Danube recreational lake. Environ. Sci. Technol. 2014;48:5415–5422. PubMed
Gopi N., Vijayakumar S., Thaya R., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Al-Anbr M.N., Vaseeharan B. Chronic exposure of Oreochromis niloticus> to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J. Trace Elem. Med. Biol. 2019;55:170–179. PubMed
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 1991;196:143–151. PubMed
Gottschalk F., Scholz R.W., Nowack B. Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ. Model. Software. 2010;25:320–332.
Gottschalk F., Sonderer T., Scholz R.W., Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009;43:9216–9222. PubMed
Gottschalk F., Sonderer T., Scholz R.W., Nowack B. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 2010;29:1036–1048. PubMed
Gouveia D., Almunia C., Cogne Y., Pible O., Degli-Esposti D., Salvador A., Cristobal S., Sheehan D., Chaumot A., Geffard O., Armengaud J. Ecotoxicoproteomics: a decade of progress in our understanding of anthropogenic impact on the environment. J. Proteonomics. 2019;198:66–77. PubMed
Guo H., Kuang Y., Ouyang K., Zhang C., Yang H., Chen S., Tang R., Zhang X., Li D., Li L. Ammonia in the presence of nano titanium dioxide (nano-TiO2) induces greater oxidative damage in the gill and liver of female zebrafish. Ecotoxicol. Environ. Saf. 2022;236:113458. PubMed
Gupta P., Rai N., Verma A., Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med. Res. Rev. 2024;44:138–168. PubMed
Ha J.H., Prela O., Carpizo D.R., Loh S.N. p53 and zinc: a malleable relationship. Front. Mol. Biosci. 2022;9 PubMed PMC
Haase H., Maret W. A differential assay for the reduced and oxidized states of metallothionein and thionein. Anal. Biochem. 2004;333:19–26. PubMed
Habig W.H., Jakoby W.B. Methods in Enzymology. Academic Press; 1981. Assays for differentiation of glutathione S-Transferases; pp. 398–405. PubMed
Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. PubMed
Hadwan M. New method for assessment of serum catalase activity. Indian J. Sci. Technol. 2016;9:1.
Haghighat F., Kim Y., Sourinejad I., Yu I.J., Johari S.A. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp Cyprinus carpio. Chemosphere. 2021;262 PubMed
Hao L.H., Chen L., Hao J.M., Zhong N. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf. 2013;91:52–60. PubMed
Hao Z.Y., Zhu R.F., Chen P.R. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr. Opin. Chem. Biol. 2018;43:87–96. PubMed
Haque M.N., Eom H.-J., Nam S.-E., Shin Y.K., Rhee J.-S. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. PLoS One. 2019;14 PubMed PMC
Hauser-Davis R.A., Gonçalves R.A., Ziolli R.L., de Campos R.C. A novel report of metallothioneins in fish bile: SDS-PAGE analysis, spectrophotometry quantification and metal speciation characterization by liquid chromatography coupled to ICP-MS. Aquat. Toxicol. 2012;116–117:54–60. PubMed
Hawkins A.D., Thornton C., Kennedy A.J., Bu K.X., Cizdziel J., Jones B.W., Steevens J.A., Willett K.L. Gill Histopathologies Following Exposure to Nanosilver or Silver Nitrate. J. Toxicol. Environ. Health-Pt A-Curr. Iss. 2015;78:301–315. PubMed
Hirano T., Kikuchi K., Urano Y., Nagano T. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J. Am. Chem. Soc. 2002;124:6555–6562. PubMed
Hissin P.J., Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976;74:214–226. PubMed
Hong H.R., Liu Z.Y., Li S.Q., Wu D., Jiang L.Q., Li P.X., Wu Z.K., Xu J.N., Jiang A.M., Zhang Y., Wei Z.K., Yang Z.T. Zinc oxide nanoparticles (ZnO-NPs) exhibit immune toxicity to crucian carp (Carassius carassius) by neutrophil extracellular traps (NETs) release and oxidative stress. Fish Shellfish Immunol. 2022;129:22–29. PubMed
Hong T.K., Tripathy N., Son H.J., Ha K.T., Jeong H.S., Hahn Y.B. A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J. Mater. Chem. B. 2013;1:2985–2992. PubMed
Horie M., Tabei Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res. 2021;55:331–342. PubMed
Hou J., Wu Y.Z., Li X., Wei B.B., Li S.G., Wang X.K. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere. 2018;193:852–860. PubMed
Hou J., Zhou Y., Wang C., Li S., Wang X. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic Crustacean Daphnia magna. Environ. Sci. Technol. 2017;51:12868–12878. PubMed
Hou J., Li L., Xue T., Long M., Su Y., Wu N. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR. Chemosphere. 2015;120:729–736. PubMed
Hou W.-C., Stuart B., Howes R., Zepp R.G. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ. Sci. Technol. 2013;47:7713–7721. PubMed
Hough R.M., Noble R.R.P., Reich M. Natural gold nanoparticles. Ore Geol. Rev. 2011;42:55–61.
Huang X.Z., Lan Y.W., Liu Z.K., Huang W., Guo Q.D., Liu L.P., Hu M.H., Sui Y.M., Wu F.L., Lu W.Q., Wang Y.J. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus</i>. Sci. Total Environ. 2018;640:726–735. PubMed
Huang X.Z., Liu Z.K., Xie Z., Dupont S., Huang W., Wu F.L., Kong H., Liu L.P., Sui Y.M., Lin D.H., Lu W.Q., Hu M.H., Wang Y.J. Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. Mar. Environ. Res. 2018;137:49–59. PubMed
Huang Z.Z., Zeng Z.T., Chen A.W., Zeng G.M., Xiao R., Xu P., He K., Song Z.X., Hu L., Peng M., Huang T.T., Chen G.Q. Differential behaviors of silver nanoparticles and silver ions towards cysteine: bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere. 2018;203:199–208. PubMed
Imani M., Halimi M., Khara H. Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comp. Clin. Pathol. 2015;24:491–495.
Infante H.G., Van Campenhout K., Blust R., Adams F.C. Anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma-isotope dilution-time-of-flight mass spectrometry for speciation analysis of metal complexes with metallothionein isoforms in gibel carp (Carassius auratus gibelio) exposed to environmental metal pollution. J. Chromatogr. A. 2006;1121:184–190. PubMed
Inkinen J., Makinen R., Keinanen-Toivola M.M., Nordstrom K., Ahonen M. Copper as an antibacterial material in different facilities. Lett. Appl. Microbiol. 2017;64:19–26. PubMed
Jeong C.B., Kang H.M., Lee M.C., Byeon E., Park H.G., Lee J.S. Effects of polluted seawater on oxidative stress, mortality, and reproductive parameters in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus. Aquat. Toxicol. 2019;208:39–46. PubMed
Johari S.A., Sarkheil M., Asghari S., Haghighat F., Dekani L., Keyvanshokooh S. Comparative toxicity of nanoparticulate and ionic copper following dietary exposure to common carp (Cyprinus carpio) Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2020;229 PubMed
Johnson A.C., Bowes M.J., Crossley A., Jarvie H.P., Jurkschat K., Jürgens M.D., Lawlor A.J., Park B., Rowland P., Spurgeon D., Svendsen C., Thompson I.P., Barnes R.J., Williams R.J., Xu N. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci. Total Environ. 2011;409:2503–2510. PubMed
Johnson B.D., Gilbert S.L., Khan B., Carroll D.L., Ringwood A.H. Cellular responses of eastern oysters, Crassostrea virginica, to titanium dioxide nanoparticles. Mar. Environ. Res. 2015;111:135–143. PubMed
Johnston B.D., Scown T.M., Moger J., Cumberland S.A., Baalousha M., Linge K., van Aerle R., Jarvis K., Lead J.R., Tyler C.R. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ. Sci. Technol. 2010;44:1144–1151. PubMed
Jollow D.J., Mitchell J.R., Zampaglione N., Gillette J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–169. PubMed
Joo S.H., Zhao D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J. Hazard Mater. 2017;322:29–47. PubMed
Kaeokhamloed N., Legeay S., Roger E. FRET as the tool for in vivo nanomedicine tracking. J. Contr. Release. 2022;349:156–173. PubMed
Kakakhel M.A., Narwal N., Khan A., Ayub H., Jiang Z.W., Xiaotao S. Bio-reductive synthesis of silver nanoparticles, its antibacterial efficiency, and possible toxicity in common carp fish (Cyprinus carpio) Microsc. Res. Tech. 2024;87:349–359. PubMed
Kalantzi I., Mylona K., Toncelli C., Bucheli T.D., Knauer K., Pergantis S.A., Pitta P., Tsiola A., Tsapakis M. Ecotoxicity of silver nanoparticles on plankton organisms: a review. J. Nanoparticle Res. 2019;21
Kapellios E.A., Pergantis S.A. Size and elemental composition of nanoparticles using ion mobility spectrometry with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012;27:21–24.
Katerji M., Filippova M., Duerksen-Hughe P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid. Med. Cell. Longev. 2019;2019:29. PubMed PMC
Kaweeteerawat C., Ubol P.N., Sangmuang S., Aueviriyavit S., Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health. 2017;80:1276–1289. PubMed
Kaya H., Duysak M., Akbulut M., Yılmaz S., Gürkan M., Arslan Z., Demir V., Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus) Environ. Toxicol. 2017;32:1213–1225. PubMed PMC
Keen J.H., Habig W.H., Jakoby W.B. Mechanism for the several activities of the glutathione S transferases. J. Biol. Chem. 1976;251:6183–6188. PubMed
Keller A.A., Adeleye A.S., Conway J.R., Garner K.L., Zhao L.J., Cherr G.N., Hong J., Gardea-Torresdey J.L., Godwin H.A., Hanna S., Ji Z.X., Kaweeteerawat C., Lin S.J., Lenihan H.S., Miller R.J., Nel A.E., Peralta-Videa J.R., Walker S.L., Taylor A.A., Torres-Duarte C., Zink J.I., Zuverza-Mena N. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28–40.
Khan I., Bahuguna A., Krishnan M., Shukla S., Lee H., Min S.-H., Choi D.K., Cho Y., Bajpai V.K., Huh Y.S., Kang S.C. The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci. Total Environ. 2019;679:365–377. PubMed
Khan M.S., Qureshi N.A., Jabeen F. Assessment of toxicity in fresh water fish Labeo rohita treated with silver nanoparticles. Appl. Nanosci. 2017;7:167–179.
Khan M.S., Qureshi N.A., Jabeen F., Asghar M.S., Shakeel M., Fakhar-e-Alam M. Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the Labeo rohita. Biol. Trace Elem. Res. 2017;176:416–428. PubMed
Khan M.S., Qureshi N.A., Jabeen F., Shakeel M., Asghar M.S. Assessment of waterborne amine-coated silver nanoparticle (Ag-NP)-Induced toxicity in Labeo rohita by histological and hematological profiles. Biol. Trace Elem. Res. 2018;182:130–139. PubMed
Khoshnamvand M., Hao Z.N., Fadare O.O., Hanachi P., Chen Y.S., Liu J.F. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere. 2020;258 PubMed
Khosravi-Katuli K., Lofrano G., Nezhad H.P., Giorgio A., Guida M., Aliberti F., Siciliano A., Carotenuto M., Galdiero E., Rahimi E., Libralato G. Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus) Sci. Total Environ. 2018;626:30–41. PubMed
Kim M.S., Louis K.M., Pedersen J.A., Hamers R.J., Peterson R.E., Heideman W. Using citrate-functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst. 2014;139:964–972. PubMed
Kittler S., Greulich C., Diendorf J., Köller M., Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010;22:4548–4554.
Klaine S.J., Alvarez P.J.J., Batley G.E., Fernandes T.F., Handy R.D., Lyon D.Y., Mahendra S., McLaughlin M.J., Lead J.R. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008;27:1825–1851. PubMed
Klein M., Menta M., Dacoba T.G., Crecente-Campo J., Alonso M.J., Dupin D., Loinaz I., Grassl B., Séby F. Advanced nanomedicine characterization by DLS and AF4-UV-MALS: application to a HIV nanovaccine. J. Pharmaceut. Biomed. Anal. 2020;179 PubMed
Koehle-Divo V., Sohm B., Giamberini L., Pauly D., Flayac J., Devin S., Auffan M., Mouneyrac C., Pain-Devin S. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea. Environ. Pollut. 2019;254 PubMed
Koelmans A.A., Nowack B., Wiesner M.R. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ. Pollut. 2009;157:1110–1116. PubMed
Kokturk M., Yıldırım S., Nas M.S., Ozhan G., Atamanalp M., Bolat I., Calimli M.H., Alak G. Investigation of the oxidative stress response of a green synthesis nanoparticle (RP-Ag/ACNPs) in zebrafish. Biol. Trace Elem. Res. 2022;200:2897–2907. PubMed
Krezel A., Bal W. Coordination chemistry of glutathione. Acta Biochim. Pol. 1999;46:567–580. PubMed
Krezel A., Bal W. Studies of zinc(II) and nickel(II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorgan. Chem. Appl. 2004;2:293–305. PubMed PMC
Krezel A., Maret W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016;611:3–19. PubMed PMC
Krezel A., Maret W. The bioinorganic chemistry of mammalian metallothioneins. Chem. Rev. 2021;121:14594–14648. PubMed
Krezel A., Wojcik J., Maciejczyk M., Bal W. Zn(II) complexes of glutathione disulfide: structural basis of elevated stabilities. Inorg. Chem. 2011;50:72–85. PubMed
Kroller-Schon S., Steven S., Kossmann S., Scholz A., Daub S., Oelze M., Xia N., Hausding M., Mikhed Y., Zinssius E., Mader M., Stamm P., Treiber N., Scharffetter-Kochanek K., Li H.G., Schulz E., Wenzel P., Munzel T., Daiber A. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxidants Redox Signal. 2014;20:247–266. PubMed PMC
Kumar N., Chandan N.K., Wakchaure G.C., Singh N.P. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2020;229 PubMed
Kumar N., Thorat S.T., Reddy K.S. Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon hypophthalmus</i>. Sci. Rep. 2023;13 PubMed PMC
Kumari J., Sahoo P.K. Dietary β-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.) J. Fish Dis. 2006;29:95–101. PubMed
Kunc F., Balhara V., Sun Y., Daroszewska M., Jakubek Z.J., Hill M., Brinkmann A., Johnston L.J. Quantification of surface functional groups on silica nanoparticles: comparison of thermogravimetric analysis and quantitative NMR. Analyst. 2019;144:5589–5599. PubMed
Kwok K.W.H., Auffan M., Badireddy A.R., Nelson C.M., Wiesner M.R., Chilkoti A., Liu J., Marinakos S.M., Hinton D.E. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat. Toxicol. 2012;120–121:59–66. PubMed
Lacave J.M., Fanjul A., Bilbao E., Gutierrez N., Barrio I., Arostegui I., Cajaraville M.P., Orbea A. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2017;199:69–80. PubMed
Lan Y.C., Lu Y.L., Ren Z.F. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy. 2013;2:1031–1045.
Lapresta-Fernandez A., Fernandez A., Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trac. Trends Anal. Chem. 2012;32:40–59.
Lavilla I., Costas M., Gil S., Corderi S., Sanchez G., Bendicho C. Simplified and miniaturized procedure based on ultrasound-assisted cytosol preparation for the determination of Cd and Cu bound to metallothioneins in mussel tissue by ICP-MS. Talanta. 2012;93:111–116. PubMed
Lawrence R.A., Burk R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976;71:952–958. PubMed
Lee G., Lee B., Kim K.T. Mechanisms and effects of zinc oxide nanoparticle transformations on toxicity to zebrafish embryos. Environ. Sci.: Nano. 2021;8:1690–1700.
Lee J.W., Kim J.E., Shin Y.J., Ryu J.S., Eom I.C., Lee J.S., Kim Y., Kim P.J., Choi K.H., Lee B.C. Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol. Environ. Saf. 2014;104:9–17. PubMed
Lee W.S., Kim E., Cho H.J., Kang T., Kim B., Kim M.Y., Kim Y.S., Song N.W., Lee J.S., Jeong J. The relationship between dissolution behavior and the toxicity of silver nanoparticles on zebrafish embryos in different ionic environments. Nanomaterials. 2018;8 PubMed PMC
Lei X.G., Evenson J.K., Thompson K.M., Sunde R.A. Glutathione-peroxidase and phospholipid hydroperoxide glutathione-peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 1995;125:1438–1446. PubMed
Leitner J., Sedmidubsky D. Preparation, properties and utilization of nanostructured ZnO. Chem. Listy. 2016;110:406–417.
Lekamge S., Miranda A.F., Pham B., Ball A.S., Shukla R., Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. J. Toxicol. Environ. Health. 2019;82:1207–1222. PubMed
Leung B.O., Jalilehvand F., Mah V., Parvez M., Wu Q. Silver(I) complex formation with cysteine, penicillamine, and glutathione. Inorg. Chem. 2013;52:4593–4602. PubMed PMC
Levine R.L., Williams J.A., Stadtman E.R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Oxygen Radicals in Biological Systems, Pt C. 1994;233:346–357. PubMed
Li L.J., Jiang L.P., Geng C.Y., Cao J., Zhong L.F. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radic. Res. 2008;42:354–361. PubMed
Li S.B., Ma H.B., Wallis L.K., Etterson M.A., Riley B., Hoff D.J., Diamond S.A. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci. Total Environ. 2016;542:324–333. PubMed
Li S.B., Pan X., Wallis L.K., Fan Z.Y., Chen Z.L., Diamond S.A. Comparison of TiO2 nanoparticle and graphene-TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere. 2014;112:62–69. PubMed
Li S.B., Wallis L.K., Diamond S.A., Ma H.B., Hoff D.J. SPECIES SENSITIVITY AND DEPENDENCE ON EXPOSURE CONDITIONS IMPACTING THE PHOTOTOXICITY OF TiO2 NANOPARTICLES TO BENTHIC ORGANISMS. Environ. Toxicol. Chem. 2014;33:1563–1569. PubMed
Li T., Senesi A.J., Lee B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016;116:11128–11180. PubMed
Lin L., Xu M.Z., Mu H.W., Wang W.W., Sun J., He J., Qiu J.W., Luan T.G. Quantitative proteomic analysis to understand the mechanisms of zinc oxide nanoparticle toxicity to Daphnia pulex (Crustacea: Daphniidae): comparing with bulk zinc oxide and zinc salt. Environ. Sci. Technol. 2019;53:5436–5444. PubMed
Lin Y.Q., Wang J., He S.F., Yan H.L., Chen Q.W. Antioxidant response to ZnO nanoparticles in juvenile Takifugu obscurus: protective effects of salinity. Ecotoxicology. 2024;33:85–93. PubMed
Lipovsky A., Tzitrinovich Z., Friedmann H., Applerot G., Gedanken A., Lubart R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C. 2009;113:15997–16001.
Lira C.N., Carpenter A.P., Baio J.E., Harper B.J., Harper S.L., Mackiewicz M.R. Size- and shape-dependent interactions of lipid-coated silver nanoparticles: an improved mechanistic understanding through model cell membranes and in vivo toxicity. Chem. Res. Toxicol. 2024;37:968–980. PubMed
Liu H., Gu X., Wei C., Fu H., Alvarez P.J.J., Li Q., Zheng S., Qu X., Zhu D. Threshold concentrations of silver ions exist for the sunlight-induced formation of silver nanoparticles in the presence of natural organic matter. Environ. Sci. Technol. 2018;52:4040–4050. PubMed
Liu J., Hurt R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010;44:2169–2175. PubMed
Liu J.Y., Hurt R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010;44:2169–2175. PubMed
Liu W., Wu Y.A., Wang C., Li H.C., Wang T., Liao C.Y., Cui L., Zhou Q.F., Yan B., Jiang G.B. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4:319–330. PubMed
Liu Y.X., Yan Z.H., Xia J., Wang K., Ling X.C., Yan B. Potential toxicity in crucian carp following exposure to metallic nanoparticles of copper, chromium, and their mixtures: a comparative study. Pol. J. Environ. Stud. 2017;26:2085–2094.
Liu Z.Q., Malinowski C.R., Sepúlveda M.S. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. Chemosphere. 2022;291 PubMed
Lobinski R., Schaumloffel D., Szpunar J. Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom. Rev. 2006;25:255–289. PubMed
Loo R.R.O., Goodlett D.R., Smith R.D., Loo J.A. Observation of a noncovalent ribonuclease S-protein/S-peptide complex by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 1993;115:4391–4392.
Loosli F., Le Coustumer P., Stoll S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Res. 2013;47:6052–6063. PubMed
Lovern S.B., Strickler J.R., Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC(70)Hx) Environ. Sci. Technol. 2007;41:4465–4470. PubMed PMC
Lowry G.V., Gregory K.B., Apte S.C., Lead J.R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012;46:6893–6899. PubMed
Lowry O., Rosebrough N., Farr A.L., Randall R. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed
Lu C.J., Lv Y.H., Kou G.H., Liu Y., Liu Y., Chen Y., Wu X.W., Yang F., Luo J.J., Yang X.J. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio)</i>. Ecotoxicol. Environ. Saf. 2022;243 PubMed
Lu G., Yang H., Xia J., Zong Y., Liu J. Toxicity of Cu and Cr nanoparticles to Daphnia magna. Water Air Soil Pollut. 2017;228
Lushchak V.I. Classification of oxidative stress based on its intensity. Excli Journal. 2014;13:922–937. PubMed PMC
Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. PubMed
Lushchak V.I. Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiol. Biochem. 2016;42:711–747. PubMed
M'Kandawire E., Mierek-Adamska A., Sturzenbaum S.R., Choongo K., Yabe J., Mwase M., Saasa N., Blindauer C.A. Metallothionein from wild populations of the African catfish Clarias gariepinus: from sequence, protein expression and metal binding properties to transcriptional biomarker of metal pollution. Int. J. Mol. Sci. 2017;18 PubMed PMC
Ma H.B., Brennan A., Diamond S.A. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environ. Toxicol. Chem. 2012;31:1621–1629. PubMed
Ma R., Levard C., Judy J.D., Unrine J.M., Durenkamp M., Martin B., Jefferson B., Lowry G.V. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ. Sci. Technol. 2014;48:104–112. PubMed
Ma R., Levard C., Michel F.M., Brown G.E., Jr., Lowry G.V. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ. Sci. Technol. 2013;47:2527–2534. PubMed
Maehly A.C., Chance B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1954;1:357–424. PubMed
Malatjie T.S., Botha T.L., Tekere M., Kuvarega A.T., Nkambule T.T.I., Mamba B.B., Msagati T.A.M. Toxicity assessment of TiO2-conjugated Carbon-based nanohybrid material on a freshwater bioindicator cladoceran, Daphnia magna. Aquat. Toxicol. 2022;247 PubMed
Malhotra N., Ger T.R., Uapipatanakul B., Huang J.C., Chen K.H.C., Hsiao C.D. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials. 2020;10 PubMed PMC
Maltez H.F., Tagle M.V., de la Campa M.D.F., Sanz-Medel A. Metal-metallothioneins like proteins investigation by heteroatom-tagged proteomics in two different snails as possible sentinel organisms of metal contamination in freshwater ecosystems. Anal. Chim. Acta. 2009;650:234–240. PubMed
Marcone G.P.S., Oliveira A.C., Almeida G., Umbuzeiro G.A., Jardim W.F. Ecotoxicity of TiO2 to Daphnia similis under irradiation. J. Hazard Mater. 2012;211:436–442. PubMed
Marisa I., Matozzo V., Martucci A., Franceschinis E., Brianese N., Marin M.G. Bioaccumulation and effects of titanium dioxide nanoparticles and bulk in the clam Ruditapes philippinarum</i>. Mar. Environ. Res. 2018;136:179–189. PubMed
Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. PubMed
Marszalek I., Krezel A., Goch W., Zhukov I., Paczkowska I., Bal W. Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J. Inorg. Biochem. 2016;161:107–114. PubMed
Mbanga O., Cukrowska E., Gulumian M. Dissolution kinetics of silver nanoparticles: behaviour in simulated biological fluids and synthetic environmental media. Toxicol Rep. 2022;9:788–796. PubMed PMC
McCord J.M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) J. Biol. Chem. 1969;244:6049–6055. PubMed
Meisterjahn B., Wagner S., von der Kammer F., Hennecke D., Hofmann T. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: influence of run conditions and of particle and membrane charges. J. Chromatogr. A. 2016;1440:150–159. PubMed
Merrifield R.C., Stephan C., Lead J.R. Quantification of Au nanoparticle biouptake and distribution to freshwater algae using single cell – ICP-MS. Environ. Sci. Technol. 2018;52:2271–2277. PubMed
Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. PubMed
Mitrano D.M., Lesher E.K., Bednar A., Monserud J., Higgins C.P., Ranville J.F. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012;31:115–121. PubMed
Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7:779–786. PubMed
Monteiro R., Costa S., Coppola F., Freitas R., Vale C., Pereira E. Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. Sci. Total Environ. 2019;650:987–995. PubMed
Mori Y. Size-selective separation techniques for nanoparticles in liquid. KONA Powder Part. J. 2015:102–114.
Moron M.S., Depierre J.W., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1979;582:67–78. PubMed
Mudunkotuwa I.A., Rupasinghe T., Wu C.-M., Grassian V.H. Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir. 2012;28:396–403. PubMed
Mueller N.C., Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008;42:4447–4453. PubMed
Muller K.H., Kulkarni J., Motskin M., Goode A., Winship P., Skepper J.N., Ryan M.P., Porter A.E. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano. 2010;4:6767–6779. PubMed
Murthy M.K., Mohanty C.S., Swain P., Pattanayak R. Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: a multi-biomarker approach. Chemosphere. 2022;293 PubMed
Musee N. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum. Exp. Toxicol. 2011;30:1181–1195. PubMed
Naasz S., Altenburger R., Kuhnel D. Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Sci. Total Environ. 2018;635:1170–1181. PubMed
Nadhman A., Khan M.I., Nazir S., Khan M., Shahnaz G., Raza A., Shams D.F., Yasinzai M. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int. J. Nanomed. 2016;11:2451–2461. PubMed PMC
Nel A.E., Mädler L., Velegol D., Xia T., Hoek E.M., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557. PubMed
Ng C.T., Yong L.Q., Hande M.P., Ong C.N., Yu L.E., Bay B.H., Baeg G.H. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomed. 2017;12:1621–1637. PubMed PMC
Ngoc L.T.N., Bui V.K.H., Moon J.Y., Lee Y.C. In-vitro cytotoxicity and oxidative stress induced by cerium aminoclay and cerium oxide nanoparticles in human skin keratinocyte cells. J. Nanosci. Nanotechnol. 2019;19:6369–6375. PubMed
Nguyen L., Tao P.P., Liu H., Al-Hada M., Amati M., Sezen H., Gregoratti L., Tang Y., House S.D., Tao F.F. X-Ray photoelectron spectroscopy studies of nanoparticles dispersed in static liquid. Langmuir. 2018;34:9606–9616. PubMed
Nguyen M.C., Bon P. Optical signal-based improvement of individual nanoparticle tracking analysis. Meas. Sci. Technol. 2024;35
Niehaus W.G., Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem. 1968;6:126–130. PubMed
Noureen A., Jabeen F., Tabish T.A., Yaqub S., Ali M., Chaudhry A.S. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio. Nanotechnology. 2018;29 PubMed
Odziomek K., Ushizima D., Oberbek P., Kurzydlowski K.J., Puzyn T., Haranczyk M. Scanning electron microscopy image representativeness: morphological data on nanoparticles. J. Microsc. 2017;265:34–50. PubMed
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. PubMed
Omari Shekaftik S., Nasirzadeh N. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: a systematic review. Nanotoxicology. 2021;15:850–864. PubMed
Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551.
Oyanagui Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984;142:290–296. PubMed
Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. PubMed
Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G., Brandau W., Simon U., Jahnen-Dechent W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5:2067–2076. PubMed
Pandurangan M., Kim D.H. In vitro toxicity of zinc oxide nanoparticles: a review. J. Nanoparticle Res. 2015;17:8.
Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 1986;154:536–541. PubMed
Parvez S., Sayeed I., Pandey S., Ahmad A., Bin-Hafeez B., Haque R., Ahmad I., Raisuddin S. Modulatory effect of copper on nonenzymatic antioxidants in freshwater fish Channa punctatus (Bloch.) Biol. Trace Elem. Res. 2003;93:237–248. PubMed
Patetsini E., Dimitriadis V.K., Kaloyianni M. Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam. Aquat. Toxicol. 2013;126:338–345. PubMed
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., Habtemariam S., Shin H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 2018;16 PubMed PMC
Pecoraro R., Marino F., Salvaggio A., Capparucci F., Di Caro G., Iaria C., Salvo A., Rotondo A., Tibullo D., Guerriero G., Scalisi E.M., Zimbone M., Impellizzeri G., Brundo M.V. Evaluation of chronic nanosilver toxicity to adult zebrafish. Front. Physiol. 2017;8 PubMed PMC
Peetz O., Hellwig N., Henrich E., Mezhyrova J., Dotsch V., Bernhard F., Morgner N. LILBID and nESI: different native mass spectrometry techniques as tools in structural biology. J. Am. Soc. Mass Spectrom. 2019;30:181–191. PubMed PMC
Peters A., Simpson P., Merrington G., Rothenbacher K., Sturdy L. Occurrence and concentration of dissolved silver in rivers in England and Wales. Bull. Environ. Contam. Toxicol. 2011;86:637–641. PubMed
Peters R.J.B., Rivera Z.H., van Bemmel G., Marvin H.J.P., Weigel S., Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal. Bioanal. Chem. 2014;406:3875–3885. PubMed
Philippe A., Schaumann G.E. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS One. 2014;9 PubMed PMC
Pinho A.R., Martins F., Costa M.E.V., Senos A.M.R., Silva O., Pereira M.L., Rebelo S. In vitro cytotoxicity effects of zinc oxide nanoparticles on spermatogonia cells. Cells. 2020;9 PubMed PMC
Pirsaheb M., Azadi N.A., Miglietta M.L., Sayadi M.H., Blahova J., Fathi M., Mansouri B. Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio) Chemosphere. 2019;215:904–915. PubMed
Pitt J.A., Trevisan R., Massarsky A., Kozal J.S., Levin E.D., Di Giulio R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene. Sci. Total Environ. 2018;643:324–334. PubMed PMC
Pluth M.D., Tomat E., Lippard S.J. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Kornberg R.D., Raetz C.R.H., Rothman J.E., Thorner J.W., editors. Annu. Rev. Biochem. 2011;80:333–355. PubMed PMC
Rades S., Hodoroaba V.-D., Salge T., Wirth T., Lobera M.P., Labrador R.H., Natte K., Behnke T., Gross T., Unger W.E.S. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Adv. 2014;4:49577–49587.
Radi R., Turrens J.F., Chang L.Y., Bush K.M., Crapo J.D., Freeman B.A. Detection of catalase in rat-heart mitochondria. J. Biol. Chem. 1991;266:22028–22034. PubMed
Rajala J.E., Mäenpää K., Vehniäinen E.R., Väisänen A., Scott-Fordsmand J.J., Akkanen J., Kukkonen J.V.K. Toxicity testing of silver nanoparticles in artificial and natural sediments using the benthic organism Lumbriculus variegatus</i>. Arch. Environ. Contam. Toxicol. 2016;71:405–414. PubMed
Rangaswamy B., Kim W.S., Kwak I.S. Heat shock protein 70 reflected the state of inhabited fish response to water quality within lake ecosystem. Int. J. Environ. Sci. Technol. 2024;21:643–654.
Razmara P., Zink L., Doering J.A., Miller J.G.P., Wiseman S.B., Pyle G.G. The combined effect of copper nanoparticles and microplastics on transcripts involved in oxidative stress pathway in rainbow trout (Oncorhynchus mykiss) hepatocytes. Bull. Environ. Contam. Toxicol. 2023;111 PubMed
Regoli F., Frenzilli G., Bocchetti R., Annarumma F., Scarcelli V., Fattorini D., Nigro M. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. Aquat. Toxicol. 2004;68:167–178. PubMed
Renault S., Baudrimont M., Mesmer-Dudons N., Gonzalez P., Mornet S., Brisson A. Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea) Gold Bull. 2008;41:116–126.
Renuka R.R., Ravindranath R.R.S., Raguraman V., Yoganandham S.T., Kasivelu G., Lakshminarayanan A. In vivo toxicity assessment of Laminarin based silver nanoparticles from Turbinaria ornata in adult zebrafish (Danio rerio) J. Cluster Sci. 2020;31:185–195.
Reznick A.Z., Packer L. Oxidative damage to proteins - Spectrofotometric method for carbonyl assay. Oxygen Radic. Biol. Syst. Pt C. 1994;233:357–363. PubMed
Ribeiro F., Van Gestel C.A.M., Pavlaki M.D., Azevedo S., Soares A., Loureiro S. Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver. Sci. Total Environ. 2017;574:1633–1639. PubMed
Ringwood A.H., Conners D.E., Keppler C.J., Dinovo A.A. Biomarker studies with juvenile oysters (crassostrea virginica) deployed in-situ. Biomarkers. 1999:400–414. PubMed
Ringwood A.H., McCarthy M., Bates T.C., Carroll D.L. The effects of silver nanoparticles on oyster embryos. Mar. Environ. Res. 2010;69:S49–S51. PubMed
Robinson C.V., Gross M., Eyles S.J., Ewbank J.J., Mayhew M., Hartl F.U., Dobson C.M., Radford S.E. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature. 1994;372:646–651. PubMed
Rocco L., Santonastaso M., Mottola F., Costagliola D., Suero T., Pacifico S., Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol. Environ. Saf. 2015;113:223–230. PubMed
Rodrigo M.A.M., Jimemez A.M.J., Haddad Y., Bodoor K., Adam P., Krizkova S., Heger Z., Adam V. Metallothionein isoforms as double agents - their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist. Updates. 2020;52 PubMed
Rodriguez-Cea A., Arias A.R.L., de la Campa M.R., Moreira J.C., Sanz-Medel A. Metal speciation of metallothionein in white sea catfish, Netuma barba, and pearl cichlid, Geophagus brasiliensis, by orthogonal liquid chromatography coupled to ICP-MS detection. Talanta. 2006;69:963–969. PubMed
Rostom A.A., Robinson C.V. Detection of the intact GroEL chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 1999;121:4718–4719.
Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. PubMed
Roy B., Suresh P.K., Chandrasekaran N., Mukherjee A. UVB pre-irradiation of titanium dioxide nanoparticles is more detrimental to freshwater algae than UVA pre-irradiation. J. Environ. Chem. Eng. 2020;8
Rozan T.F., Lassman M.E., Ridge D.P., Luther G.W. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature. 2000;406:879–882. PubMed
Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., Adam V., Kizek R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013;14:6044–6066. PubMed PMC
Saidani W., Sellami B., Khazri A., Mezni A., Dellali M., Joubert O., Sheehan D., Beyrem H. Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO(2)NPs) Aquat. Toxicol. 2019;208:71–79. PubMed
Santiago-Rivas S., Moreda-Pineiro A., Bermejo-Barrera A., Bermejo-Barrera P. Fractionation metallothionein-like proteins in mussels with on line metal detection by high performance liquid chromatography-inductively coupled plasma-optical emission spectrometry. Talanta. 2007;71:1580–1586. PubMed
Santo N., Fascio U., Torres F., Guazzoni N., Tremolada P., Bettinetti R., Mantecca P., Bacchetta R. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: does size matter? Water Res. 2014;53:339–350. PubMed
Saratale R.G., Shin H.S., Kumar G., Benelli G., Kim D.S., Saratale G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2) Artif. Cell Nanomed. Biotechnol. 2018;46:211–222. PubMed
Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Czlinica Chimica Acta. 1978;90(1):p37–p43. PubMed
Scown T.M., Santos E.M., Johnston B.D., Gaiser B., Baalousha M., Mitov S., Lead J.R., Stone V., Fernandes T.F., Jepson M., van Aerle R., Tyler C.R. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 2010;115:521–534. PubMed
Seitz F., Lüderwald S., Rosenfeldt R.R., Schulz R., Bundschuh M. Aging of TiO2 nanoparticles transiently increases their toxicity to the pelagic Microcrustacean Daphnia magna. PLoS One. 2015;10 PubMed PMC
Sekar R.K., Arunachalam R., Anbazhagan M., Palaniyappan S., Veeran S., Sridhar A., Ramasamy T. Accumulation, chronicity, and induction of oxidative stress regulating genes through Allium cepa L. Functionalized silver nanoparticles in freshwater common carp (Cyprinus carpio) Biol. Trace Elem. Res. 2023;201:904–925. PubMed
Seo H.S., Park H.S. Fabrication and characterization of Ti and TiO2 nanoparticles by pulsed wire evaporation and transmission electron microscopy. J. Nanosci. Nanotechnol. 2018;18:6823–6829. PubMed
Setsukinai K.I., Urano Y., Kakinuma K., Majima H.J., Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 2003;278:3170–3175. PubMed
Sharma V.K., Filip J., Zboril R., Varma R.S. Natural inorganic nanoparticles - formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015;44:8410–8423. PubMed
Sharma V.K., Siskova K.M., Zboril R., Gardea-Torresdey J.L. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv. Colloid Interface Sci. 2014;204:15–34. PubMed
Shaw J.P., Large A.T., Donkin P., Evans S.V., Staff F.J., Livingstone D.R., Chipman J.K., Peters L.D. Seasonal variation in cytochrome P450 immunopositive protein levels, lipid peroxidation and genetic toxicity in digestive gland of the mussel Mytilus edulis. Aquat. Toxicol. 2004;67:325–336. PubMed
Shen Q.L., Wang J.L., Fu H.T., Hua Y.Q., Luo Y.H., Li W.J., He H.H., Chen L.P., Zhang Y., Fu J.J., Hu J., Yu C.J. A liver-targeting magnetic iron oxide nanoparticle-based dual-modality probe for PET/MR imaging of liver tumor. Colloids Surf. A Physicochem. Eng. Asp. 2024;692
Shuster J., Rea M.A.D., Nidumolu B., Kumar A. Toxicity assessment of gold ions and gold nanoparticles to golden perch larvae (Macquaria ambigua) Mineral. Mag. 2021;85:94–104.
Schmitt S., Huppertsberg A., Klefenz A., Kaps L., Mailänder V., Schuppan D., Butt H.J., Nuhn L., Koynov K. Fluorescence correlation spectroscopy monitors the fate of degradable nanocarriers in the blood stream. Biomacromolecules. 2022;23:1065–1074. PubMed PMC
Sibiya A., Gopi N., Jeyavani J., Mahboob S., Al-Ghanim K.A., Sultana S., Mustafa A., Govindarajan M., Vaseeharan B. Comparative toxicity of silver nanoparticles and silver nitrate in freshwater fish Oreochromis mossambicus: a multi-biomarker approach. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2022;259 PubMed
Sibiya A., Jeyavani J., Santhanam P., Preetham E., Freitas R., Vaseeharan B. Comparative evaluation on the toxic effect of silver (Ag) and zinc oxide (ZnO) nanoparticles on different trophic levels in aquatic ecosystems: a review. J. Appl. Toxicol. 2022;42:1890–1900. PubMed
Siddiqi N.J., Abdelhalim M.A.K., El-Ansary A.K., Alhomida A.S., Ong W.Y. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J. Neuroinflammation. 2012;9:7. PubMed PMC
Simon-Deckers A., Loo S., Mayne-L'Hermite M., Herlin-Boime N., Menguy N., Reynaud C., Gouget B., Carriere M. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 2009;43:8423–8429. PubMed
Siscar R., Koenig S., Torreblanca A., Sole M. The role of metallothionein and selenium in metal detoxification in the liver of deep-sea fish from the NW Mediterranean Sea. Sci. Total Environ. 2014;466:898–905. PubMed
Slater T., Chen Y.Q., Auton G., Zaluzec N., Haigh S. X-ray absorption correction for quantitative scanning transmission electron microscopic energy-dispersive X-ray spectroscopy of spherical nanoparticles. Microsc. Microanal. 2016;22:440–447. PubMed
Smii H., Khazri A., Ben Ali M., Mezni A., Hedfi A., Albogami B., Almalki M., Pacioglu O., Beyrem H., Boufahja F., Dellali M. Titanium dioxide nanoparticles are toxic for the freshwater mussel Unio ravoisieri: evidence from a multimarker approach. Diversity-Basel. 2021;13
Smith I.K., Vierheller T.L., Thorne C.A. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid) Anal. Biochem. 1988;175:408–413. PubMed
Souza I.D., Mendes V.A.S., Duarte I.D., Rocha L.D., Azevedo V.C., Matsumoto S.T., Elliott M., Wunderlin D.A., Monferran M.V., Fernandes M.N. Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Sci. Total Environ. 2019;658:798–808. PubMed
Spurgeon D.J., Lahive E., Schultz C.L. vol. 16. Small; 2020. (Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity). PubMed
Stepien G., Moros M., Perez-Hernandez M., Monge M., Gutierrez L., Fratila R.M., Heras M.D., Guillen S.M., Lanzarote J.J.P., Solans C., Pardo J., de la Fuente J.M. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces. 2018;10:4548–4560. PubMed
Stolen J.S., Fletcher T.C., Smith S. Techniques in fish immunology. SOS publications; 1992.
Suarez V.T., Karepina E., Chevallet M., Gallet B., Cottet-Rousselle C., Charbonnier P., Moriscot C., Michaud-Soret I., Bal W., Fuchs A., Tucoulou R., Jouneau P.H., Veronesi G., Deniaud A. Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environ. Sci.: Nano. 2020;7:1373–1387.
Sun J., Guo L.H., Zhang H., Zhao L.X. Irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity. Environ. Sci. Technol. 2014;48:11962–11968. PubMed
Sun T.Y., Mitrano D.M., Bornhöft N.A., Scheringer M., Hungerbühler K., Nowack B. Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 2017;51:2854–2863. PubMed
Sun Y., Oberley L.W., Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988;34:497–500. PubMed
Suzuki K. Measurement of Mn-SOD and Cu, Zn-SOD. Experimental protocols for reactive oxygen and nitrogen. Species. 2000;1:91–95.
Svantesson E., Pettersson J., Markides K.E. The use of inorganic elemental standards in the quantification of proteins and biomolecular compounds by inductively coupled plasma spectrometry. J. Anal. At. Spectrom. 2002;17:491–496.
Syed M.A. Copper-metabolism in the Plaice, Pleuronectes-platessa (L) J. Exp. Mar. Biol. Ecol. 1982;63:281–296.
Szpunar J. Bio-inorganic speciation analysis by hyphenated techniques. Analyst. 2000;125:963–988. PubMed
Takahara S., Hamilton H.B., Neel J.V., Kobara T.Y., Ogura Y., Nishimura E.T. Hypocatalasemia: a new genetic carrier state. J. Clin. Investig. 1960;39:610–619. PubMed PMC
Tamarit J., de Hoogh A., Obis E., Alsina D., Cabiscol E., Ros J. Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J. Proteonomics. 2012;75:3778–3788. PubMed
Tang S.K., Wang J., Zhu X.X., Shen D.D. Ecological risks of zinc oxide nanoparticles for early life stages of obscure puffer (Takifugu obscurus) Toxics. 2024;12 PubMed PMC
Tang T.L., Zhang Z., Zhu X.P. Toxic effects of TiO2 NPs on zebrafish. Int. J. Environ. Res. Publ. Health. 2019;16 PubMed PMC
Tedesco S., Doyle H., Blasco J., Redmond G., Sheehan D. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2010;151:167–174. PubMed
Tedesco S., Doyle H., Blasco J., Redmond G., Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 2010;100:178–186. PubMed
Testa-Anta M., Ramos-Docampo M.A., Comesaña-Hermo M., Rivas-Murias B., Salgueiriño V. Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv. 2019;1:2086–2103. PubMed PMC
Thai S.F., Jones C.P., Nelson G.B., Vallanat B., Killius M., Crooks J.L., Ward W.O., Blackman C.F., Ross J.A. Differential effects of nano TiO₂ and CeO₂ on normal human lung epithelial cells in vitro. J. Nanosci. Nanotechnol. 2019;19:6907–6923. PubMed PMC
Tharaud M., Gondikas A.P., Benedetti M.F., von der Kammer F., Hofmann T., Cornelis G. TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. J. Anal. At. Spectrom. 2017;32:1400–1411.
Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 1969;27:502–522. PubMed
Tokoro H., Nakabayashi K., Nagashima S., Song Q.Y., Yoshikiyo M., Ohkoshi S.I. Optical properties of Epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions. Bull. Chem. Soc. Jpn. 2022;95:538–552.
Tortella G.R., Rubilar O., Duran N., Diez M.C., Martinez M., Parada J., Seabra A.B. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard Mater. 2020;390 PubMed
Toy R., Peiris P.M., Ghaghada K.B., Karathanasis E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine. 2014;9:121–134. PubMed PMC
Turan N.B., Erkan H.S., Engin G.O., Bilgili M.S. Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity-A review. Process Saf. Environ. Protect. 2019;130:238–249.
Turley R.S., Benavides R., Hernandez-Viezcas J.A., Gardea-Torresdey J.L. Insights on ligand interactions with titanium dioxide nanoparticles via dynamic light scattering and electrophoretic light scattering. Microchem. J. 2018;139:333–338.
Uchino T., Tokunaga H., Ando M., Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol. Vitro. 2002;16:629–635. PubMed
Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978;86:271–278. PubMed
Urnukhsaikhan E., Bold B.E., Gunbileg A., Sukhbaatar N., Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus</i>. Sci. Rep. 2021;11 PubMed PMC
Valavanidis A., Vlachogianni T., Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009;27:120–139. PubMed
Vale G., Franco C., Diniz M.S., dos Santos M.M.C., Domingos R.F. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea - the role of TiO2 nanoparticles. Ecotoxicol. Environ. Saf. 2014;109:161–168. PubMed
Vale G., Mehennaoui K., Cambier S., Libralato G., Jomini S., Domingos R.F. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat. Toxicol. 2016;170:162–174. PubMed
Valerio-Garcia R.C., Carbajal-Hernandez A.L., Martinez-Ruiz E.B., Jarquin-Diaz V.H., Haro-Perez C., Martinez-Jeronimo F. Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci. Total Environ. 2017;583:308–318. PubMed
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006;160:1–40. PubMed
Van Campenhout K., Infante H.G., Hoff P.T., Moens L., Goemans G., Belpaire C., Adams F., Blust R., Bervoets L. Cytosolic distribution of Cd, Cu and Zn, and metallothionein levels in relation to physiological changes in gibel carp (Carassius auratus gibelio) from metal-impacted habitats. Ecotoxicol. Environ. Saf. 2010;73:296–305. PubMed
Vazquez G., Caballero A.B., Kokinda J., Hijano A., Sabate R., Gamez P. Copper, dityrosine cross-links and amyloid-beta aggregation. J. Biol. Inorg. Chem. 2019;24:1217–1229. PubMed
Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 1997;44:69–84.
Vineeth Kumar C.M., Karthick V., Kumar V.G., Inbakandan D., Rene E.R., Suganya K.S.U., Embrandiri A., Dhas T.S., Ravi M., Sowmiya P. The impact of engineered nanomaterials on the environment: release mechanism, toxicity, transformation, and remediation. Environ. Res. 2022;212 PubMed
Walker C.J., Gelsleichter J., Adams D.H., Manire C.A. Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo. Fish Physiol. Biochem. 2014;40:1361–1371. PubMed
Wang D., Lin Z., Wang T., Yao Z., Qin M., Zheng S., Lu W. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J. Hazard Mater. 2016;308:328–334. PubMed
Wang D., Wang P., Wang C., Ao Y. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO2 nanoparticles in water environment. Environ. Pollut. 2019;248:834–844. PubMed
Wang H., Wang M., Xu X., Gao P., Xu Z., Zhang Q., Li H., Yan A., Kao R.Y., Sun H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 2021;12:3331. PubMed PMC
Wang H., Yan A., Liu Z., Yang X., Xu Z., Wang Y., Wang R., Koohi-Moghadam M., Hu L., Xia W., Tang H., Wang Y., Li H., Sun H. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol. 2019;17 PubMed PMC
Wang H., Yang X., Wang M., Hu M., Xu X., Yan A., Hao Q., Li H., Sun H. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem. Sci. 2020;11:11714–11719. PubMed PMC
Wang S.S., Lv J.T., Ma J.Y., Zhang S.Z. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology. 2016;10:1129–1135. PubMed
Wang T., Chen X.Y., Long X.H., Liu Z.P., Yan S.H. Copper nanoparticles and copper sulphate induced cytotoxicity in hepatocyte primary cultures of Epinephelus coioides. PLoS One. 2016;11:15. PubMed PMC
Wang T., Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. Environ. Sci.: Nano. 2022;9:2237–2263. PubMed PMC
Wang T., Marle P., Slaveykova V.I., Schirmer K., Liu W. Comparative study of the sensitivity of two freshwater gastropods, Lymnaea stagnalis and Planorbarius corneus, to silver nanoparticles: bioaccumulation and toxicity. Environ. Pollut. 2022;312 PubMed
Wang T., Wen X., Hu Y.D., Zhang X.Y., Wang D., Yin S.W. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol. 2019;84:648–655. PubMed
Wang W.C., Mao H., Ma D.D., Yang W.X. Characteristics, functions, and applications of metallothionein in aquatic vertebrates. Front. Mar. Sci. 2014;1
Wang W.W., Yang Y.Z., Yang L.H., Luan T.G., Lin L. Effects of undissociated SiO2 and TiO2 nano-particles on molting of Daphnia pulex: comparing with dissociated ZnO nano particles. Ecotoxicol. Environ. Saf. 2021;222 PubMed
Ward J.E., Kach D.J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 2009;68:137–142. PubMed
Wheeler K.E., Chetwynd A.J., Fahy K.M., Hong B.S., Tochihuitl J.A., Foster L.A., Lynch I. Environmental dimensions of the protein corona. Nat. Nanotechnol. 2021;16:617–629. PubMed
Wilchek M., Bayer E.A. Introduction to avidin-biotin technology. Methods Enzymol. 1990;184:5–13. PubMed
Wimmer A., Markus A.A., Schuster M. Silver nanoparticle levels in river water: real environmental measurements and modeling approaches—a comparative study. Environ. Sci. Technol. Lett. 2019;6:353–358.
Wind M., Lehmann W.D. Element and molecular mass spectrometry - an emerging analytical dream team in the life sciences. J. Anal. At. Spectrom. 2004;19:20–25.
Windell D.L., Mourabit S., Moger J., Owen S.F., Winter M.J., Tyler C.R. The influence of size and surface chemistry on the bioavailability, tissue distribution and toxicity of gold nanoparticles in zebrafish (Danio rerio)</i>. Ecotoxicol. Environ. Saf. 2023;260 PubMed
Winterbourn C.C., Hawkins R.E., Brian M., Carrell R.W. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 1975;85:337–341. PubMed
Wormington A.M., Coral J., Alloy M.M., Delmare C.L., Mansfield C.M., Klaine S.J., Bisesi J.H., Roberts A.P. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles. Environ. Toxicol. Chem. 2017;36:1661–1666. PubMed
Wozniak-Budych M.J., Langer K., Peplinska B., Przysiecka L., Jarek M., Jarzebski M., Jurga S. Copper-gold nanoparticles: fabrication, characteristic and application as drug carriers. Mater. Chem. Phys. 2016;179:242–253.
Xia B., Zhu L., Han Q., Sun X.M., Chen B.J., Qu K.M. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: an integrated biomarker approach. Environ. Toxicol. Pharmacol. 2017;50:128–135. PubMed
Xiang J., Zou R.F., Wang P., Wang X.F.Z., He X.F., Liu F., Xu C., Wu A.G. Nitroreductase-responsive nanoparticles for in situ fluorescence imaging and synergistic antibacterial therapy of bacterial keratitis. Biomaterials. 2024;308 PubMed
Xiao B., Zhang Y., Wang X., Chen M., Sun B., Zhang T., Zhu L. Occurrence and trophic transfer of nanoparticulate Ag and Ti in the natural aquatic food web of Taihu Lake, China. Environ. Sci.: Nano. 2019;6:3431–3441.
Xiao Y.L., Peijnenburg W., Chen G.C., Vijver M.G. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Sci. Total Environ. 2016;563:81–88. PubMed
Xiao Y.L., Peijnenburg W., Chen G.C., Vijver M.G. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. Sci. Total Environ. 2018;610:1329–1335. PubMed
Xu W.N., Liu W.B., Liu Z.P. Trichlorfon-induced apoptosis in hepatocyte primary cultures of Carassius auratus gibelio. Chemosphere. 2009;77:895–901. PubMed
Xue X.D., Wang T., Jiang X.D., Jiang J., Pan C.X., Wu Y.C. Interaction of hydrogen with defects in ZnO nanoparticles - studied by positron annihilation, Raman and photoluminescence spectroscopy. CrystEngComm. 2014;16:1207–1216.
Yadav P.K., Kochar C., Taneja L., Tripathy S.S. Study on dissolution behavior of CuO nanoparticles in various synthetic media and natural aqueous medium. J. Nanoparticle Res. 2022;24
Yan N., Tang B.Z., Wang W.X. Intracellular trafficking of silver nanoparticles and silver ions determined their specific mitotoxicity to the zebrafish cell line. Environ. Sci.: Nano. 2021;8:1364–1375.
Yang L., He Z., Li X., Jiang Z., Xuan F., Tang B., Bian X. Behavior and toxicity assessment of copper nanoparticles in aquatic environment: a case study on red swamp crayfish. J. Environ. Manag. 2022;313 PubMed
Yang S.P., Bar-Ilan O., Peterson R.E., Heideman W., Hamers R.J., Pedersen J.A. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ. Sci. Technol. 2013;47:4718–4725. PubMed
Yang Z.B., Chen H.R. The recent progress of inorganic-based intelligent responsive nanoplatform for tumor theranostics. View. 2022;3
Yetisen A.K., Qu H., Manbachi A., Butt H., Dokmeci M.R., Hinestroza J.P., Skorobogatiy M., Khademhosseini A., Yun S.H. Nanotechnology in textiles. ACS Nano. 2016;10:3042–3068. PubMed
Yin Y., Shen M., Zhou X., Yu S., Chao J., Liu J., Jiang G. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environ. Sci. Technol. 2014;48:9366–9373. PubMed
Yu S.-j., Yin Y.-g., Liu J.-f. Silver nanoparticles in the environment. Environ. Sci. J. Integr. Environ. Res.: Process. Impacts. 2013;15:78–92. PubMed
Yu Z.J., Li Q., Wang J., Yu Y.L., Wang Y., Zhou Q.H., Li P.F. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett. 2020;15 PubMed PMC
Zhang B., Zhang H., Du C.L., Ng Q.X., Hu C.Y., He Y.L., Ong C.N. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Res. 2017;114:135–143. PubMed
Zhang H., Miao C.G., Huo Z.P., Luo T.Z. Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: physicochemical analysis, photosynthetic efficiency and potential mechanisms. Water Res. 2022;223 PubMed
Zhang J., Guo W.L., Li Q.Q., Wang Z., Liu S.J. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci.: Nano. 2018;5
Zhang L., Jiang H., Wang W.-X. Subcellular imaging of localization and transformation of silver nanoparticles in the oyster larvae. Environ. Sci. Technol. 2020;54:11434–11442. PubMed
Zhang W., Gao J., Lu L., Bold T., Li X., Wang S., Chang Z., Chen J., Kong X., Zheng Y., Zhang M., Tang J. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NanoImpact. 2021;23 PubMed
Zhang W.C., Xiao B.D., Fang T. Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere. 2018;191:324–334. PubMed
Zhang X.F., Shen W., Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 2016;17:26. PubMed PMC
Zhang X.W., Zhang J.L., Wang Q., Ghimire S., Mei L., Wu C.Q. Effects of particle size and surface charge on mutagenicity and chicken embryonic toxicity of new silver nanoclusters. ACS Omega. 2022;7:17703–17712. PubMed PMC
Zhang Y., Chen Y.S., Westerhoff P., Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009;43:4249–4257. PubMed
Zhao G., Zhang T., Sun H.J., Liu J.X. Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress. Metallomics. 2020;12:12–22. PubMed
Zhao J., Wang X., Hoang S.A., Bolan N.S., Kirkham M.B., Liu J., Xia X., Li Y. Silver nanoparticles in aquatic sediments: occurrence, chemical transformations, toxicity, and analytical methods. J. Hazard Mater. 2021;418 PubMed
Zhou W.T., Liu S.H., DeFlorio W., Ha Song S., Choi H., Cisneros-Zevallos L., Oh J.K., Akbulut M.E.S. Nanostructured antifouling coatings for galvanized steel food storage and container surfaces to enhance hygiene and corrosion resistance against bacterial, fungal, and mud contamination. J. Food Eng. 2024;363
Zhou Y., Lei L., Zhu B., Li R., Zuo Y., Guo Y., Han J., Yang L., Zhou B. Aggravated visual toxicity in zebrafish larvae upon co-exposure to titanium dioxide nanoparticles and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate. Sci. Total Environ. 2024;921 PubMed
Zhu X.S., Chang Y., Chen Y.S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 2010;78:209–215. PubMed
Zhu X.S., Tian S.Y., Cai Z.H. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 2012;7:6. PubMed PMC
Zhu Y., Liu X.L., Hu Y.L., Wang R., Chen M., Wu J.H., Wang Y.Y., Kang S., Sun Y., Zhu M.X. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. 2019;174:54–60. PubMed
Zöllner N., Kirsch K. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Zeitschrift für Die Gesamte Experimentelle Medizin. 1962;135:545–561.
Chupani L., Zuskova E., Niksirat H., Panacek A., Lunsmann V., Haange S.B., von Bergen M., Jehmlich N. Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.) Sci. Total Environ. 2017;579:1504–1511. PubMed