AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39107460
PubMed Central
PMC11579091
DOI
10.1007/s12021-024-09679-1
PII: 10.1007/s12021-024-09679-1
Knihovny.cz E-zdroje
- Klíčová slova
- Deep learning, Image registration, Mouse brain,
- MeSH
- deep learning * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- myši transgenní MeSH
- myši MeSH
- počítačové zpracování obrazu * metody MeSH
- reprodukovatelnost výsledků MeSH
- software normy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.
Data Science MSD Czech Republic s r o Prague Czech Republic
Global Software Development MSD Czech Republic s r o Prague Czech Republic
Zobrazit více v PubMed
Aberman, K., Liao, J., Shi, M., Lischinski, D., Chen, B., & Cohen-Or, D. (2018). Neural best-buddies: Sparse cross-domain correspondence. ACM Transactions on Graphics,37(4), 1–14. http://arxiv.org/abs/1805.04140
Baxi, V., Edwards, R., Montalto, M., & Saha, S. (2022). Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology,35(1), 23–32. https://www.nature.com/articles/s41379-021-00919-2 PubMed PMC
Belfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., & Oddo, S. (2019). Temporal and regional progression of Alzheimer’s disease‐like pathology in 3xTg‐AD mice. Aging Cell,18(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351836/ PubMed PMC
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: fast and flexible image augmentations. Information,11(2), 125. http://arxiv.org/abs/1809.06839
Carey, H. et al. (2023). DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas. PubMed PMC
Carrigan, A. J., Charlton, A., Wiggins, M. W., Georgiou, A., Palmeri, T., & Curby, K. M. (2022). Cue utilisation reduces the impact of response bias in histopathology. Applied Ergonomics,98, 103590. https://linkinghub.elsevier.com/retrieve/pii/S0003687021002374 PubMed
Ekvall, M. (2024). Spatial landmark detection and tissue registration with deep learning. Nature Methods. PubMed PMC
Fainstein, N., Dori, D., Frid, K., Fritz, A. T., Shapiro, I., Gabizon, R., & Ben-Hur, T. (2016). Chronic progressive neurodegeneration in a transgenic mouse model of prion disease. Frontiers in Neuroscience,10, 510. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5104746/ PubMed PMC
Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M., & Brown, G. C. (2018). Neuronal Cell Death. Physiological Reviews,98(2), 813–880. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966715/ PubMed PMC
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. https://arxiv.org/abs/1703.06870 PubMed
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. http://arxiv.org/abs/1512.03385
Kiwitz, K., Schiffer, C., Spitzer, H., Dickscheid, T., & Amunts, K. (2020). Deep learning networks reflect cytoarchitectonic features used in brain mapping. Scientific Reports, 10(1), 22039. https://www.nature.com/articles/s41598-020-78638-y PubMed PMC
Kuhn, H. W. (2005). The Hungarian method for the assignment problem. Naval Research Logistics, 7–21.
LaFerla, F. M., & Green, K. N. (2012). Animal models of alzheimer disease. Cold Spring Harbor Perspectives in Medicine,2(11). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543097/ PubMed PMC
Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature,445(7124), 168–176. http://www.nature.com/articles/nature05453 PubMed
Müller, R., Kornblith, S., & Hinton, G. E. (2020). When does label smoothing help. http://arxiv.org/abs/1906.02629
Rauf, A., Badoni, H., Abu-Izneid, T., Olatunde, A., Rahman, M. M., Painuli, S, et al. (2022). Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules,27(10), 3194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146652/ PubMed PMC
Sandkühler, R., Jud, C., Andermatt, S., & Cattin, P. C. (2020). AirLab: Autograd Image Registration Laboratory. http://arxiv.org/abs/1806.09907
Saravanan, C., Schumacher, V., Brown, D., Dunstan, R., Galarneau, J. R., Odin, M., & Mishra, S. (2017). Meeting Report: Tissue-based Image Analysis. Toxicologic Pathology,45(7), 983–1003. 10.1177/0192623317737468 PubMed
Schultz, M. K. Jr., Gentzel, R., Usenovic, M., Gretzula, C., Ware, C., Parmentier-Batteur, S., . . . & Zariwala, H. A. (2018). Pharmacogenetic neuronal stimulation increases human tau pathology and trans-synaptic spread of tau to distal brain regions in mice. Neurobiology of Disease. PubMed
Shiffman, S., Basak, S., Kozlowski, C., & Fuji, R. N. (2018). An automated mapping method for Nissl-stained mouse brain histologic sections. Journal of Neuroscience Methods,308, 219–227. https://linkinghub.elsevier.com/retrieve/pii/S0165027018302413 PubMed
Spires-Jones, T. L., Attems, J., & Thal, D. R. (2017). Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathologica,134(2), 187–205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508034/ PubMed PMC
Talo, M. (2019). Automated classification of histopathology images using transfer learning. Artificial Intelligence in Medicine,101, 101743. https://linkinghub.elsevier.com/retrieve/pii/S0933365719307110 PubMed
Tan, M., & Le, Q. (2020). EfficientNet: Rethinking model scaling for convolutional neural networks. http://arxiv.org/abs/1905.11946
Technavio. (2022). Digital pathology market by product, application and geography - forecast and analysis 2023–2027. https://www.technavio.com/report/digital-pathology-market-size-industry-analysis
Xu, X., Yue, G., Hui, G., Zhao, F., Wenjuan, S., Anan, L., Miao, R., Jing, Y., & Qingming, L. (2020). Automated Brain Region Segmentation for Single Cell Resolution Histological Images Based on Markov Random Field. Neuroinformatics,18(2), 181–197. 10.1007/s12021-019-09432-z PubMed
Yates, S. C., Groeneboom, N. E., Coello, C., Lichtenthaler, S. F., Kuhn, P. H., Demuth, H. U., Hartlage-Rübsamen, M. et al. (2019). QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Frontiers in Neuroinformatics,13, 75. 10.3389/fninf.2019.00075/full PubMed PMC
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE (institute of Electrical and Electronics Engineers Inc.),109(1), 43–76.